
C S 4 2 1  C O M P I L E R S  A N D  I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann Zhong Shao, Yale University More on Machine-Code Generation: Page 1 of 34

More on Machine-Code Generation
• Problem: given a target machine specification, how to translate the 

intermediate representations into efficient machine code ? 

• Solution --- must take consideration of the machine architecture

1. Code Selection 
(emitting the machine code via maximal-munch or dynamic programming)

2. Register Allocation 
(global register allocation, spilling)

3. Instruction Scheduling 
(instruction scheduling, branch prediction, memory hierarchy optimizations)

• Language Trends : assembly -> C -> ... -> higher-level languages ?

• Architecture Trends : CISC -> RISC -> ... -> superscalar -> ? 

• Trends: the bridging gap is the main challenge to compiler writers
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Register Allocation
• Register allocation often works on the intermediate representations 

that are very much like the machine code.

• Input: intermediate code that references unlimited number of registers; 

output: rewrite the intermediate code so that it uses the limited registers 
available on the target machine --- the machine registers. 

• Standard Algorithm: Graph Coloring Register Allocation

Main idea: build a interference graph based on the live ranges of
each identifiers; then color the interference graph.

Example: Yorktown Allocator (by Chaitin et al. at IBM T.J.Watson)’

Briggs’s Extension (by Briggs et al. at Rice Univ. )
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Example: Register Allocation
s1 := load z s1

s2 := load y s2

s3 := s1 + s2 s3

s4 := s1 * s2 s4

s5 := s3 + s4 s5

s6 := load x s6

s7 := load w s7

s8 := s6 * s7 s8

s9 := s5 + s8

how to color the 
interference graph ? 

s1 s2 s3

s4 s5 s6

s7 s8 s9
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Yorktown Allocator
• Renumber: name all identifiers uniquely, find out their live ranges.

• Build: construct the interference graph G. 

• Coalesce: eliminating copying instructions, e.g., x = y

• Spill Costs: calculate the spill costs

• Simplify: (together with Select) color the graph (it is NP-complete!).

• Select: choose the actual colors (i.e., registers)

• Spill Code: insert the spill code

renumbe  build coalesc spill simplif select

spill 
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Yorktown Allocator (cont’d)
• Build: the interference graph characterizes the interference relation of 

live ranges: two live ranges interfere if there exists some point in the 
procedure and a possible execution of the procedure such that

1. both live ranges have been defined
2. both live ranges will be used, and
3. the live ranges have different values

• Simplify and Select: assuming there are k physical registers

In Simplify, the allocator repeatedly removes nodes with outer degree 
< k from the graph and pushes them onto a stack. 

In Select, the nodes are popped from the stack and added back to the 
graph --- a color is chosen for each node.

If Simplify encounters a graph containing only nodes of degree >= k, 
then a node is chosen for spilling.
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Yorktown Allocator (cont’d)
• Choosing Spill Nodes: based on the weight mn for each node n

Chaitin’s heuristics: mn = costn / degreen

Alternatives: mn = costn / (degreen * arean)

where arean is a function that quantifies the impact n has on other live 
ranges in the program, e.g., if it is used in a loop often, arean is larger.

• Spilling: if v is spilled, a store is inserted after every definition of v, and 
a load is inserted before every use of v. 

• Bernstein et al. later found no single spilling-cost heauristics 
completely dominates the other. They propose “best of 3” technique: 

Just run the algorithm using three heauristics, then choose one with 
the best outcome.
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Briggs’s Extension
• Simplify removes nodes with degree < k in an arbitrary order. If all 

remaining nodes have degree >= k, a spill candidate is choosed and 
optimistically pushed on the stack also, hoping a color will be found later. 

• Select may discover that it has no color for some node. In that case, it 

leaves the node uncolored and continues with the next node. 

• If any nodes are uncolored, the allocator inserts spill code accordingly 

and rebuild the interference graph, and tries again.

renumbe  build coalesc spill simplif select

spill 
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Instruction Scheduling
• Why Instruction Scheduling ? to exploit instruction-level parallelism:

1. pipelining 2. superscalar 3. VLIW 

• What is Pipelining ? 

• Pipelining Performance: assuming we are executing n operations; 
each operation takes L stages; each stage takes one cycle;

Non-pipelined: L * n
Pipelined: L + n - 1 
Speedup: close to L (when n is large) ---- # of pipeline stages

L

L+n-1
n
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Typical Pipelining Stages 
• The standard 5 pipeline stages (see DLX in Hennessy&Patterson):

Instruction fetch step (IF) 
IR <- Mem[PC]; NPC <- PC + 4;

Instruction decode/register fetch step (ID)
A <- Regs[IRa]; B <- Regs[IRb];

Execution/effective address step (EX)
Mem-Ref: ALUoutput <- A + IRimmed; 

(for store) SMD <- B;
ALU Instr: ALUoutput <- A op B;
Branch/Jump: ALUoutput <- NPC + IRimmed; cond <- (A op 0)

Memory access/branch completion step (MEM)
Mem-Ref: LMD <- Mem[ALUoutput] or Mem[ALUoutput] <- SMD
Branch/Jump: if (cond) PC <- ALUoutput else PC <- NPC

Write-back step (WB)
Regs[IRtarget] <- ALUoutput; or Regs[IRtarget] <- MD;
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More on Pipelining
• Pipelining doesn’t help latency of single task, it helps throughput of 

entire workload. 

• Pipeline rate is limited by the slowest pipeline stage; unbalanced 

lengths of pipe stages reduces speedup 

• Limits to pipelining in a machine: Hazards prevent next instruction 

from executing during its designated clock cycle.

structure hazards : hardware can not support this combination of 
instructions due to resource conflicts

data hazards : instruction depends on result of prior instruction still in 
the pipeline

control hazards : pipelining of branches and other instructions that 
change the PC
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Instruction Scheduling
• Instruction scheduling is to avoid data and control hazards

• The Algorithm :

draw the schedule (or dependency) graph, then use the following 
greedy scheduling algorithm:

1. use heuristics to pick one of the unscheduled operations whose 
predecessors have already been scheduled. 

2. calculate the completion time for each of its predecessor operations 
by adding their execution latency to the time at which they are 
scheduled to begin execution. Find the earliest time that this operation 
can be scheduled.

3. (optional ) determine the earliest time an appropriate functional unit 
is available to perform this operation.

4. repeat the procedure from step 1.
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Example: Instruction Scheduling
s1 := load z
s2 := load y
s3 := s1 + s2
s4 := s1 * s2
s5 := s3 + s4
s6 := load x
s7 := load w
s8 := s6 * s7
s9 := s5 + s8

after scheduling:

s1 := load z
s2 := load y
s6 := load x
s7 := load w
s3 := s1 + s2
s4 := s1 * s2
s5 := s3 + s4
s8 := s6 * s7
s9 := s5 + s8

topologically-sort the
schedule graph

s1 s2 s3

s4 s5 s6

s7 s8 s9

open problem: interaction with reg. alloc. ? 
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Main Challenges
• Basic instruction scheduling may not work very effectively; Often 

cannot find enought instructions to fill the load and branch delay slot.

• Instruction scheduling does not interact with register allocation well 

a. doing scheduling first may increase register pressures
b. doing reg. allocation first may add more schedule dependencies

• To get the best performance, the key is to avoid hazards !

structure hazards --- add multiple set of hardware 

control hazards --- use branch prediction and trace scheduling
(static & dynamic branch prediction, trace scheduling)

data hazards --- design new memory hierarchy optimization
(forwarding, bigger caches, write buffers, prefetching, speculative loads)
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Control Harzard & Branch Stall
• Control Hazard: assuming branch stall three cycles 

• Dealing with Control Hazard: 

1. stall until branch direction is clear
2. predict not taken (PC + 4 already calculated)
3. predict taken (more likely but target address is not calculated yet)
4. delayed branch --- define delay slots --- let the compiler fill it

(with delay slots filled)

40: BEQ R1, R3, 36
44: AND R12, R2, R5
48:  OR R13, R6, R2
52: ADD R14, R2, R2

..........
80: LD R4, R7, 36

(delay slots NOT filled)

40: BEQ R1, R3, 36
44: NOP
48: NOP
52: NOP

..........
80: LD R4, R7, 36

branch penalty: 30% branch instructions, stall 3 cycles;
means 90% slowdown in performance
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Branch Stall (cont’d)
• Delayed Branch --- where to get instructions to fill branch delay slots ? 

1. before branch instruction
2. from the target address: only valuable when branch
3. from fall through: only valuable when don’t branch

Effectiveness: one-delay-slot --- 50% filled (Hennessy&Patterson)

More problems for super-pipelined and superscalar machines !

• Branch Prediction : improves strategy on placing instructions in delay 

slot. 

• Other reasons to do Branch Prediction : (1) other compiler 

optimizations (2) support trace scheduling and speculative execution.

• Branch Prediction methods: static or dynamic 
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Static Branch Prediction
• Static Branch Prediction is done before the program runs, i.e., mostly 

at compile time. Advantage: prediction information is available at 
compile time, so can be used in other optimizations; no hardware 
support necessary.

• Three ways to do Static Branch Prediction:

1. programmer-inserted directives --- you say it in your programs

2. the compiler examines the source and uses heuristics, e.g.,

a. backward branch predict taken, forward branch untaken ... 
b. always favor loop branches ; if nested-loop, favour internal loops;
c. opcode heuristic (favor >=0, >0, <>0 operators, etc.); pointer null comparison;
d. favor the branch with loop; NOT favor branches with call and return ...

3. profiling-based --- the program is run, statistics are gathered and fed 
back into the source code; then the program is recompiled using 
these statistics.
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Dynamic Branch Prediction
• Dynamic Branch Prediction is done while a program is running, mostly 

done by branch prediction hardware. Advantage: the same branch can 
be predicted taken at some time, and untaken at another time.

• Branch History Table (BHT) --- 1-Bit scheme

lower bits of PC address index table of 1-bit values; 
the 1-bit says whether or not branch taken last time;

Problem: in a loop, 1-bit BHT will cause 2-mispredictions 

• Branch History Table (BHT) --- 2-Bit Scheme --- 

change prediction only if get misprediction twice !

NT

NT
Pred. Taken

T

T

T

T NT

NT

Not Taken

Pred. Taken !

 Not Taken !
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Dynamic Branch Pred. (cont’d)
• BHT Accuracy: mispredict because either wrong guess for that branch 

or got branch history of wrong branch when index the table. In practice: 
4096 entry table get 1%-18% misprediction 

• Technique #2 --- Correlating Branches --- main idea: taken/not taken 
of a recently executed branches is related to behavior of next branch.

Source code: B1: if (d == 0) d = 1;
B2: if (d == 1) ......

Assembly:
BNEZ R1, L1 ; branch B1 (d != 0)
ADDI R1, R0, #1 ; d == 0 so d = 1

L1: SUBI R3, R1, #1 
BNEZ R3, L2 ; branch B2 (d != 1)

Clearly, branch B2 is correlated to B1; if B1 is not taken then B2 won’t 
be taken either. Simple 1-bit BHT can behave very bad ...
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Dynamic Branch Pred. (cont’d)
• A (1,1) Correlating Predictor: every branch has two spearate 1-bit 

predictor: one is used when the last branch executed is not taken; 
another is used when the last branch executed is taken.

• A (m,n) correlating predictor uses the behavior of the last m branches 
to choose from 2m branch predictors, each of which is a n-bit predictor 

for a single branch. 

need to maintain m-bit global branch history in a special register 
during the execution.

• Performance: the 1024-entry (2,2)-correlating-predictor normally 

outperforms the 4096-entry simple 2-bit predictor.
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Branch Target Buffer
• Branch Target Buffer (BTB) --- address of branch index to get 

prediction and branch address (if taken) 

must check for branch match now, since can’t use wrong branch 
address.

Predicted PC

PC of the instruction to fetch

Lookup
Predict
Bits

# of
entrie

s

if PC is in BTB, then instruction is predicted, and the predicted PC 
is used;
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Memory Hierarchy 
• Main challenges: widening performance gaps in memory hierarchy 

the performance of memory (i.e., DRAM) is improving 7% per year;
the performance of CPU is improving 25%-50% per year ; 
1995 Memory Hierarchy: 

CPU --> 1st-Lev-Cache --> 2nd-Lev-Cache --> Main Mem --> Disk

• Solutions: cache --- often implemented as smaller but faster SRAM. 

because memory reference exhibits nice locality pattern:
temporal locality : referenced again soon
spatial locality : nearby items referenced soon

• Cache Basics (see Hennessy&Patterson90 for more details)

hit rate: fraction of mem access that found in the cache (often >90%)
average memory access time = Hit time + Miss rate * Miss penalty
miss penalty --- time to replace a block in the cache
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Improving Cache Performance
• Reduce the read miss rate and write miss rate 

• Reduce the read miss penalty and write miss penalty ? 

• Reduce the read hit and write hit time --- this can decrease the cycle 
time, thus increase the machine frequency. 

• Main questions of memory hierarchy optimizations:

1. How to reduce the read miss rate and write miss rate ? 
hardware method: modify cache organizations ......

software method: relocate data, rewrite programs, prefetching, 
scheduling for the load delay slot, ...

2. How to reduce the read miss penalty and write miss penalty ?
hardware method: non-blocking cache, better cache miss policy

Cache performance depends on the actual program behavior !!!
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Cache Basics [H&P90]
• Basic Organization

- multi-level cache
- separeate I-cache and D-cache
- unified I- and D-cache
- block size
- associativity (directly-mapped, n-way associative, fully-associative)
- cache replacement policy (LRU)
- virtual- or physical-addr indexed 

• Read Miss Policy --- blocking or non-blocking

• Write Hit and Write Miss Policy 

write through --- written to both cache and lower-level memory
write back --- only written to cache; go to mem when being replaced

write around --- at miss, only write to memory, do nothing to cache
write validate --- at miss, write to cache &memory, validate sub-block
fetch on write --- at miss, fetch first, then write to cache&mem
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Reducing Cache Misses
• Classifying Cache Misses: 

- compulsory ------ cold start misses or first reference misses
- capacity ------ cache not big enough
- conflict ------ two blocks map to same entry, collision misses

• Reducing Cache Misses:

- varying block size 
- higher associativity ----- warning: may increase cache hit time !
- bigger cache ----- chip density is constrained 
- hardware-controlled prefetching ----- 

instruction prefetching (hardware instr. stream buffer)
data prefetching (using data stream buffer)
requires extra memory brandwith

- compiler-controlled prefetching ----- 
compiler inserts prefetch instructions (might be costly)
prefetch to registers or cache, must be no-faulting

- other compiler optimizations to reduce cache misses
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Example: Compiler Optimizations 
• Dealing with Instruction Cache Misses 

- reorder code segments, alignment, etc.
- profiling to look at conflicts

• Dealing with Data Cache Misses (too many to list all of them here)

- data alignment
- improving data locality in garbage collection

- merging arrays: improve spatial locality by single array of compound
elements vs. 2 arrays

- loop interchange: change nesting of loops to access data in order 
stored in memory

- loop fusion: combine 2 independant loops that have same looping
and some overlap of variable accesses

- blocking: improve temporal locality by accessing “blocks” of data 
repeadtedly vs. going down whole columns or rows

..........................................
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Loop Interchange & Loop Fusion 
/* Before Loop Interchange */
for (k = 0; k < 100; k=k+1)

for (j = 0; j < 100; j=j+1)
for (i = 0; i < 5000; i=i+1) 

x[i][j] = 2 * x[i][j]; 

/* After Loop Interchange --- sequentially access memory */
for (k = 0; k < 100; k=k+1)

for (i = 0; i < 5000; i=i+1) 
for (j = 0; j < 100; j=j+1)

x[i][j] = 2 * x[i][j]; 

/* Before Loop Fusion */
for (i = 0; i < N; i=i+1)

for (j = 0; j < N; j=j+1)
a[i][j] = b[i][j] * c[i][j]; 

for (i = 0; i < N; i=i+1)
for (j = 0; j < N; j=j+1)

d[i][j] = a[i][j] + c[i][j]; 

/* After Loop Fusion --- share accesses */
for (i = 0; i < N; i=i+1)

for (j = 0; j < N; j=j+1)
{a[i][j] = b[i][j] * c[i][j];d[i][j] = a[i][j] + c[i][j];};

C S 4 2 1  C O M P I L E R S  A N D  I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann Zhong Shao, Yale University More on Machine-Code Generation: Page 27 of 34

Blocking Example 
/* Before */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{ r = 0;

for (k = 0; k < N; k = k+1) {
r = r + y[i][k] * z[k][j]; 

};
x[i][j] = r;

}

• 2 inner loops: read all NxN elements of z[], N elements of 1 row of 
y[] repeatedly; write N elements of 1 column of x[]

• # of capacity misses is a function of N & cache size

• Blocking Idea: compute on BxB submatrix that fits in the cache.
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Blocking Example (cont’d)
/* After */
for (jj = 0; jj < N; jj = jj+B)
for (kk = 0; kk < N; kk = kk+B)
for (i = 0; i < N; i = i + 1)

for (j = jj; j < min(jj+B-1,N); j = j+1)
{ r = 0;

for (k = kk; k < min(kk+B-1,N); k = k+1) {
r = r + y[i][k] * z[k][j]; 

};
x[i][j] = x[i][j]+r;

}

• # of capacity misses decreased significantly

• Blocking Factor B can be choosed depending on the cache size

• # of conflict misses ? 
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Reducing Miss Penalty
• Use write buffer when writing things into memory --- non-blocking !

• When read miss the cache, check the write buffer first 

• Subblock placement --- or “write-validate” write-miss policy

don’t have to load full block on a write miss
have bits per subblock to indicate valid

• Non-blocking Caches 

- allowing the data cache to continue serving cache hits during a miss

- hit under miss 
- hit under multiple miss 
- miss under miss

still need some compiler assistance to use these features
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More Instruction-Level Parallelism 
3 variations of greater Instruction-Level Parallelism (ILP): 

• Superpipelined --- higher clock rates and deeper pipelines by pipelining 

all function units. Example: MIPS R4000 (used in SGI machines)

• Superscalar --- issue multiple instructions (ranging from 1 - 16) per 

cycle; scheduled by hardware; compiler scheduling would still help. 
Example: PowerPC, DEC Alpha, HP 7100, SuperSparc. 

the decode-issue hardware that detects dependency is very com plicated;
this restricts the degree of multiple issues and the clock tim e. 

• VLIW (Very Long Instruction Words) --- fixed number of instructions 
scheduled by the compiler. Example: Multiflow, Cydra 

binary compatibility; large code size; bigger challenge to compilers.
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How to Get More ILP ? 
• Major obstacles for more ILP 

- too many branches; each basic block is too small
- difficulty to analyze programs that heavily use pointers 
- demand of larger memory bandwidth
- demand of more registers and various Functional Units
- superscalar decode-hardware can increase the cycle time

• Software methods to get more ILP

- all techniques talked before to deal with data and control hazards
- software pipelining
- trace scheduling
.......

• Hardware methods to get more ILP

- all techniques mentioned before
- conditional instructions 
- support of speculative execution 
........
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Software Pipelining
• Problem: small basic blocks make scheduling less effective; 

• Loop Unrolling: the loop body can be unrolled seveal times to yields 
bigger basic blocks; Disadvantages: danger of code explosion; 
instruction cache performance.

• Software Pipelining: reorganizes loops such that each iteration is made 
from instructions chosen from different iterations of the original loop. 

Advantage over loop unrolling: optimal performance can be achieved 
with compact object code. 

• Implementing software pipelining: at compile time, symbolically unroll the 

loops multiple times; do the scheduling; find out the regularity among 
different iterations. Restructure the loop into the form:

prolog; new loop body; epilog
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Software Pipelining (cont’d)
A Superscalar Machine, can issue four instructions (one ALU, LOAD, 

STORE, and BRANCH) per cycle if they have no dependency

Example: /* source code */
for (i=1; i < N; i++) { x[i] := x[i] + c; }

Before software pipelining, each loop body will take at least 3 cycles

Read x[i] to a register R;
Add R and c to R;
Write R to x[i] and CJump

After software pipelining, each loop body takes one cycle

 1 Read 
2 Add Read

3 L: Write Add Read CJUMP L

4 Write Add
5 Write

prolog

epilog

loop body
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Trace Scheduling
• Motivation of software pipelining: optimizing the loops

• Motivation of trace scheduling: optimizing frequently executed 
branches (traces). Main idea: larger block size means more 

opportunities for better ILP. 

• Algorithm for trace scheduling:

Step 1. Identify the most likely execution trace (possibly using static
branch prediction information), then compact the instructions in the 
trace as if they belong to one big basic blocks

Step 2. add compensation code at the entrances and exits of the 
trace to restore the semantics of the original program for other traces. 

Reference: Bulldog: A Compiler for VLIW Architectures 
by John R. Ellis, MIT Press 1985.


