
Lecture 14: Type Checking

Carsten Schürmann

October 10, 2001

Some aspects of Tiger’s semantics can be captured by a type system which we
discuss in this and the next lecture. In the previous lecture, we have introduced
a mathematical way to describe formal systems in general which led to the
definition of a symbol table. The purpose of these tables is to represent binding
between symbols and names and other entities, such as types or values. In
the context of type-checking we consider symbols that map variables names to
types.

Specifically we have introduced the notion of a judgment that expresses if
something is true, such as “expression e has type τ in context Γ” or “expression
e evaluates to value v”. To be more space efficient, we abbreviate the first
judgment by Γ ` e : τ .

What counts as evidence of the truth of a judgment? In general, we use
inference rules with premisses and conclusions to build derivations which we
take as evidence for judgments. The name of a derivation of judgment J is
denoted by the calligraphic letter D above J written as

D
J .

1 Syntactical Categories for Tiger

We begin our excursion into the world of type checking for Tiger with a formal
treatment of two things. First, we formalize the abstract syntax of Tiger as
follows. Note that for this lecture we do not consider arrays and records, and
omit therefore all subsequent constructions. To add them will be the goal of the
next lecture.

Declarations: d ::= · | f(x1 : τ1 . . . xn : τn) = e, d
| f(x1 : τ1 . . . xn : τn) : τ = e, d

Expressions: e ::= () | e1; e2 | n | s | e1 + e2 | e1 ∗ e2 | e1 − e2 | e1/e2

| e1 = e2 | e1 6= e2 | e1 > e2 | e1 < e2 | e1 ≥ e2 | e1 ≤ e2

| e1&e2 | e1|e2

| if e1 then e2 else e3 | if e1 then e2 | while e1 do e2

| for x = e1 to e2 do e3 | break | let d in e end

1

Second we characterize types, that represent the meaning of all objects of
one type.

Types: τ ::= int | string | unit | τ1 → τ2

The type int, for example, is the type of all integer objects, and we will use
this type in order to decide if two expressions can be added, subtracted, or
compared. The type string captures the meaning of something being a string,
the type unit simply stands for the unit (or void) type.

When programming in Tiger one function after the other is being declared,
and must be stored some place for future reference. For the purpose of type
checking however, it is less important how a function is implemented, it is more
important, what its type is. Otherwise references to this functions that occur
later in the code cannot be type-checked. This information is summarized in
contexts. A context is a list of function symbols stored together with their types,
which may shadow previous declarations.

Contexts: Γ ::= · | Γ, f : τ

Mathematically, we write Γ(f) = τ for looking up the type of f in Γ. Finally
we have to define one more syntactic category, which we call flag for the lack of
a better word. Tiger programs may contain so called break expressions which
cause the operational semantics to interrupt the current computation and leave
the current body of a while or a for statement. Naturally, in order to judge if
a break statement is well-placed in a program or not, one must ensure that it
occurs only within a while or for block. This information is captured by flag ι.

Flag: ι ::= 0 | 1

If ι = 0 then break statements are forbidden, and if ι = 1 then they are legal.

2 Typing Judgment and inference rules

The two judgments which we will be defining in this section are

a typing judgment for expressions: Γ `ι e : τ
and a typing judgment for declarations: Γ `ι d/e : τ .

The first characterizes valid Tiger expressions e. In its definition, ι keeps
track of if we are inside a while or for block, or not. Γ contains all typing
information of functions already declared, and τ is the type of the expression.

The form of the second judgment has a slightly more complicated form,
and it seems to assign types to a list of declarations d and an expression e
simultaneously. This however is not the case. On the contrary, the judgment
should be read as a residual judgment. If it is possible to find a derivation D of

D
Γ `ι d/e : τ

2

then e has type τ after executing all declarations in d and adding the respective
declarations to Γ. Consequently, a closed tiger program (which consists only of
a list of declarations d) is well-typed if and only if a derivation of D of judgment

D
· `0 d/() : unit

exists. In the remainder of this section, we define the meaning of those two
judgments in terms of inference rules. In particular we define what it means
for any Tiger construct to be well-typed in terms of its components. This
presentation of typing rules is not included in Appel’s book. In this presentation,
we follow however closely the layout of the description of Tiger in the appendix
of Appel’s book.

2.1 Declarations

Γ `ι e : τ
emtpy

Γ `ι ·/e : τ

Γ, f : τ1 → . . .→ τn → unit, x1 : τ1, . . . , xn : τn `ι e : unit
Γ, f : τ1 → . . .→ τn → unit `ι d/e′ : τ ′

fundec1
Γ `ι f(x1 : τ1 . . . xn : τn) = e, d/e′ : τ ′

Γ, f : τ1 → . . .→ τn → τ, x1 : τ1, . . . , xn : τn `ι e : τ
Γ, f : τ1 → . . .→ τn → τ `ι d/e′ : τ ′

fundec2
Γ `ι f(x1 : τ1 . . . xn : τn) : τ = e, d/e′ : τ ′

2.2 Valueless expression

unit
Γ `ι () : unit

2.3 Sequencing

Γ `ι e1 : τ ′ Γ `ι e2 : τ
seq

Γ `ι e1; e2 : τ

2.4 Integer literal

nat where n is an integer number
Γ `ι n : int

3

2.5 String literal

nat where s is a character string
Γ `ι s : string

2.6 Negation

Γ `ι e : int
neg

Γ `ι −e : int

2.7 Function Call

Γ(f) = τ1 → . . .→ τn → τ
Γ `ι e1 : τ1
...
Γ `ι en : τn

app
Γ `ι f(e1, . . . , en) : τ

2.8 Arithmetic

Γ `ι e1 : int Γ `ι e2 : int
plus

Γ `ι e1 + e2 : int

Γ `ι e1 : int Γ `ι e2 : int
mult

Γ `ι e1 ∗ e2 : int

Γ `ι e1 : int Γ `ι e2 : int
minus

Γ `ι e1 − e2 : int

Γ `ι e1 : int Γ `ι e2 : int
div

Γ `ι e1/e2 : int

2.9 Comparison

Γ `ι e1 : int Γ `ι e2 : int
eq

Γ `ι e1 = e2 : int

Γ `ι e1 : int Γ `ι e2 : int
neq

Γ `ι e1 6= e2 : int

Γ `ι e1 : int Γ `ι e2 : int
gt

Γ `ι e1 > e2 : int

Γ `ι e1 : int Γ `ι e2 : int
lt

Γ `ι e1 < e2 : int

Γ `ι e1 : int Γ `ι e2 : int
geq

Γ `ι e1 ≥ e2 : int

Γ `ι e1 : int Γ `ι e2 : int
leq

Γ `ι e1 ≤ e2 : int

4

2.10 String Comparison

Γ `ι s1 : string Γ `ι s2 : string
eq

Γ `ι s1 = s2 : string

Γ `ι s1 : string Γ `ι s2 : string
neq

Γ `ι s1 6= s2 : string

Γ `ι s1 : string Γ `ι s2 : string
gt

Γ `ι s1 > s2 : string

Γ `ι s1 : string Γ `ι s2 : string
lt

Γ `ι s1 < s2 : string

Γ `ι s1 : string Γ `ι s2 : string
geq

Γ `ι s1 ≥ s2 : string

Γ `ι s1 : string Γ `ι s2 : string
leq

Γ `ι s1 ≤ s2 : string

2.11 Boolean Operators

Γ `ι e1 : int Γ `ι e2 : int
and

Γ `ι e1&e2 : int

Γ `ι e1 : int Γ `ι e2 : int
or

Γ `ι e1|e2 : int

2.12 If-then-else

Γ `ι e1 : int Γ `ι e2 : τ Γ `ι e3 : τ
ifthenelse

Γ `ι if e1 then e2 else e3 : τ

2.13 If-then

Γ `ι e1 : int Γ `ι e2 : unit
ifthen

Γ `ι if e1 then e2 : unit

2.14 While

Γ `ι e1 : int Γ `1 e2 : unit
while

Γ `ι while e1 do e2 : unit

2.15 For

Γ `ι e1 : int Γ `ι e2 : int Γ `1 e3 : unit
for

Γ `ι for x = e1 to e2 do e3 : unit

2.16 Break

break
Γ `1 break : unit

5

2.17 Let

Γ `ι d/e : τ
let

Γ `ι let d in e end : τ

In the next lecture, we extend this design to accommodate arrays records,
assignment and l-values.

6

