
Lecture 15: Type Checking (continued)

Carsten Schürmann

October 15, 2001

The system of typing rules presented in the previous lecture does only ac-
count for a few features of Tiger. Others, for example variable declarations,
lvalues, assignments, mutual recursion, or type declarations are not accounted
for yet. In these notes, we complete the set of typing rules. All features offered
by Tiger must be reflected in the type rules. Therefore, we reconsider the design
decisions from last lecture in turn and extend them appropriately.

1 Type declarations

Foremost, we address the issue of type declarations. A type declaration gives
a programmer the possibility to introduce new types during runtime, so-called
type constructors. Throughout this lecture we denote those type constructors
by a.

Types: τ ::= . . . | a

We have already discussed that Tiger offers two name spaces, one for func-
tions and variables, and one for types. In order to make this requirement precise,
we need to declare a second context which introduces type constructors, which
we denote by ∆ ::= · | ∆, a = τ . Naturally, ∆ again can be implemented as
symbol table as described in Lecture 13.

But note, that there is a conceptual difference between the standard context
Γ and ∆ which can be interpreted as a list of type abbreviations more than a
list of type declarations. Next, we retrofit the two judgments from last lecture
with ∆.

a typing judgment for expressions: Γ; ∆ `ι e : τ
and a typing judgment for declarations: Γ; ∆ `ι d/e : τ .

Clearly, with changing a judgment, we have to revisit all inference rules. This
however is pretty easy, because all we have to do is retrofit each judgment in
the conclusion and the premisses with ∆. For the purpose of illustration, here
are a few examples of updated rules:

Γ; ∆ `ι e1 : int Γ; ∆ `ι e2 : unit
ifthen

Γ; ∆ `ι if e1 then e2 : unit

1

Γ; ∆ `ι e1 : int Γ; ∆ `1 e2 : unit
while

Γ; ∆ `ι while e1 do e2 : unit

Γ; ∆ `ι e1 : int Γ; ∆ `ι e2 : int Γ; ∆ `1 e3 : unit
for

Γ; ∆ `ι for x = e1 to e2 do e3 : unit

How do we actually declare a new type constructor? Type declarations
allow the introduction of new type constructors. Note the similarity to function
declarations from last lecture.

Declarations: d ::= . . . | a = τ, d

The typing rule for type declaration is as follows.

Γ; ∆, a = τ ′ `ι d/e : τ
type (a does not occur free in τ)

Γ; ∆ `ι a = τ ′, d/e : τ

Note, that the side condition is of utmost importance. Without this side con-
dition, we could find a type for

let
type a = int
var x : a := 5

in
x

end

which should be impossible, because the type constructor a escapes its scope. It
is also noteworthy, that Tiger decides type equivalence by equivalence and not
by structural equivalence. Two types that are declared identical in two different
instances are not considered equal.

2 Variable declarations and assignments

Variables declarations declare names of a variables and their initial value. The
content of a variable is mutable during execution, which makes Tiger an im-
perative programming language as opposed to a purely functional programming
language where this is not the case. Side effects are possible in Tiger. But which
assignments are legal, and which are not? The type checking rules must enforce
that any assignment is conform with the type.

Declarations: d ::= . . . | x := e, d | x : τ := e, d

2

Γ `ι e′ : τ ′ Γ, x : τ ′ `ι d/e : τ
var1 (e′ 6= nil)

Γ `ι x := e′, d/e : τ

Γ `ι e′ : τ ′ Γ, x : τ ′ `ι d/e : τ
var2

Γ `ι x : τ ′ := e′, d/e : τ

Γ(x) = τ Γ `ι e : τ
assign

Γ `ι x := e : unit

nil is an element of every record type which will be discussed below. If a variable
is declared and bound to nil, one must explicitly declare its type using var2.
Recall that only the rightmost declaration of a variable x : τ is valid. They
shadow earlier declarations.

3 Arrays

As the first example for how to introduce new types, we consider arrays. Arrays
are common constructs in any kind of imperative but also functional program-
ming language. Therefore it is also present in Tiger.

Types: τ ::= . . . | array τ
Expressions: e ::= . . . | a[e1] of e2 | x[e]

As invariant a is a type constructor that abbreviates array τ in ∆. The first
expression shows how arrays can be created, and the second, how the program
can refer to the content of a cell of an array.

∆(a) = array τ Γ; ∆ `ι e1 : int Γ; ∆ `ι e2 : τ
arrayI

Γ; ∆ `ι a[e1] of e2 : a

Γ(x) = array τ Γ; ∆ `ι e : int
arrayE

Γ; ∆ `ι x[e] : τ

The next two rules are necessary to decide equality and inequality on arrays.

∆(a) = array τ Γ; ∆ `ι e1 : a Γ; ∆ `ι e2 : a
arrayeq

Γ; ∆ `ι e1 = e2 : int

∆(a) = array τ Γ; ∆ `ι e1 : a Γ; ∆ `ι e2 : a
arrayneq

Γ; ∆ `ι e1 <> e2 : int

3

4 Records

The second and last family of type constructors are records. They can be seen as
datatype definitions, since fields have names. In this they differ from Standard
ML where constructors are considered first-class objects. The second example
discusses how record types are declared and used in Tiger.

Types: τ ::= . . . | {l1 : τ1, . . . , ln : τn}
Expressions: e ::= . . . | a{l1 = e1 . . . ln = en} | x.l | nil

Records can be created inspected field by field during runtime. Here are the
typing rules.

∆(a) = {l1 : τ1, . . . , ln : τn} Γ; ∆ `ι e1 : τ1 Γ; ∆ `ι en : τn
recordI

Γ; ∆ `ι a{l1 = e1, . . . , ln = en} : a

Γ(x) = {l1 : τ1, . . . , ln : τn}
recordE for 1 ≤ i ≤ n

Γ; ∆ `ι x.li : τi

∆(a) = {l1 : τ1, . . . , ln : τn}
nil

Γ; ∆ `ι nil : a

Note that a typing derivation is valid only if it is unique. Occurrences of nil may
introduce non-uniqueness, because they are well-typed with every record type
declared in ∆, independent of the number of fields and their types. Therefore,
for example, the expression nil = nil cannot be typed.

∆(a) = {l1 : τ1, . . . , ln : τn} Γ; ∆ `ι e1 : a Γ; ∆ `ι e2 : a
recordeq

Γ; ∆ `ι e1 = e2 : {l1 : τ1, . . . , ln : τn}

∆(a) = {l1 : τ1, . . . , ln : τn} Γ; ∆ `ι e1 : a Γ; ∆ `ι e2 : a
recordneq

Γ; ∆ `ι e1 <> e2 : int

5 Mutual recursion

We will not give all rules for mutual recursion here, but elude to one possibility
how it could be established. For example, we could introduce new judgments
for declarations as follows.

A typing judgment for declarations: (Γ; ∆)/d1 `ι d2/e : τ .

Here, d1 presents all declarations that may be assumed recursively, d2 presents
the bodies of declarations that still need to be checked. The type checker will
recurse through the list d1. Only continuous blocks of function declarations or
type declarations can be mutual recursive, and this must be reflected in the

4

rules. Possibly auxiliary judgments are necessary to accomplish this task. Vari-
able declarations are checked as a type checking algorithm goes along, their
declaration cannot be mutual recursive on one another. Cycles in type dec-
larations must be recognized during type checking and reported as semantic
error.

6 Type equivalence

When shall we consider two type to be equivalent? In class we had long discus-
sions about how to do it, here is what the Tiger semantics dictates. Somewhat
surprisingly, Tiger requires a mixture between name equivalence and structural
equivalence. With name equivalence, two types are considered equal if and only
if their names are the same. If a programmer declares

type a = int
type b = int

type a is equal to a, and a is not equal to b. The same holds for records and
arrays. With structural equivalence, we would consider a and b to be equivalent,
and so are the two following declarations.

type c = {x:int, y:int}
type d = {x:int, y:int}

Alias types introduce new names for old types — with the special property that
two type aliases are always considered equivalent. What this means is that in
declaration

type e = c
type f = e

e, f, and c are considered equivalent. Note, that the use of alias types brings
additional problems. There may be cycles in alias type definitions. Cycles are
allowed as long the cycle contains at least one record or array type. We call
those type definitions productive. The goal is that every type definition in Tiger
must be productive.

Example 6.1 (Non-productive type definitions)

type a = b
type b = c
type c = a

Example 6.2 (Productive type definition)

type a = {head : int, tail : b}
type b = c
type c = a

5

But how can we decide if a list of type declarations is productive or not? The
answer is that we need to look at all type constants that are being defined
simultaneously. Using substitution where one type constructor is replaced by
an equivalent one, we try to boil a list of type declarations down until it contain
a = a. If it does, we found a cycle, and the list of of type declarations is
non-productive.

Formally, we write [a/b]d for replacing all type constructors b by a in d.
Moreover, we write

` d prod

for the judgment that expresses that d is productive. It is defined by the fol-
lowing for rules.

p base
` · prod

` ([a/b]d1, [a/b]d2) prod
p alias for a 6= b

` (d1, b = a, d2) prod

` (d1, d2) prod
p record

` (d1, b = {l1 : τ1 . . . ln : τn}, d2) prod

` (d1, d2) prod
p array

` (d1, b = array τ, d2) prod

Note, that there is no rule with d1, a = a, d2 in the conclusion. For reasons
mentioned above, these are exactly the cases we want to exclude from our con-
sideration.

Example 6.3 (Productivity) The list of declarations d = (a = {h : int, t :
b}, b = c, c = a, ·) is productive.

p base
` · prod

p alias
` (b = a, ·) prod

p alias
` (b = c, c = a, ·) prod

p record
` (a = {h : int, t : b}, b = c, c = a, ·) prod

Tiger’s semantics specifies a mixture of name equivalence and type aliases.
We do not use structural type equivalence at all. As judgment to express the
equivalence of two types in ∆, we write

∆ ` τ1 ≡ τ2.

6

Its meaning is defined by the following set of inference rules, where τ is a type
and a, b, c are type constructors.

∆(a) = τ
alias

∆ ` a ≡ τ

reflexive
∆ ` a ≡ a

∆ ` a ≡ b
symmetric

∆ ` b ≡ a
∆ ` a ≡ b ∆ ` b ≡ c

transitive
∆ ` a ≡ c

We can easily show that no record or array types can be equivalent.

Theorem 6.4 We can show that if τ1 ≡ τ2 then either τ1 = a or τ2 = a for
some type constructor a.

Proof: By induction on the derivation of τ1 ≡ τ2. �

In summary, we must add a type conversion rule to Tiger, that accounts for
equivalent types.

Γ; ∆ `ι e : τ1 ∆ ` τ1 ≡ τ2
conv

Γ; ∆ `ι e : τ2
Furthermore, we must augment the original let rule from the previous lecture
by the requirement that d is productive.

Γ `ι d/e : τ ` d prod
let

Γ `ι let d in e end : τ

7 A Computable Criterion

For practical purposes, however, we would like a computable criterion on types
that decides if two types are equivalent or not. There is one, which is called the
normal form of a type and which is simply a type constructor. Given that all
declarations in ∆ are productive, each type possesses a uniquely defined head
normal form which

∆(a) = b nf(b) = τ
nf alias

nf(a) = τ

∆(a) = {l1 : τ1, . . . , ln : τn}
nf record

nf(a) = a

∆(a) = array τ
nf array

nf(a) = a

∆(a) = int
nf int1

nf(a) = int

∆(a) = string
nf string1

nf(a) = string

nf int2
nf(int) = int

nf string2
nf(string) = string

Deciding if two types are equivalent is easy now.

7

Theorem 7.1 For all τ1 and τ2 types valid in ∆, if D1 is a derivation of
nf(τ1) = τ and D2 is a a derivation of nf(τ2) = τ for some τ then τ1 ≡ τ2.

Proof: By simultaneous induction on the definition of D1,D2. We illustrate
the proof by one case:

Case: D1 =

D′1
∆(a) = b

D′′1
nf(b) = τ

nf alias
nf(a) = τ

:

there exists P1 of ∆ ` b ≡ τ2 by induction hypothesis on D′′1
there exists P2 of ∆ ` a ≡ b by alias on D′′1
there exists P of ∆ ` a ≡ τ2 by trans on P1 and P2.

�

8

