
Lecture 16: Type Equivalence

Carsten Schürmann

October 15, 2001

1 Type equivalence

When shall we consider two type to be equivalent? In class we had long discus-
sions about how to do it, here is what the Tiger semantics dictates. Somewhat
surprisingly, Tiger requires a mixture between name equivalence and structural
equivalence. With name equivalence, two types are considered equal if and only
if their names are the same. If a programmer declares

type a = int
type b = int

type a is equal to a, and a is not equal to b. The same holds for records and
arrays. With structural equivalence, we would consider a and b to be equivalent,
and so are the two following declarations.

type c = {x:int, y:int}
type d = {x:int, y:int}

Alias types introduce new names for old types — with the special property that
two type aliases are always considered equivalent. What this means is that in
declaration

type e = c
type f = e

e, f, and c are considered equivalent. Note, that the use of alias types brings
additional problems. There may be cycles in alias type definitions. Cycles are
allowed as long the cycle contains at least one record or array type. We call
those type definitions productive. The goal is that every type definition in Tiger
must be productive.

Example 1.1 (Non-productive type definitions)

type a = b
type b = c
type c = a

Example 1.2 (Productive type definition)

1



type a = {head : int, tail : b}
type b = c
type c = a

But how can we decide if a list of type declarations is productive or not? The
answer is that we need to look at all type constants that are being defined
simultaneously. Using substitution where one type constructor is replaced by
an equivalent one, we try to boil a list of type declarations down until it contain
a = a. If it does, we found a cycle, and the list of of type declarations is
non-productive.

Formally, we write [a/b]d for replacing all type constructors b by a in d.
Moreover, we write

` d prod

for the judgment that expresses that d is productive. It is defined by the fol-
lowing for rules.

p base
` · prod

` ([a/b]d1, [a/b]d2) prod
p alias for a 6= b

` (d1, b = a, d2) prod

` (d1, d2) prod
p record

` (d1, b = {l1 : τ1 . . . ln : τn}, d2) prod

` (d1, d2) prod
p array

` (d1, b = array τ, d2) prod

Note, that there is no rule with d1, a = a, d2 in the conclusion. For reasons
mentioned above, these are exactly the cases we want to exclude from our con-
sideration.

Example 1.3 (Productivity) The list of declarations d = (a = {h : int, t :
b}, b = c, c = a, ·) is productive.

p base
` · prod

p alias
` (b = a, ·) prod

p alias
` (b = c, c = a, ·) prod

p record
` (a = {h : int, t : b}, b = c, c = a, ·) prod

Tiger’s semantics specifies a mixture of name equivalence and type aliases.
We do not use structural type equivalence at all. As judgment to express the
equivalence of two types in ∆, we write

∆ ` τ1 ≡ τ2.

2



Its meaning is defined by the following set of inference rules, where τ is a type
and a, b, c are type constructors.

eq int
∆ ` int ≡ int

eq string
∆ ` string ≡ string

∆(a) = τ
eq alias

∆ ` a ≡ τ

eq ref
∆ ` a ≡ a

∆ ` a ≡ b
eq sym

∆ ` b ≡ a
∆ ` a ≡ b ∆ ` b ≡ c

eq trans
∆ ` a ≡ c

We can easily show that no two record or array types can be equivalent. In sum-
mary, we must add a type conversion rule to Tiger, that accounts for equivalent
types.

Γ; ∆ `ι e : τ1 ∆ ` τ1 ≡ τ2
conv

Γ; ∆ `ι e : τ2
Furthermore, we must augment the original let rule from the previous lecture
by the requirement that d is productive.

Γ `ι d/e : τ ` d prod
let

Γ `ι let d in e end : τ

2 A Computable Criterion

For practical purposes, however, we would like a computable criterion on types
that decides if two types are equivalent or not. There is one, which is called the
normal form of a type and which is simply a type constructor. Given that all
declarations in ∆ are productive, each type possesses a uniquely defined head
normal form which

∆(a) = b nf(b) = τ
nf alias

nf(a) = τ

∆(a) = {l1 : τ1, . . . , ln : τn}
nf record

nf(a) = a

∆(a) = array τ
nf array

nf(a) = a

∆(a) = int
nf int1

nf(a) = int

∆(a) = string
nf string1

nf(a) = string

nf int2
nf(int) = int

nf string2
nf(string) = string

Deciding if two types are equivalent is easy now.

Theorem 2.1 For all τ1 and τ2 types valid in ∆, if D1 is a derivation of
nf(τ1) = τ and D2 is a a derivation of nf(τ2) = τ for some τ then τ1 ≡ τ2.

3



Proof: By simultaneous induction on the definition of D1,D2. We illustrate
the proof by one case:

Case: D1 =

D′1
∆(a) = b

D′′1
nf(b) = τ

nf alias
nf(a) = τ

:

there exists P1 of ∆ ` b ≡ τ2 by induction hypothesis on D′′1
there exists P2 of ∆ ` a ≡ b by alias on D′′1
there exists P of ∆ ` a ≡ τ2 by trans on P1 and P2.

�

4


