
Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Chapter Nine: Interfaces and
Polymorphism

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• To learn about interfaces

• To be able to convert between class and interface references

• To understand the concept of polymorphism

• To appreciate how interfaces can be used to decouple classes

• To learn how to implement helper classes as inner classes

• To understand how inner classes access variables from the
surrounding scope

• To implement event listeners in graphical applications

Chapter Goals

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Use interface types to make code more reusable

• In Chapter 6, we created a DataSet to find the average and
maximum of a set of values (numbers)

• What if we want to find the average and maximum of a set of
BankAccount values?

Using Interfaces for Code Reuse

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

public class DataSet // Modified for BankAccount objects
{
 . . .
 public void add(BankAccount x)
 {
 sum = sum + x.getBalance();
 if (count == 0 || maximum.getBalance() <
 x.getBalance()) maximum = x;
 count++;
 }

 public BankAccount getMaximum()
 {
 return maximum;
 }

 private double sum;
 private BankAccount maximum;
 private int count;
}

Using Interfaces for Code Reuse (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Or suppose we wanted to find the coin with the highest value
among a set of coins. We would need to modify the DataSet
class again:

public class DataSet // Modified for Coin objects
{
 . . .
 public void add(Coin x)
 {
 sum = sum + x.getValue();
 if (count == 0 || maximum.getValue() <
 x.getValue()) maximum = x;
 count++;
 }

Using Interfaces for Code Reuse

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

 public Coin getMaximum()
 {
 return maximum;
 }

 private double sum;
 private Coin maximum;
 private int count;
}

Using Interfaces for Code Reuse

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• The mechanics of analyzing the data is the same in all cases;
details of measurement differ

• Classes could agree on a method getMeasure that obtains the
measure to be used in the analysis

• We can implement a single reusable DataSet class whose add
method looks like this:

 sum = sum + x.getMeasure();
 if (count == 0 || maximum.getMeasure() <
 x.getMeasure())
 maximum = x;
 count++;

Using Interfaces for Code Reuse

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• What is the type of the variable x?
x should refer to any class that has a getMeasure method

• In Java, an interface type is used to specify required operations
 public interface Measurable
 {
 double getMeasure();
 }

• Interface declaration lists all methods (and their signatures) that
the interface type requires

Using Interfaces for Code Reuse (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

An interface type is similar to a class, but there are several
important differences:

• All methods in an interface type are abstract; they don't have an implementation
• All methods in an interface type are automatically public
• An interface type does not have instance fields

Interfaces vs. Classes

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

public class DataSet
{
 . . .
 public void add(Measurable x)
 {
 sum = sum + x.getMeasure();
 if (count == 0 || maximum.getMeasure() <
 x.getMeasure())
 maximum = x;
 count++;
 }

 public Measurable getMaximum()
 {
 return maximum;
 }

Generic DataSet for Measurable Objects

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

 private double sum;
 private Measurable maximum;
 private int count;
}

Generic DataSet for Measurable Objects

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Use implements keyword to indicate that a class implements
an interface type

public class BankAccount implements Measurable
{
 public double getMeasure()
 {
 return balance;
 }
 // Additional methods and fields
}

• A class can implement more than one interface type
• Class must define all the methods that are required by all the

interfaces it implements

Implementing an Interface Type

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Use implements keyword to indicate that a class implements
an interface type

public class BankAccount implements Measurable
{
 public double getMeasure()
 {
 return balance;
 }
 // Additional methods and fields
}

• A class can implement more than one interface type
• Class must define all the methods that are required by all the

interfaces it implements

Implementing an Interface Type (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Interfaces can reduce the coupling between classes

• UML notation:
• Interfaces are tagged with a "stereotype" indicator «interface»
• A dotted arrow with a triangular tip denotes the "is-a" relationship

between a class and an interface
• A dotted line with an open v-shaped arrow tip denotes the "uses"

relationship or dependency

• Note that DataSet is decoupled from BankAccount and Coin

UML Diagram of DataSet and Related Classes

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

public interface InterfaceName
{
 // method signatures
}

Example:
public interface Measurable
{
 double getMeasure();
}

Purpose:

To define an interface and its method signatures. The methods
are automatically public.

Syntax 9.1 Defining an Interface

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

public class ClassName
implements InterfaceName, InterfaceName, ...
{
 // methods
 // instance variables
}

Example:
public class BankAccount implements Measurable
{
 // Other BankAccount methods
 public double getMeasure()
 {
 // Method implementation
 }
}

Syntax 9.2 Implementing an Interface

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Purpose:

To define a new class that implements the methods of an
interface.

Syntax 9.2 Implementing an Interface (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

01: /**
02: This program tests the DataSet class.
03: */
04: public class DataSetTester
05: {
06: public static void main(String[] args)
07: {
08: DataSet bankData = new DataSet();
09:
10: bankData.add(new BankAccount(0));
11: bankData.add(new BankAccount(10000));
12: bankData.add(new BankAccount(2000));
13:
14: System.out.println("Average balance: "
15: + bankData.getAverage());
16: System.out.println("Expected: 4000");
17: Measurable max = bankData.getMaximum();
18: System.out.println("Highest balance: "
19: + max.getMeasure());
20: System.out.println("Expected: 10000");
21:

ch09/measure1/DataSetTester.java

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

22: DataSet coinData = new DataSet();
23:
24: coinData.add(new Coin(0.25, "quarter"));
25: coinData.add(new Coin(0.1, "dime"));
26: coinData.add(new Coin(0.05, "nickel"));
27:
28: System.out.println("Average coin value: "
29: + coinData.getAverage());
30: System.out.println("Expected: 0.133");
31: max = coinData.getMaximum();
32: System.out.println("Highest coin value: "
33: + max.getMeasure());
34: System.out.println("Expected: 0.25");
35: }
36: }

ch09/measure1/DataSetTester.java (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Output:
Average balance: 4000.0
Expected: 4000
Highest balance: 10000.0
Expected: 10000
Average coin value: 0.13333333333333333
Expected: 0.133
Highest coin value: 0.25
Expected: 0.25

ch09/measure1/DataSetTester.java (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Suppose you want to use the DataSet class to find the Country
object with the largest population. What condition must the
Country class fulfill?

 Answer: It must implement the Measurable interface, and its
 getMeasure method must return the population.

Self Check 9.1

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Why can't the add method of the DataSet class have a parameter
of type Object?

 Answer: The Object class doesn't have a getMeasure method,
 and the add method invokes the getMeasure method.

Self Check 9.2

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• You can convert from a class type to an interface type, provided
 the class implements the interface

• BankAccount account = new BankAccount(10000);
 Measurable x = account; // OK

• Coin dime = new Coin(0.1, "dime");
 Measurable x = dime; // Also OK

• Cannot convert between unrelated types
 Measurable x = new Rectangle(5, 10, 20, 30); // ERROR

• Because Rectangle doesn't implement Measurable

Converting Between Class and Interface Types

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Add coin objects to DataSet
DataSet coinData = new DataSet();
coinData.add(new Coin(0.25, "quarter"));
coinData.add(new Coin(0.1, "dime"));
. . .
Measurable max = coinData.getMaximum(); // Get the
 largest coin

• What can you do with it? It's not of type Coin
String name = max.getName(); // ERROR

• You need a cast to convert from an interface type to a class type

• You know it's a coin, but the compiler doesn't. Apply a cast:
Coin maxCoin = (Coin) max;
String name = maxCoin.getName();

Casts

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• If you are wrong and max isn't a coin, the compiler throws an
exception

• Difference with casting numbers:
When casting number types you agree to the information loss
When casting object types you agree to that risk of causing an
 exception

Casts (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Can you use a cast (BankAccount) x to convert a Measurable
variable x to a BankAccount reference?

 Answer: Only if x actually refers to a BankAccount object.

Self Check 9.3

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

If both BankAccount and Coin implement the Measurable
interface, can a Coin reference be converted to a BankAccount
reference?

 Answer: No – a Coin reference can be converted to a
 Measurable reference, but if you attempt to cast that reference to
 a BankAccount, an exception occurs.

Self Check 9.4

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Interface variable holds reference to object of a class that
implements the interface
Measurable x;
x = new BankAccount(10000);
x = new Coin(0.1, "dime");

• Note that the object to which x refers doesn't have type
Measurable; the type of the object is some class that implements
the Measurable interface

• You can call any of the interface methods:
double m = x.getMeasure();

• Which method is called?

Polymorphism

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Depends on the actual object

• If x refers to a bank account, calls BankAccount.getMeasure

• If x refers to a coin, calls Coin.getMeasure

• Polymorphism (many shapes): Behavior can vary depending on
the actual type of an object

• Called late binding: resolved at runtime

• Different from overloading; overloading is resolved by the
compiler (early binding)

Polymorphism

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Animation 9.1 –

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Why is it impossible to construct a Measurable object?

 Answer: Measurable is an interface. Interfaces have no fields
 and no method implementations.

Self Check 9.5

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Why can you nevertheless declare a variable whose type is
Measurable?

 Answer: That variable never refers to a Measurable object. It
 refers to an object of some class – a class that implements the
 Measurable interface.

Self Check 9.6

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

What do overloading and polymorphism have in common? Where
do they differ?

 Answer: Both describe a situation where one method name can
 denote multiple methods. However, overloading is resolved
 early by the compiler, by looking at the types of the parameter
 variables. Polymorphism is resolved late, by looking at the type
 of the implicit parameter object just before making the call.

Self Check 9.7

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Limitations of Measurable interface:
• Can add Measurable interface only to classes under your control
• Can measure an object in only one way

E.g., cannot analyze a set of savings accounts both by bank balance and
by interest rate

• Callback mechanism: allows a class to call back a specific
method when it needs more information

• In previous DataSet implementation, responsibility of measuring
lies with the added objects themselves

Using Interfaces for Callbacks

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Alternative: Hand the object to be measured to a method:
 public interface Measurer
 {
 double measure(Object anObject);
 }

• Object is the "lowest common denominator" of all classes

Using Interfaces for Callbacks (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

add method asks measurer (and not the added object) to do the
measuring:

public void add(Object x)
{
 sum = sum + measurer.measure(x);
 if (count == 0 || measurer.measure(maximum) <
 measurer.measure(x))
 maximum = x;
 count++;
}

Using Interfaces for Callbacks

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• You can define measurers to take on any kind of measurement
public class RectangleMeasurer implements Measurer
{
 public double measure(Object anObject)
 {
 Rectangle aRectangle = (Rectangle) anObject;
 double area = aRectangle.getWidth() *
 aRectangle.getHeight();
 return area;
 }
}

• Must cast from Object to Rectangle
Rectangle aRectangle = (Rectangle) anObject;

Using Interfaces for Callbacks

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Pass measurer to data set constructor:
Measurer m = new RectangleMeasurer();
DataSet data = new DataSet(m);
data.add(new Rectangle(5, 10, 20, 30));
data.add(new Rectangle(10, 20, 30, 40)); . . .

Using Interfaces for Callbacks (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Note that the Rectangle class is decoupled from the Measurer
interface

UML Diagram of Measurer Interface and Related Classes

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

01: /**
02: Computes the average of a set of data values.
03: */
04: public class DataSet
05: {
06: /**
07: Constructs an empty data set with a given measurer.
08: @param aMeasurer the measurer that is used to measure data
values
09: */
10: public DataSet(Measurer aMeasurer)
11: {
12: sum = 0;
13: count = 0;
14: maximum = null;
15: measurer = aMeasurer;
16: }
17:
18: /**
19: Adds a data value to the data set.
20: @param x a data value
21: */

ch09/measure2/DataSet.java

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

22: public void add(Object x)
23: {
24: sum = sum + measurer.measure(x);
25: if (count == 0
26: || measurer.measure(maximum) < measurer.measure(x))
27: maximum = x;
28: count++;
29: }
30:
31: /**
32: Gets the average of the added data.
33: @return the average or 0 if no data has been added
34: */
35: public double getAverage()
36: {
37: if (count == 0) return 0;
38: else return sum / count;
39: }
40:

ch09/measure2/DataSet.java (cont.)

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

41: /**
42: Gets the largest of the added data.
43: @return the maximum or 0 if no data has been added
44: */
45: public Object getMaximum()
46: {
47: return maximum;
48: }
49:
50: private double sum;
51: private Object maximum;
52: private int count;
53: private Measurer measurer;
54: }

ch09/measure2/DataSet.java (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

01: import java.awt.Rectangle;
02:
03: /**
04: This program demonstrates the use of a Measurer.
05: */
06: public class DataSetTester2
07: {
08: public static void main(String[] args)
09: {
10: Measurer m = new RectangleMeasurer();
11:
12: DataSet data = new DataSet(m);
13:
14: data.add(new Rectangle(5, 10, 20, 30));
15: data.add(new Rectangle(10, 20, 30, 40));
16: data.add(new Rectangle(20, 30, 5, 15));
17:
18: System.out.println("Average area: " + data.getAverage());
19: System.out.println("Expected: 625");
20:

ch09/measure2/DataSetTester2.java

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

21: Rectangle max = (Rectangle) data.getMaximum();
22: System.out.println("Maximum area rectangle: " + max);
23: System.out.println("Expected:
java.awt.Rectangle[x=10,y=20,width=30,height=40]");
24: }
25: }

ch09/measure2/DataSetTester2.java (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

01: /**
02: Describes any class whose objects can measure other objects.
03: */
04: public interface Measurer
05: {
06: /**
07: Computes the measure of an object.
08: @param anObject the object to be measured
09: @return the measure
10: */
11: double measure(Object anObject);
12: }

ch09/measure2/Measurer.java

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

01: import java.awt.Rectangle;
02:
03: /**
04: Objects of this class measure rectangles by area.
05: */
06: public class RectangleMeasurer implements Measurer
07: {
08: public double measure(Object anObject)
09: {
10: Rectangle aRectangle = (Rectangle) anObject;
11: double area = aRectangle.getWidth() * aRectangle.getHeight();
12: return area;
13: }
14: }

ch09/measure2/RectangleMeasurer.java

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Output:
Average area: 625
Expected: 625
Maximum area rectangle:java.awt.Rectangle[x=10,y=20,
 width=30,height=40]
Expected: java.awt.Rectangle[x=10,y=20,width=30,height=40]

ch09/measure2/RectangleMeasurer.java (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Suppose you want to use the DataSet class of Section 9.1 to find
the longest String from a set of inputs. Why can't this work?

 Answer: The String class doesn't implement the Measurable
 interface.

Self Check 9.8

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Why does the measure method of the Measurer interface have one
more parameter than the getMeasure method of the Measurable
interface?

 Answer: A measurer measures an object, whereas getMeasure
 measures "itself", that is, the implicit parameter.

Self Check 9.10

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Trivial class can be defined inside a method
 public class DataSetTester3
{
 public static void main(String[] args)
 {
 class RectangleMeasurer implements Measurer
 {
 . . .
 }
 Measurer m = new RectangleMeasurer();
 DataSet data = new DataSet(m);
 . . .
 }
}

Inner Classes

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• If inner class is defined inside an enclosing class, but outside
its methods, it is available to all methods of enclosing class

• Compiler turns an inner class into a regular class file:
DataSetTester1RectangleMeasurer.class

Inner Classes (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Syntax 9.3 Inner Classes

Declared inside a method
class OuterClassName
{
 method signature
 {
 . . .
 class InnerClassName
 {
 // methods
 // fields
 }
 . . .
 }
 . . .
}

Declared inside the class
class OuterClassName
{
 // methods
 // fields
 accessSpecifier class
 InnerClassName
 {
 // methods
 // fields
 }
 . . .
}

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Example:
public class Tester
{
 public static void main(String[] args)
 {
 class RectangleMeasurer implements Measurer
 {
 . . .
 }
 . . .
 }
}

Purpose:

To define an inner class whose scope is restricted to a single
method or the methods of a single class.

Syntax 9.3 Inner Classes

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

01: import java.awt.Rectangle;
02:
03: /**
04: This program demonstrates the use of an inner class.
05: */
06: public class DataSetTester3
07: {
08: public static void main(String[] args)
09: {
10: class RectangleMeasurer implements Measurer
11: {
12: public double measure(Object anObject)
13: {
14: Rectangle aRectangle = (Rectangle) anObject;
15: double area
16: = aRectangle.getWidth() * aRectangle.getHeight();
17: return area;
18: }
19: }
20:

ch09/measure3/DataSetTester3.java

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

21: Measurer m = new RectangleMeasurer();
22:
23: DataSet data = new DataSet(m);
24:
25: data.add(new Rectangle(5, 10, 20, 30));
26: data.add(new Rectangle(10, 20, 30, 40));
27: data.add(new Rectangle(20, 30, 5, 15));
28:
29: System.out.println("Average area: " + data.getAverage());
30: System.out.println("Expected: 625");
31:
32: Rectangle max = (Rectangle) data.getMaximum();
33: System.out.println("Maximum area rectangle: " + max);
34: System.out.println("Expected:
java.awt.Rectangle[x=10,y=20,width=30,height=40]");
35: }
36: }

ch09/measure3/DataSetTester3.java (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Why would you use an inner class instead of a regular class?

 Answer: Inner classes are convenient for insignificant classes.
 Also, their methods can access variables and fields from the
 surrounding scope.

Self Check 9.11

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

How many class files are produced when you compile the
DataSetTester3 program?

 Answer: Four: one for the outer class, one for the inner class,
 and two for the DataSet and Measurer classes.

Self Check 9.12

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Operating Systems

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• User interface events include key presses, mouse moves,
button clicks, and so on

• Most programs don't want to be flooded by boring events

• A program can indicate that it only cares about certain specific
events

• Event listener:
• Notified when event happens
• Belongs to a class that is provided by the application programmer
• Its methods describe the actions to be taken when an event occurs
• A program indicates which events it needs to receive by installing event

listener objects

• Event source:
• Event sources report on events
• When an event occurs, the event source notifies all event listeners

Events, Event Sources, and Event Listeners

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Example: Use JButton components for buttons; attach an
 ActionListener to each button

• ActionListener interface:
 public interface ActionListener
 {
 void actionPerformed(ActionEvent event);
 }

• Need to supply a class whose actionPerformed method
 contains instructions to be executed when button is clicked

• event parameter contains details about the event, such as the
 time at which it occurred

Events, Event Sources, and Event Listeners

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Construct an object of the listener and add it to the button:
 ActionListener listener = new ClickListener();
 button.addActionListener(listener);

Events, Event Sources, and Event Listeners (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

01: import java.awt.event.ActionEvent;
02: import java.awt.event.ActionListener;
03:
04: /**
05: An action listener that prints a message.
06: */
07: public class ClickListener implements ActionListener
08: {
09: public void actionPerformed(ActionEvent event)
10: {
11: System.out.println("I was clicked.");
12: }
13: }

ch09/button1/ClickListener.java

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

01: import java.awt.event.ActionListener;
02: import javax.swing.JButton;
03: import javax.swing.JFrame;
04:
05: /**
06: This program demonstrates how to install an action listener.
07: */
08: public class ButtonViewer
09: {
10: public static void main(String[] args)
11: {
12: JFrame frame = new JFrame();
13: JButton button = new JButton("Click me!");
14: frame.add(button);
15:
16: ActionListener listener = new ClickListener();
17: button.addActionListener(listener);
18:
19: frame.setSize(FRAME_WIDTH, FRAME_HEIGHT);
20: frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
21: frame.setVisible(true);
22: }

ch09/button1/ButtonViewer.java

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

23:
24: private static final int FRAME_WIDTH = 100;
25: private static final int FRAME_HEIGHT = 60;
26: }

ch09/button1/ButtonViewer.java (cont.)

Output:

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Which objects are the event source and the event listener in the
ButtonViewer program?

 Answer: The button object is the event source. The listener
 object is the event listener.

Self Check 9.13

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Why is it legal to assign a ClickListener object to a variable of
type ActionListener?

 Answer: The ClickListener class implements the
 ActionListener interface.

Self Check 9.14

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Implement simple listener classes as inner classes like this:
 JButton button = new JButton(". . .");
// This inner class is declared in the same method as the
button variable class MyListener implements
ActionListener
{
 . . .
};
ActionListener listener = new MyListener();
button.addActionListener(listener);

• This places the trivial listener class exactly where it is needed,
without cluttering up the remainder of the project

• Methods of an inner class can access local variables from
surrounding blocks and fields from surrounding classes

Using Inner Classes for Listeners

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Local variables that are accessed by an inner class method
must be declared as final

• Example: add interest to a bank account whenever a button is
clicked:

 JButton button = new JButton("Add Interest");
final BankAccount account = new
BankAccount(INITIAL_BALANCE);
// This inner class is declared in the same method as the
 account
// and button variables.
class AddInterestListener implements ActionListener
{

Using Inner Classes for Listeners

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

 public void actionPerformed(ActionEvent event)
 {
 // The listener method accesses the account
 variable
 // from the surrounding block
 double interest = account.getBalance() *
 INTEREST_RATE / 100;
 account.deposit(interest);
 }
};
ActionListener listener = new AddInterestListener();
button.addActionListener(listener);

Using Inner Classes for Listeners (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

01: import java.awt.event.ActionEvent;
02: import java.awt.event.ActionListener;
03: import javax.swing.JButton;
04: import javax.swing.JFrame;
05:
06: /**
07: This program demonstrates how an action listener can access
08: a variable from a surrounding block.
09: */
10: public class InvestmentViewer1
11: {
12: public static void main(String[] args)
13: {
14: JFrame frame = new JFrame();
15:
16: // The button to trigger the calculation
17: JButton button = new JButton("Add Interest");
18: frame.add(button);
19:

ch09/button2/InvestmentViewer1.java

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

20: // The application adds interest to this bank account
21: final BankAccount account = new BankAccount(INITIAL_BALANCE);
22:
23: class AddInterestListener implements ActionListener
24: {
25: public void actionPerformed(ActionEvent event)
26: {
27: // The listener method accesses the account variable
28: // from the surrounding block
29: double interest = account.getBalance()
30: * INTEREST_RATE / 100;
31: account.deposit(interest);
32: System.out.println("balance: " + account.getBalance());
33: }
34: }
35:
36: ActionListener listener = new AddInterestListener();
37: button.addActionListener(listener);
38:

ch09/button2/InvestmentViewer1.java (cont.)

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Output:
balance: 1100.0 balance: 1210.0
balance: 1331.0 balance: 1464.1

39: frame.setSize(FRAME_WIDTH, FRAME_HEIGHT);
40: frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
41: frame.setVisible(true);
42: }
43:
44: private static final double INTEREST_RATE = 10;
45: private static final double INITIAL_BALANCE = 1000;
46:
47: private static final int FRAME_WIDTH = 120;
48: private static final int FRAME_HEIGHT = 60;
49: }

ch09/button2/InvestmentViewer1.java (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Why would an inner class method want to access a variable from
a surrounding scope?

 Answer: Direct access is simpler than the alternative – passing
 the variable as a parameter to a constructor or method.

Self Check 9.15

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Why would an inner class method want to access a variable from
a surrounding If an inner class accesses a local variable from a
surrounding scope, what special rule applies?

 Answer: The local variable must be declared as final.

Self Check 9.16

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Example: investment viewer program; whenever button is
clicked, interest is added, and new balance is displayed

Building Applications with Buttons

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Construct an object of the JButton class:
JButton button = new JButton("Add Interest");

• We need a user interface component that displays a message:
JLabel label = new JLabel("balance: " +
account.getBalance());

• Use a JPanel container to group multiple user interface
components together:
JPanel panel = new JPanel(); panel.add(button);
panel.add(label); frame.add(panel);

Building Applications with Buttons (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Listener class adds interest and displays the new balance:
 class AddInterestListener implements ActionListener
 {
 public void actionPerformed(ActionEvent event)
 {
 double interest = account.getBalance() *
 INTEREST_RATE / 100;
 account.deposit(interest);
 label.setText("balance=" + account.getBalance());
 }
 }

• Add AddInterestListener as inner class so it can have access
 to surrounding final variables (account and label)

Building Applications with Buttons

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

01: import java.awt.event.ActionEvent;
02: import java.awt.event.ActionListener;
03: import javax.swing.JButton;
04: import javax.swing.JFrame;
05: import javax.swing.JLabel;
06: import javax.swing.JPanel;
07: import javax.swing.JTextField;
08:
09: /**
10: This program displays the growth of an investment.
11: */
12: public class InvestmentViewer2
13: {
14: public static void main(String[] args)
15: {
16: JFrame frame = new JFrame();
17:
18: // The button to trigger the calculation
19: JButton button = new JButton("Add Interest");

ch09/button3/InvestmentViewer2.java

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

20:
21: // The application adds interest to this bank account
22: final BankAccount account = new BankAccount(INITIAL_BALANCE);
23:
24: // The label for displaying the results
25: final JLabel label = new JLabel(
26: "balance: " + account.getBalance());
27:
28: // The panel that holds the user interface components
29: JPanel panel = new JPanel();
30: panel.add(button);
31: panel.add(label);
32: frame.add(panel);
33:
34: class AddInterestListener implements ActionListener
35: {
36: public void actionPerformed(ActionEvent event)
37: {
38: double interest = account.getBalance()
39: * INTEREST_RATE / 100;

ch09/button3/InvestmentViewer2.java (cont.)

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

40: account.deposit(interest);
41: label.setText(
42: "balance: " + account.getBalance());
43: }
44: }
45:
46: ActionListener listener = new AddInterestListener();
47: button.addActionListener(listener);
48:
49: frame.setSize(FRAME_WIDTH, FRAME_HEIGHT);
50: frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
51: frame.setVisible(true);
52: }
53:
54: private static final double INTEREST_RATE = 10;
55: private static final double INITIAL_BALANCE = 1000;
56:
57: private static final int FRAME_WIDTH = 400;
58: private static final int FRAME_HEIGHT = 100;
59: }

ch09/button3/InvestmentViewer2.java (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

How do you place the "balance: . . ." message to the left of
the "Add Interest" button?

 Answer: First add label to the panel, then add button.

Self Check 9.17

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Why was it not necessary to declare the button variable as final?

 Answer: The actionPerformed method does not access that
 variable.

Self Check 9.18

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• javax.swing.Timer generates equally spaced timer events

• Useful whenever you want to have an object updated in regular
intervals

• Sends events to action listener
 public interface ActionListener
 {
 void actionPerformed(ActionEvent event);
 }

Processing Timer Events

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Define a class that implements the ActionListener interface
 class MyListener implements ActionListener
 {
 void actionPerformed(ActionEvent event)
 {
 // This action will be executed at each timer
 event
 Place listener action here
 }
 }

• Add listener to timer
 MyListener listener = new MyListener();
 Timer t = new Timer(interval, listener);
 t.start();

Processing Timer Events (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

01: import java.awt.Graphics;
02: import java.awt.Graphics2D;
03: import java.awt.Rectangle;
04: import javax.swing.JComponent;
05:
06: /**
07: This component displays a rectangle that can be moved.
08: */
09: public class RectangleComponent extends JComponent
10: {
11: public RectangleComponent()
12: {
13: // The rectangle that the paint method draws
14: box = new Rectangle(BOX_X, BOX_Y,
15: BOX_WIDTH, BOX_HEIGHT);
16: }
17:
18: public void paintComponent(Graphics g)
19: {
20: super.paintComponent(g);
21: Graphics2D g2 = (Graphics2D) g;
22:

ch09/timer/RectangleComponent.java (cont.)

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

23: g2.draw(box);
24: }
25:
26: /**
27: Moves the rectangle by a given amount.
28: @param x the amount to move in the x-direction
29: @param y the amount to move in the y-direction
30: */
31: public void moveBy(int dx, int dy)
32: {
33: box.translate(dx, dy);
34: repaint();
35: }
36:
37: private Rectangle box;
38:
39: private static final int BOX_X = 100;
40: private static final int BOX_Y = 100;
41: private static final int BOX_WIDTH = 20;
42: private static final int BOX_HEIGHT = 30;
43: }

ch09/timer/RectangleComponent.java

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Displays a rectangle that can be moved

• The repaint method causes a component to repaint itself. Call
this method whenever you modify the shapes that the
paintComponent method draws

ch09/timer/RectangleComponent.java

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

01: import java.awt.event.ActionEvent;
02: import java.awt.event.ActionListener;
03: import javax.swing.JFrame;
04: import javax.swing.Timer;
05:
06: public class RectangleMover
07: {
08: public static void main(String[] args)
09: {
10: JFrame frame = new JFrame();
11:
12: frame.setSize(FRAME_WIDTH, FRAME_HEIGHT);
13: frame.setTitle("An animated rectangle");
14: frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
15:
16: final RectangleComponent component = new RectangleComponent();
17: frame.add(component);
18:
19: frame.setVisible(true);
20:

ch09/timer/RectangleMover.java

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

21: class TimerListener implements ActionListener
22: {
23: public void actionPerformed(ActionEvent event)
24: {
25: component.moveBy(1, 1);
26: }
27: }
28:
29: ActionListener listener = new TimerListener();
30:
31: final int DELAY = 100; // Milliseconds between timer ticks
32: Timer t = new Timer(DELAY, listener);
33: t.start();
34: }
35:
36: private static final int FRAME_WIDTH = 300;
37: private static final int FRAME_HEIGHT = 400;
38: }

ch09/timer/RectangleMover.java (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Why does a timer require a listener object?

 Answer: The timer needs to call some method whenever the
 time interval expires. It calls the actionPerformed method of the
 listener object.

Self Check 9.19

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

What would happen if you omitted the call to repaint in the
moveBy method?

 Answer: The moved rectangles won't be painted, and the
 rectangle will appear to be stationary until the frame is repainted
 for an external reason.

Self Check 9.20

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Use a mouse listener to capture mouse events
• Implement the MouseListener interface:

 public interface MouseListener
 {
 void mousePressed(MouseEvent event);
 // Called when a mouse button has been pressed on a
 component
 void mouseReleased(MouseEvent event);
 // Called when a mouse button has been released on a
 component
 void mouseClicked(MouseEvent event);
 // Called when the mouse has been clicked on a
 component
 void mouseEntered(MouseEvent event);
 // Called when the mouse enters a component

Mouse Events

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

 void mouseExited(MouseEvent event);
 // Called when the mouse exits a component }

• mousePressed, mouseReleased: called when a mouse button is
 pressed or released

• mouseClicked: if button is pressed and released in quick
 succession, and mouse hasn't moved

• mouseEntered, mouseExited: mouse has entered or exited the
 component's area

Mouse Events

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Add a mouse listener to a component by calling the
addMouseListener method:

public class MyMouseListener implements MouseListener
{
 // Implements five methods
}
MouseListener listener = new MyMouseListener();
component.addMouseListener(listener);

• Sample program: enhance RectangleComponent – when user
clicks on rectangle component, move the rectangle

Mouse Events

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

01: import java.awt.Graphics;
02: import java.awt.Graphics2D;
03: import java.awt.Rectangle;
04: import javax.swing.JComponent;
05:
06: /**
07: This component displays a rectangle that can be moved.
08: */
09: public class RectangleComponent extends JComponent
10: {
11: public RectangleComponent()
12: {
13: // The rectangle that the paint method draws
14: box = new Rectangle(BOX_X, BOX_Y,
15: BOX_WIDTH, BOX_HEIGHT);
16: }
17:
18: public void paintComponent(Graphics g)
19: {
20: super.paintComponent(g);
21: Graphics2D g2 = (Graphics2D) g;
22:

ch09/mouse/RectangleComponent.java

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

23: g2.draw(box);
24: }
25:
26: /**
27: Moves the rectangle to the given location.
28: @param x the x-position of the new location
29: @param y the y-position of the new location
30: */
31: public void moveTo(int x, int y)
32: {
33: box.setLocation(x, y);
34: repaint();
35: }
36:
37: private Rectangle box;
38:
39: private static final int BOX_X = 100;
40: private static final int BOX_Y = 100;
41: private static final int BOX_WIDTH = 20;
42: private static final int BOX_HEIGHT = 30;
43: }

ch09/mouse/RectangleComponent.java (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Call repaint when you modify the shapes that paintComponent
draws box.setLocation(x, y); repaint();

• Mouse listener: if the mouse is pressed, listener moves the
rectangle to the mouse location class MousePressListener
implements

MouseListener
{
 public void mousePressed(MouseEvent event)
 {
 int x = event.getX();
 int y = event.getY();
 component.moveTo(x, y);
 }

Mouse Events

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• // Do-nothing methods
 public void mouseReleased(MouseEvent event) {}
 public void mouseClicked(MouseEvent event) {}
 public void mouseEntered(MouseEvent event) {}
 public void mouseExited(MouseEvent event) {}
}

• All five methods of the interface must be implemented; unused
methods can be empty

Mouse Events

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

RectangleComponentViewer Program Output

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

01: import java.awt.event.MouseListener;
02: import java.awt.event.MouseEvent;
03: import javax.swing.JFrame;
04:
05: /**
06: This program displays a RectangleComponent.
07: */
08: public class RectangleComponentViewer
09: {
10: public static void main(String[] args)
11: {
12: final RectangleComponent component = new RectangleComponent();
13:
14: // Add mouse press listener
15:
16: class MousePressListener implements MouseListener
17: {
18: public void mousePressed(MouseEvent event)
19: {
20: int x = event.getX();
21: int y = event.getY();
22: component.moveTo(x, y);
23: }

ch09/mouse/RectangleComponentViewer.java

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

24:
25: // Do-nothing methods
26: public void mouseReleased(MouseEvent event) {}
27: public void mouseClicked(MouseEvent event) {}
28: public void mouseEntered(MouseEvent event) {}
29: public void mouseExited(MouseEvent event) {}
30: }
31:
32: MouseListener listener = new MousePressListener();
33: component.addMouseListener(listener);
34:
35: JFrame frame = new JFrame();
36: frame.add(component);
37:
38: frame.setSize(FRAME_WIDTH, FRAME_HEIGHT);
39: frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
40: frame.setVisible(true);
41: }
42:
43: private static final int FRAME_WIDTH = 300;
44: private static final int FRAME_HEIGHT = 400;
45: }

ch09/mouse/RectangleComponentViewer.java (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Why was the moveBy method in the RectangleComponent replaced
with a moveTo method?

 Answer: Because you know the current mouse position, not the
 amount by which the mouse has moved.

Self Check 9.21

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Why must the MousePressListener class supply five methods?

 Answer: It implements the MouseListener interface, which has
 five methods.

Self Check 9.22

