
Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Chapter Twelve:
Object-Oriented Design

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• To learn about the software life cycle

• To learn how to discover new classes and methods

• To understand the use of CRC cards for class discovery

• To be able to identify inheritance, aggregation, and dependency
relationships between classes

• To master the use of UML class diagrams to describe class
relationships

• To learn how to use object-oriented design to build complex
programs

Chapter Goals

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Encompasses all activities from initial analysis until
obsolescence

• Formal process for software development
• Describes phases of the development process
• Gives guidelines for how to carry out the phases

• Development process
• Analysis
• Design
• Implementation
• Testing
• Deployment

The Software Life Cycle

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Decide what the project is suppose to do

• Do not think about how the program will accomplish tasks

• Output: requirements document
• Describes what program will do once completed
• User manual: tells how user will operate program
• Performance criteria

Analysis

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Plan how to implement the system

• Discover structures that underlie problem to be solved

• Decide what classes and methods you need

• Output:
• Description of classes and methods
• Diagrams showing the relationships among the classes

Design

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Write and compile the code

• Code implements classes and methods discovered in the design
phase

• Output: completed program

Implementation

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Run tests to verify the program works correctly

• Output: a report of the tests and their results

Testing

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Users install program

• Users use program for its intended purpose

Deployment

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Sequential process of analysis, design, implementation, testing,
and deployment

• When rigidly applied,
waterfall model did not
work

The Waterfall Model

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Breaks development process down into multiple phases

• Early phases focus on the construction of prototypes

• Lessons learned from development of one prototype can be
applied to the next iteration

• Problem: can lead to many iterations, and process can take too
long to complete

The Spiral Model

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

The Spiral Model (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Development process methodology by the inventors of UML

Activity Levels in the Rational Unified Process

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Strives for simplicity

• Removes formal structure

• Focuses on best practices
• Realistic planning
• Small releases
• Metaphor
• Simplicity
• Testing
• Refactoring
• Pair programming
• Collective ownership
• Continuous integration
• 40-hour week
• On-site customer
• Coding standards

Extreme Programming

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Realistic planning
• Customers make business decisions
• Programmers make technical decisions
• Update plan when it conflicts with reality

• Small releases
• Release a useful system quickly
• Release updates on a very short cycle

• Metaphor
• Programmers have a simple shared story that explains the system

Extreme Programming

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Simplicity
• Design as simply as possible instead of preparing for future complexities

• Testing
• Programmers and customers write test cases
• Test continuously

• Refactoring
• Restructure the system continuously to improve code and eliminate

duplication

Extreme Programming

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Pair programming
• Two programmers write code on the same computer

• Collective ownership
• All programmers can change all code as needed

• Continuous integration
• Build the entire system and test it whenever a task is complete

Extreme Programming

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• 40-hour week
• Don't cover up unrealistic schedules with heroic effort

• On-site customer
• A customer is accessible to the programming team at all times

• Coding standards
• Follow standards that emphasize self-documenting code

Extreme Programming

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Suppose you sign a contract, promising that you will, for an
agreed-upon price, design, implement, and test a software
package exactly as it has been specified in a requirements
document. What is the primary risk you and your customer are
facing with this business arrangement?

 Answer: It is unlikely that the customer did a perfect job with the
 requirements document. If you don't accommodate changes,
 your customer may not like the outcome. If you charge for the
 changes, your customer may not like the cost.

Self Check 12.1

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Does Extreme Programming follow a waterfall or a spiral model?

 Answer: An "extreme" spiral model, with lots of iterations.

Self Check 12.2

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

What is the purpose of the "on-site customer" in Extreme
Programming?

 Answer: To give frequent feedback as to whether the current
 iteration of the product fits customer needs.

Self Check 12.3

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Discover classes

• Determine responsibilities of each class

• Describe relationships between the classes

Object-Oriented Design

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• A class represents some useful concept

• Concrete entities: bank accounts, ellipses, and products

• Abstract concepts: streams and windows

• Find classes by looking for nouns in the task description

• Define the behavior for each class

• Find methods by looking for verbs in the task description

Discovering Classes

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Example: Invoice

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Classes that come to mind: Invoice, LineItem, and Customer

• Good idea to keep a list of candidate classes

• Brainstorm, simply put all ideas for classes onto the list

• You can cross not useful ones later

Example: Invoice

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Keep the following points in mind:
• Class represents set of objects with the same behavior

o Entities with multiple occurrences in problem
description are good candidates for objects

o Find out what they have in common
o Design classes to capture commonalities

• Represent some entities as objects, others as primitive types
o Should we make a class Address or use a String?

• Not all classes can be discovered in analysis phase

• Some classes may already exist

Finding Classes

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Describes a class, its responsibilities, and its collaborators

• Use an index card for each class

• Pick the class that should be responsible for each method (verb)

• Write the responsibility onto the class card

• Indicate what other classes are needed to fulfill responsibility
(collaborators)

CRC Card

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

CRC Card (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Suppose the invoice is to be saved to a file. Name a likely
collaborator.

Answer: FileWriter

Self Check 12.4

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Looking at the invoice in Figure 4, what is a likely responsibility of
the Customer class?

 Answer: To produce the shipping address of the customer.

Self Check 12.5

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

What do you do if a CRC card has ten responsibilities?

 Answer: Reword the responsibilities so that they are at a higher
 level, or come up with more classes to handle the
 responsibilities.

Self Check 12.6

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Inheritance

• Aggregation

• Dependency

Relationships Between Classes

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Is-a relationship

• Relationship between a more general class (superclass) and
a more specialized class (subclass)

• Every savings account is a bank account

• Every circle is an ellipse (with equal width and height)

• It is sometimes abused
• Should the class Tire be a subclass of a class Circle?

o The has-a relationship would be more appropriate

Inheritance

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Has-a relationship

• Objects of one class contain references to objects of another
class

• Use an instance variable
• A tire has a circle as its boundary:

class Tire
{
. . .
private String rating;
private Circle boundary;
}

• Every car has a tire (in fact, it has four)

Aggregation

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Example

class Car extends Vehicle
{
 . . .
 private Tire[] tires;
}

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Uses relationship

• Example: many of our applications depend on the Scanner class
to read input

• Aggregation is a stronger form of dependency

• Use aggregation to remember another object between method
calls

Dependency

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Relationship Symbol Line Style Arrow Tip

Inheritance Solid Triangle

Interface Implementation Dotted Triangle

Aggregation Solid Diamond

Dependency Dotted Open

UML Relationship Symbols

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Consider the Bank and BankAccount classes of Chapter 7. How are
they related?

Answer: Through aggregation. The bank manages bank account
objects.

Self Check 12.7

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Consider the BankAccount and SavingsAccount objects of Chapter
10. How are they related?

Answer: Through inheritance.

Self Check 12.8

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Consider the BankAccountTester class of Chapter 3. Which classes
does it depend on?

 Answer: The BankAccount, System, and PrintStream classes.

Self Check 12.9

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Advanced Topic: Attributes and Methods in UML Diagrams

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• any number (zero or more): *
• one or more: 1..*
• zero or one: 0..1
• exactly one: 1

Advanced Topic: Multiplicities

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Association: more general relationship between classes

• Use early in the design phase

• A class is associated with another if you can navigate from
objects of one class to objects of the other

• Given a Bank object, you can navigate to Customer objects

Advanced Topic: Aggregation and Association

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

1. Gather requirements

2. Use CRC cards to find classes, responsibilities, and
collaborators

3. Use UML diagrams to record class relationships

4. Use javadoc to document method behavior

5. Implement your program

Five-Part Development Process

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Task: print out an invoice

• Invoice: describes the charges for a set of products in certain
quantities

• Omit complexities
• Dates, taxes, and invoice and customer numbers

• Print invoice
• Billing address, all line items, amount due

• Line item
• Description, unit price, quantity ordered, total price

• For simplicity, do not provide a user interface

• Test program: adds line items to the invoice and then prints it

Printing an Invoice – Requirements

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

I N V O I C E

Sam's Small Appliances
100 Main Street
Anytown, CA 98765

Description Price Qty Total
Toaster 29.95 3 89.85
Hair dryer 24.95 1 24.95
Car vacuum 19.99 2 39.98

AMOUNT DUE: $154.78

Sample Invoice

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Discover classes

• Nouns are possible classes

Invoice
Address
LineItem
Product
Description
Price
Quantity
Total
Amount Due

Printing an Invoice – CRC Cards

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Analyze classes
Invoice
Address
LineItem // Records the product and the quantity
Product
Description // Field of the Product class
Price // Field of the Product class
Quantity // Not an attribute of a Product
Total // Computed – not stored anywhere
Amount Due // Computed – not stored anywhere

• Classes after a process of elimination
Invoice
Address
LineItem
Product

Printing an Invoice – CRC Cards

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

CRC Cards for Printing Invoice

Invoice and Address must be able to format themselves:

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Add collaborators to invoice card:

CRC Cards for Printing Invoice

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

CRC Cards for Printing Invoice

Product and LineItem CRC cards:

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

CRC Cards for Printing Invoice

Invoice must be populated with products and quantities:

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Printing an Invoice – UML Diagrams

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Use javadoc documentation to record the behavior of the
classes

• Leave the body of the methods blank

• Run javadoc to obtain formatted version of documentation in
HTML format

• Advantages:
• Share HTML documentation with other team members
• Format is immediately useful: Java source files
• Supply the comments of the key methods

Printing an Invoice – Method Documentation

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

/**
 Describes an invoice for a set of purchased products.
*/
 public class Invoice
{
 /**
 Adds a charge for a product to this invoice.
 @param aProduct the product that the customer
 ordered
 @param quantity the quantity of the product
 */
 public void add(Product aProduct, int quantity)
 {
 }

Method Documentation – Invoice class

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

 /**
 Formats the invoice.
 @return the formatted invoice
 */
 public String format()
 {
 }
}

Method Documentation – Invoice class (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

/**
 Describes a quantity of an article to purchase and its
 price.
*/
public class LineItem
{
 /**
 Computes the total cost of this line item.
 @return the total price
 */
 public double getTotalPrice()
 {
 }

Method Documentation – LineItem class

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

 /** Formats this item.
 @return a formatted string of this line item
 */
 public String format()
 {
 }
}

Method Documentation – LineItem class (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

/**
 Describes a product with a description and a price.
*/
 public class Product
{
 /**
 Gets the product description.
 @return the description
 */
 public String getDescription()
 {
 }
 /**
 Gets the product price.
 @return the unit price

Method Documentation – Product class

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

 */
 public double getPrice()
 {
 }
}

Method Documentation – Product class (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

/**
Describes a mailing address.
*/
public class Address
{
 /**
 Formats the address.
 @return the address as a string with three lines
 */
 public String format()
 {
 }
}

Method Documentation – Address class

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

The Class Documentation in the HTML Format

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• The UML diagram will give instance variables

• Look for associated classes
• They yield instance variables

Printing an Invoice – Implementation

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Invoice aggregates Address and LineItem

• Every invoice has one billing address

• An invoice can have many line items:

public class Invoice
{
 . . .
 private Address billingAddress;
 private ArrayList<LineItem> items;
}

Implementation

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

A line item needs to store a Product object and quantity:
public class LineItem
{
 . . .
 private int quantity;
 private Product theProduct;
}

Implementation

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• The methods themselves are now very easy

• Example:
• getTotalPrice of LineItem gets the unit price of the product

and multiplies it with the quantity

/**
 Computes the total cost of this line item.
 @return the total price
*/
 public double getTotalPrice()
 {
 return theProduct.getPrice() * quantity;
}

Implementation

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

 ch12/invoice/InvoicePrinter.java
01: /**
02: This program demonstrates the invoice classes by printing
03: a sample invoice.
04: */
05: public class InvoicePrinter
06: {
07: public static void main(String[] args)
08: {
09: Address samsAddress
10: = new Address("Sam's Small Appliances",
11: "100 Main Street", "Anytown", "CA", "98765");
12:
13: Invoice samsInvoice = new Invoice(samsAddress);
14: samsInvoice.add(new Product("Toaster", 29.95), 3);
15: samsInvoice.add(new Product("Hair dryer", 24.95), 1);
16: samsInvoice.add(new Product("Car vacuum", 19.99), 2);
17:
18: System.out.println(samsInvoice.format());
19: }
20: }
21:
22:
23:

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch12/invoice/Invoice.java
01: import java.util.ArrayList;
02:
03: /**
04: Describes an invoice for a set of purchased products.
05: */
06: public class Invoice
07: {
08: /**
09: Constructs an invoice.
10: @param anAddress the billing address
11: */
12: public Invoice(Address anAddress)
13: {
14: items = new ArrayList<LineItem>();
15: billingAddress = anAddress;
16: }
17:
18: /**
19: Adds a charge for a product to this invoice.
20: @param aProduct the product that the customer ordered
21: @param quantity the quantity of the product
22: */

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch12/invoice/Invoice.java (cont.)
23: public void add(Product aProduct, int quantity)
24: {
25: LineItem anItem = new LineItem(aProduct, quantity);
26: items.add(anItem);
27: }
28:
29: /**
30: Formats the invoice.
31: @return the formatted invoice
32: */
33: public String format()
34: {
35: String r = " I N V O I C E\n\n"
36: + billingAddress.format()
37: + String.format("\n\n%-30s%8s%5s%8s\n",
38: "Description", "Price", "Qty", "Total");
39:
40: for (LineItem i : items)
41: {
42: r = r + i.format() + "\n";
43: }
44:

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch12/invoice/Invoice.java (cont.)
45: r = r + String.format("\nAMOUNT DUE: $%8.2f", getAmountDue());
46:
47: return r;
48: }
49:
50: /**
51: Computes the total amount due.
52: @return the amount due
53: */
54: public double getAmountDue()
55: {
56: double amountDue = 0;
57: for (LineItem i : items)
58: {
59: amountDue = amountDue + i.getTotalPrice();
60: }
61: return amountDue;
62: }
63:
64: private Address billingAddress;
65: private ArrayList<LineItem> items;
66: }

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

 ch12/invoice/LineItem.java
01: /**
02: Describes a quantity of an article to purchase.
03: */
04: public class LineItem
05: {
06: /**
07: Constructs an item from the product and quantity.
08: @param aProduct the product
09: @param aQuantity the item quantity
10: */
11: public LineItem(Product aProduct, int aQuantity)
12: {
13: theProduct = aProduct;
14: quantity = aQuantity;
15: }
16:
17: /**
18: Computes the total cost of this line item.
19: @return the total price
20: */

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch12/invoice/LineItem.java (cont.)

21: public double getTotalPrice()
22: {
23: return theProduct.getPrice() * quantity;
24: }
25:
26: /**
27: Formats this item.
28: @return a formatted string of this item
29: */
30: public String format()
31: {
32: return String.format("%-30s%8.2f%5d%8.2f",
33: theProduct.getDescription(), theProduct.getPrice(),
34: quantity, getTotalPrice());
35: }
36:
37: private int quantity;
38: private Product theProduct;
39: }

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch12/invoice/Product.java
01: /**
02: Describes a product with a description and a price.
03: */
04: public class Product
05: {
06: /**
07: Constructs a product from a description and a price.
08: @param aDescription the product description
09: @param aPrice the product price
10: */
11: public Product(String aDescription, double aPrice)
12: {
13: description = aDescription;
14: price = aPrice;
15: }
16:
17: /**
18: Gets the product description.
19: @return the description
20: */

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch12/invoice/Product.java (cont.)
21: public String getDescription()
22: {
23: return description;
24: }
25:
26: /**
27: Gets the product price.
28: @return the unit price
29: */
30: public double getPrice()
31: {
32: return price;
33: }
34:
35: private String description;
36: private double price;
37: }
38:

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

 ch12/invoice/Address.java
01: /**
02: Describes a mailing address.
03: */
04: public class Address
05: {
06: /**
07: Constructs a mailing address.
08: @param aName the recipient name
09: @param aStreet the street
10: @param aCity the city
11: @param aState the two-letter state code
12: @param aZip the ZIP postal code
13: */
14: public Address(String aName, String aStreet,
15: String aCity, String aState, String aZip)
16: {
17: name = aName;
18: street = aStreet;
19: city = aCity;
20: state = aState;
21: zip = aZip;
22: }

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch12/invoice/Address.java (cont.)
23:
24: /**
25: Formats the address.
26: @return the address as a string with three lines
27: */
28: public String format()
29: {
30: return name + "\n" + street + "\n"
31: + city + ", " + state + " " + zip;
32: }
33:
34: private String name;
35: private String street;
36: private String city;
37: private String state;
38: private String zip;
39: }
40:

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Which class is responsible for computing the amount due? What
are its collaborators for this task?

 Answer: The Invoice class is responsible for computing the
 amount due. It collaborates with the LineItem class.

Self Check 12.10

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Why do the format methods return String objects instead of
directly printing to System.out?

 Answer: This design decision reduces coupling. It enables us to
 reuse the classes when we want to show the invoice in a dialog
 box or on a web page.

Self Check 12.11

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• ATM is used by bank customers. A customer has a
• Checking account
• Savings account
• Customer number
• PIN

An Automatic Teller Machine – Requirements

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Customers can select an account

• The balance of the selected account is displayed

• Then, customer can deposit and withdraw money

• Process is repeated until the customer chooses to exit

An Automatic Teller Machine – Requirements

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• GUI Interface
• Keypad
• Display
• Buttons A, B, C
• Buttons function depend on the state of the machine

An Automatic Teller Machine – Requirements

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• At start up the customer is expected to
• Enter customer number
• Press the A button
• The display shows:

Enter Customer Number
A = OK

An Automatic Teller Machine – Requirements

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• The customer is expected to
• Enter a PIN
• Press A button
• The display shows:

Enter PIN
A = OK

An Automatic Teller Machine – Requirements

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Search for the customer number and PIN
• If it matches a bank customer, proceed
• Else return to start up screen

An Automatic Teller Machine – Requirements

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• If the customer is authorized
• The display shows:

Select Account
A = Checking
B = Savings
C = Exit

An Automatic Teller Machine – Requirements

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• If the user presses C
• The ATM reverts to its original state
• ATM asks next user to enter a customer number

• If the user presses A or B
• The ATM remembers selected account
• The display shows:

Balance = balance of selected account
Enter amount and select transaction
A = Withdraw
B = Deposit
C = Cancel

An Automatic Teller Machine – Requirements

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• If the user presses A or B
• The value entered is withdrawn or deposited
• Simulation: no money is dispensed and no deposit is accepted
• The ATM reverts to previous state

• If the user presses C
• The ATM reverts to previous state

An Automatic Teller Machine – Requirements

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Text-based interaction
• Read input from System.in instead of the buttons
• Here is a typical dialog:

Enter account number: 1
Enter PIN: 1234
A=Checking, B=Savings, C=Quit: A
Balance=0.0
A=Deposit, B=Withdrawal, C=Cancel: A
Amount: 1000
A=Checking, B=Savings, C=Quit: C

An Automatic Teller Machine – Requirements

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Nouns are possible classes

ATM
User
Keypad
Display
Display message
Button
State
Bank account
Checking account
Savings account
Customer
Customer number
PIN
Bank

An Automatic Teller Machine – CRC

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

 CRC Cards for Automatic Teller Machine

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

 CRC Cards for Automatic Teller Machine (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

1. START: Enter customer ID
2. PIN: Enter PIN
3. ACCOUNT: Select account
4. TRANSACT: Select transaction

ATM States

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

State Diagram for ATM Class

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

An Automatic Teller Machine – UML Diagrams

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

/**
 An ATM that accesses a bank.
*/
public class ATM
{
 /**
 Constructs an ATM for a given bank.
 @param aBank the bank to which this ATM connects
 */
 public ATM(Bank aBank) { }
 /**
 Sets the current customer number
 and sets state to PIN.
 (Precondition: state is START)
 @param number the customer number
 */
 public void setCustomerNumber(int number) { }

Method Documentation ATM Class

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

/**
 Finds customer in bank.
 If found sets state to ACCOUNT, else to START.
 (Precondition: state is PIN)
 @param pin the PIN of the current customer
 */
 public void selectCustomer(int pin) { }
 /**
 Sets current account to checking or savings. Sets
 state to TRANSACT.
 (Precondition: state is ACCOUNT or TRANSACT)
 @param account one of CHECKING or SAVINGS
 */

Method Documentation ATM Class (Continued)

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

public void selectAccount(int account) { }
 /**
 Withdraws amount from current account.
 (Precondition: state is TRANSACT)
 @param value the amount to withdraw
 */
 public void withdraw(double value) { }
 . . .
}

Method Documentation ATM Class (Continued)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Start implementation with classes that don't depend on others
• Keypad
• BankAccount

• Then implement Customer which depends only on BankAccount

• This bottom-up approach allows you to test your classes
individually

An Automatic Teller Machine – Implementation

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Aggregated classes in UML diagram give instance variables
public class ATM
{
 ...
 private Bank theBank;
}

• From description of ATM states, it is clear that we require
additional instance variables:
public class ATM
{
 ...
 private int state;
 private Customer currentCustomer;
 private BankAccount currentAccount;
}

An Automatic Teller Machine – Implementation

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Most methods are very straightforward to implement

• Consider selectCustomer:
/**
 Finds customer in bank.
 If found sets state to ACCOUNT, else to START.
 (Precondition: state is PIN)
 @param pin the PIN of the current customer
*/

An Automatic Teller Machine – Implementation

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Description can be almost literally translated to Java
instructions:

public void selectCustomer(int pin)
{
 assert state == PIN;
 currentCustomer = theBank.findCustomer(customerNumber,
 pin);
 if (currentCustomer == null)
 state = START;
 else
 state = ACCOUNT;
}

An Automatic Teller Machine – Implementation

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

 ch12/atm/ATM.java
001: /**
002: An ATM that accesses a bank.
003: */
004: public class ATM
005: {
006: /**
007: Constructs an ATM for a given bank.
008: @param aBank the bank to which this ATM connects
009: */
010: public ATM(Bank aBank)
011: {
012: theBank = aBank;
013: reset();
014: }
015:
016: /**
017: Resets the ATM to the initial state.
018: */
019: public void reset()
020: {

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch12/atm/ATM.java (cont.)
021: customerNumber = -1;
022: currentAccount = null;
023: state = START;
024: }
025:
026: /**
027: Sets the current customer number
028: and sets state to PIN.
029: (Precondition: state is START)
030: @param number the customer number.
031: */
032: public void setCustomerNumber(int number)
033: {
034: assert state == START;
035: customerNumber = number;
036: state = PIN;
037: }
038:
039: /**
040: Finds customer in bank.
041: If found sets state to ACCOUNT, else to START.

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch12/atm/ATM.java (cont.)
042: (Precondition: state is PIN)
043: @param pin the PIN of the current customer
044: */
045: public void selectCustomer(int pin)
046: {
047: assert state == PIN;
048: currentCustomer
049: = theBank.findCustomer(customerNumber, pin);
050: if (currentCustomer == null)
051: state = START;
052: else
053: state = ACCOUNT;
054: }
055:
056: /**
057: Sets current account to checking or savings. Sets
058: state to TRANSACT.
059: (Precondition: state is ACCOUNT or TRANSACT)
060: @param account one of CHECKING or SAVINGS
061: */

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch12/atm/ATM.java (cont.)
062: public void selectAccount(int account)
063: {
064: assert state == ACCOUNT || state == TRANSACT;
065: if (account == CHECKING)
066: currentAccount = currentCustomer.getCheckingAccount();
067: else
068: currentAccount = currentCustomer.getSavingsAccount();
069: state = TRANSACT;
070: }
071:
072: /**
073: Withdraws amount from current account.
074: (Precondition: state is TRANSACT)
075: @param value the amount to withdraw
076: */
077: public void withdraw(double value)
078: {
079: assert state == TRANSACT;
080: currentAccount.withdraw(value);
081: }
082:

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch12/atm/ATM.java (cont.)
083: /**
084: Deposits amount to current account.
085: (Precondition: state is TRANSACT)
086: @param value the amount to deposit
087: */
088: public void deposit(double value)
089: {
090: assert state == TRANSACT;
091: currentAccount.deposit(value);
092: }
093:
094: /**
095: Gets the balance of the current account.
096: (Precondition: state is TRANSACT)
097: @return the balance
098: */
099: public double getBalance()
100: {
101: assert state == TRANSACT;
102: return currentAccount.getBalance();
103: }

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch12/atm/ATM.java (cont.)
104:
105: /**
106: Moves back to the previous state.
107: */
108: public void back()
109: {
110: if (state == TRANSACT)
111: state = ACCOUNT;
112: else if (state == ACCOUNT)
113: state = PIN;
114: else if (state == PIN)
115: state = START;
116: }
117:
118: /**
119: Gets the current state of this ATM.
120: @return the current state
121: */
122: public int getState()
123: {
124: return state;
125: } Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch12/atm/ATM.java (cont.)
126:
127: private int state;
128: private int customerNumber;
129: private Customer currentCustomer;
130: private BankAccount currentAccount;
131: private Bank theBank;
132:
133: public static final int START = 1;
134: public static final int PIN = 2;
135: public static final int ACCOUNT = 3;
136: public static final int TRANSACT = 4;
137:
138: public static final int CHECKING = 1;
139: public static final int SAVINGS = 2;
140: }

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch12/atm/Bank.java
01: import java.io.FileReader;
02: import java.io.IOException;
03: import java.util.ArrayList;
04: import java.util.Scanner;
05:
06: /**
07: A bank contains customers with bank accounts.
08: */
09: public class Bank
10: {
11: /**
12: Constructs a bank with no customers.
13: */
14: public Bank()
15: {
16: customers = new ArrayList<Customer>();
17: }
18:
19: /**
20: Reads the customer numbers and pins
21: and initializes the bank accounts.
22: @param filename the name of the customer file
23: */

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch12/atm/Bank.java (cont.)
24: public void readCustomers(String filename)
25: throws IOException
26: {
27: Scanner in = new Scanner(new FileReader(filename));
28: while (in.hasNext())
29: {
30: int number = in.nextInt();
31: int pin = in.nextInt();
32: Customer c = new Customer(number, pin);
33: addCustomer(c);
34: }
35: in.close();
36: }
37:
38: /**
39: Adds a customer to the bank.
40: @param c the customer to add
41: */
42: public void addCustomer(Customer c)
43: {
44: customers.add(c);
45: } Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch12/atm/Bank.java (cont.)
46:
47: /**
48: Finds a customer in the bank.
49: @param aNumber a customer number
50: @param aPin a personal identification number
51: @return the matching customer, or null if no customer
52: matches
53: */
54: public Customer findCustomer(int aNumber, int aPin)
55: {
56: for (Customer c : customers)
57: {
58: if (c.match(aNumber, aPin))
59: return c;
60: }
61: return null;
62: }
63:
64: private ArrayList<Customer> customers;
65: }
66:
67:

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

 ch12/atm/Customer.java
01: /**
02: A bank customer with a checking and a savings account.
03: */
04: public class Customer
05: {
06: /**
07: Constructs a customer with a given number and PIN.
08: @param aNumber the customer number
09: @param aPin the personal identification number
10: */
11: public Customer(int aNumber, int aPin)
12: {
13: customerNumber = aNumber;
14: pin = aPin;
15: checkingAccount = new BankAccount();
16: savingsAccount = new BankAccount();
17: }
18:
19: /**
20: Tests if this customer matches a customer number
21: and PIN.
22: @param aNumber a customer number
23: @param aPin a personal identification number

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch12/atm/Customer.java (cont.)
24: @return true if the customer number and PIN match
25: */
26: public boolean match(int aNumber, int aPin)
27: {
28: return customerNumber == aNumber && pin == aPin;
29: }
30:
31: /**
32: Gets the checking account of this customer.
33: @return the checking account
34: */
35: public BankAccount getCheckingAccount()
36: {
37: return checkingAccount;
38: }
39:
40: /**
41: Gets the savings account of this customer.
42: @return the checking account
43: */
44: public BankAccount getSavingsAccount()
45: { Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch12/atm/Customer.java (cont.)
46: return savingsAccount;
47: }
48:
49: private int customerNumber;
50: private int pin;
51: private BankAccount checkingAccount;
52: private BankAccount savingsAccount;
53: }

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

 ch12/atm/ATMSimulator.java
01: import java.io.IOException;
02: import java.util.Scanner;
03:
04: /**
05: A text-based simulation of an automatic teller machine.
06: */
07: public class ATMSimulator
08: {
09: public static void main(String[] args)
10: {
11: ATM theATM;
12: try
13: {
14: Bank theBank = new Bank();
15: theBank.readCustomers("customers.txt");
16: theATM = new ATM(theBank);
17: }
18: catch(IOException e)
19: {
20: System.out.println("Error opening accounts file.");
21: return;
22: }

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch12/atm/ATMSimulator.java (cont.)
23:
24: Scanner in = new Scanner(System.in);
25:
26: while (true)
27: {
28: int state = theATM.getState();
29: if (state == ATM.START)
30: {
31: System.out.print("Enter customer number: ");
32: int number = in.nextInt();
33: theATM.setCustomerNumber(number);
34: }
35: else if (state == ATM.PIN)
36: {
37: System.out.print("Enter PIN: ");
38: int pin = in.nextInt();
39: theATM.selectCustomer(pin);
40: }
41: else if (state == ATM.ACCOUNT)
42: {
43: System.out.print("A=Checking, B=Savings, C=Quit: ");
44: String command = in.next();

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch12/atm/ATMSimulator.java (cont.)
45: if (command.equalsIgnoreCase("A"))
46: theATM.selectAccount(ATM.CHECKING);
47: else if (command.equalsIgnoreCase("B"))
48: theATM.selectAccount(ATM.SAVINGS);
49: else if (command.equalsIgnoreCase("C"))
50: theATM.reset();
51: else
52: System.out.println("Illegal input!");
53: }
54: else if (state == ATM.TRANSACT)
55: {
56: System.out.println("Balance=" + theATM.getBalance());
57: System.out.print("A=Deposit, B=Withdrawal, C=Cancel: ");
58: String command = in.next();
59: if (command.equalsIgnoreCase("A"))
60: {
61: System.out.print("Amount: ");
62: double amount = in.nextDouble();
63: theATM.deposit(amount);
64: theATM.back();
65: }

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch12/atm/ATMSimulator.java (cont.)
66: else if (command.equalsIgnoreCase("B"))
67: {
68: System.out.print("Amount: ");
69: double amount = in.nextDouble();
70: theATM.withdraw(amount);
71: theATM.back();
72: }
73: else if (command.equalsIgnoreCase("C"))
74: theATM.back();
75: else
76: System.out.println("Illegal input!");
77: }
78: }
79: }
80: }
81:

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Enter account number: 1
Enter PIN: 1234
A=Checking, B=Savings, C=Quit: A
Balance=0.0
A=Deposit, B=Withdrawal, C=Cancel: A
Amount: 1000
A=Checking, B=Savings, C=Quit: C
. . .

ch12/atm/ATMSimulator.java (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

 ch12/atm/ATMViewer.java
01: import java.io.IOException;
02: import javax.swing.JFrame;
03: import javax.swing.JOptionPane;
04:
05: /**
06: A graphical simulation of an automatic teller machine.
07: */
08: public class ATMViewer
09: {
10: public static void main(String[] args)
11: {
12: ATM theATM;
13:
14: try
15: {
16: Bank theBank = new Bank();
17: theBank.readCustomers("customers.txt");
18: theATM = new ATM(theBank);
19: }
20: catch(IOException e)
21: {

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch12/atm/ATMViewer.java (cont.)
22: JOptionPane.showMessageDialog(null,
23: "Error opening accounts file.");
24: return;
25: }
26:
27: JFrame frame = new ATMFrame(theATM);
28: frame.setTitle("First National Bank of Java");
29: frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
30: frame.setVisible(true);
31: }
32: }
33:

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

 ch12/atm/ATMFrame.java
001: import java.awt.FlowLayout;
002: import java.awt.GridLayout;
003: import java.awt.event.ActionEvent;
004: import java.awt.event.ActionListener;
005: import javax.swing.JButton;
006: import javax.swing.JFrame;
007: import javax.swing.JPanel;
008: import javax.swing.JTextArea;
009:
010: /**
011: A frame displaying the components of an ATM.
012: */
013: public class ATMFrame extends JFrame
014: {
015: /**
016: Constructs the user interface of the ATM frame.
017: */
018: public ATMFrame(ATM anATM)
019: {
020: theATM = anATM;
021:
022: // Construct components Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch12/atm/ATMFrame.java (cont.)
023: pad = new KeyPad();
024:
025: display = new JTextArea(4, 20);
026:
027: aButton = new JButton(" A ");
028: aButton.addActionListener(new AButtonListener());
029:
030: bButton = new JButton(" B ");
031: bButton.addActionListener(new BButtonListener());
032:
033: cButton = new JButton(" C ");
034: cButton.addActionListener(new CButtonListener());
035:
036: // Add components
037:
038: JPanel buttonPanel = new JPanel();
039: //buttonPanel.setLayout(new GridLayout(3, 1));
040: buttonPanel.add(aButton);
041: buttonPanel.add(bButton);
042: buttonPanel.add(cButton);
043:
044: setLayout(new FlowLayout());
045: add(pad);
046: add(display);

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch12/atm/ATMFrame.java (cont.)
047: add(buttonPanel);
048: showState();
049:
050: setSize(FRAME_WIDTH, FRAME_HEIGHT);
051: }
052:
053: /**
054: Updates display message.
055: */
056: public void showState()
057: {
058: int state = theATM.getState();
059: pad.clear();
060: if (state == ATM.START)
061: display.setText("Enter customer number\nA = OK");
062: else if (state == ATM.PIN)
063: display.setText("Enter PIN\nA = OK");
064: else if (state == ATM.ACCOUNT)
065: display.setText("Select Account\n"
066: + "A = Checking\nB = Savings\nC = Exit");
067: else if (state == ATM.TRANSACT)
068: display.setText("Balance = "
069: + theATM.getBalance() Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch12/atm/ATMFrame.java (cont.)
070: + "\nEnter amount and select transaction\n"
071: + "A = Withdraw\nB = Deposit\nC = Cancel");
072: }
073:
074: private class AButtonListener implements ActionListener
075: {
076: public void actionPerformed(ActionEvent event)
077: {
078: int state = theATM.getState();
079: if (state == ATM.START)
080: theATM.setCustomerNumber((int) pad.getValue());
081: else if (state == ATM.PIN)
082: theATM.selectCustomer((int) pad.getValue());
083: else if (state == ATM.ACCOUNT)
084: theATM.selectAccount(ATM.CHECKING);
085: else if (state == ATM.TRANSACT)
086: {
087: theATM.withdraw(pad.getValue());
088: theATM.back();
089: }
090: showState();
091: }
092: } Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch12/atm/ATMFrame.java (cont.)
093:
094: private class BButtonListener implements ActionListener
095: {
096: public void actionPerformed(ActionEvent event)
097: {
098: int state = theATM.getState();
099: if (state == ATM.ACCOUNT)
100: theATM.selectAccount(ATM.SAVINGS);
101: else if (state == ATM.TRANSACT)
102: {
103: theATM.deposit(pad.getValue());
104: theATM.back();
105: }
106: showState();
107: }
108: }
109:
110: private class CButtonListener implements ActionListener
111: {
112: public void actionPerformed(ActionEvent event)
113: {
114: int state = theATM.getState();
115: if (state == ATM.ACCOUNT)
116: theATM.reset();

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch12/atm/ATMFrame.java (cont.)
117: else if (state == ATM.TRANSACT)
118: theATM.back();
119: showState();
120: }
121: }
122:
123: private JButton aButton;
124: private JButton bButton;
125: private JButton cButton;
126:
127: private KeyPad pad;
128: private JTextArea display;
129:
130: private ATM theATM;
131:
132: private static final int FRAME_WIDTH = 300;
133: private static final int FRAME_HEIGHT = 400;
134: }

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

File KeyPad.java
001: import java.awt.BorderLayout;
002: import java.awt.GridLayout;
003: import java.awt.event.ActionEvent;
004: import java.awt.event.ActionListener;
005: import javax.swing.JButton;
006: import javax.swing.JPanel;
007: import javax.swing.JTextField;
008:
009: /**
010: A component that lets the user enter a number, using
011: a button pad labeled with digits.
012: */
013: public class KeyPad extends JPanel
014: {
015: /**
016: Constructs the keypad panel.
017: */
018: public KeyPad()
019: {
020: setLayout(new BorderLayout());
021:
022: // Add display field
023:

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

File KeyPad.java (cont.)
024: display = new JTextField();
025: add(display, "North");
026:
027: // Make button panel
028:
029: buttonPanel = new JPanel();
030: buttonPanel.setLayout(new GridLayout(4, 3));
031:
032: // Add digit buttons
033:
034: addButton("7");
035: addButton("8");
036: addButton("9");
037: addButton("4");
038: addButton("5");
039: addButton("6");
040: addButton("1");
041: addButton("2");
042: addButton("3");
043: addButton("0");
044: addButton(".");
045:
046: // Add clear entry button

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

File KeyPad.java (cont.)
047:
048: clearButton = new JButton("CE");
049: buttonPanel.add(clearButton);
050:
051: class ClearButtonListener implements ActionListener
052: {
053: public void actionPerformed(ActionEvent event)
054: {
055: display.setText("");
056: }
057: }
058: ActionListener listener = new ClearButtonListener();
059:
060: clearButton.addActionListener(new
061: ClearButtonListener());
062:
063: add(buttonPanel, "Center");
064: }
065:
066: /**
067: Adds a button to the button panel
068: @param label the button label
069: */

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

File KeyPad.java (cont.)
070: private void addButton(final String label)
071: {
072: class DigitButtonListener implements ActionListener
073: {
074: public void actionPerformed(ActionEvent event)
075: {
076:
077: // Don't add two decimal points
078: if (label.equals(".")
079: && display.getText().indexOf(".") != -1)
080: return;
081:
082: // Append label text to button
083: display.setText(display.getText() + label);
084: }
085: }
086:
087: JButton button = new JButton(label);
088: buttonPanel.add(button);
089: ActionListener listener = new DigitButtonListener();
090: button.addActionListener(listener);
091: }
092: Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

File KeyPad.java (cont.)
093: /**
094: Gets the value that the user entered.
095: @return the value in the text field of the keypad
096: */
097: public double getValue()
098: {
099: return Double.parseDouble(display.getText());
100: }
101:
102: /**
103: Clears the display.
104: */
105: public void clear()
106: {
107: display.setText("");
108: }
109:
110: private JPanel buttonPanel;
111: private JButton clearButton;
112: private JTextField display;
113: }
114:

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Why does the Bank class in this example not store an array list of
bank accounts?

 Answer: The bank needs to store the list of customers so that
 customers can log in. We need to locate all bank accounts of a
 customer, and we chose to simply store them in the customer
 class. In this program, there is no further need to access bank
 accounts.

Self Check 12.12

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Suppose the requirements change – you need to save the current
account balances to a file after every transaction and reload them
when the program starts. What is the impact of this change on the
design?

 Answer: The Bank class needs to have an additional
 responsibility: to load and save the accounts. The bank can
 carry out this responsibility because it has access to the
 customer objects and, through them, to the bank accounts.

Self Check 12.13

