
Chapter Twenty:
Multithreading

Chapter Goals

• To understand how multiple threads can execute in parallel

• To learn how to implement threads

• To understand race conditions and deadlocks

• To be able to avoid corruption of shared objects by using locks
and conditions

• To be able to use threads for programming animations

Threads

• A thread is a program unit that is executed independently of
other parts of the program

• The Java Virtual Machine executes each thread in the program
for a short amount of time

• This gives the impression of parallel execution

Running a Thread

• Implement a class that implements the Runnable interface
public interface Runnable
{
 void run();
}

• Place the code for your task into the run method of your class

public class MyRunnable implements Runnable
{
 public void run()
 {
 // Task statements go here
 . . .
 }
}

Continued

Running a Thread (cont.)

• Create an object of your subclass
Runnable r = new MyRunnable();

• Construct a Thread object from the runnable object.
Thread t = new Thread(r);

• Call the start method to start the thread.
t.start();

Example

• A program to print a time stamp and "Hello World" once a
second for ten seconds:

Thu Dec 28 23:12:03 PST 2006 Hello, World!
Thu Dec 28 23:12:04 PST 2006 Hello, World!
Thu Dec 28 23:12:05 PST 2006 Hello, World!
Thu Dec 28 23:12:06 PST 2006 Hello, World!
Thu Dec 28 23:12:07 PST 2006 Hello, World!
Thu Dec 28 23:12:08 PST 2006 Hello, World!
Thu Dec 28 23:12:09 PST 2006 Hello, World!
Thu Dec 28 23:12:10 PST 2006 Hello, World!

• Thu Dec 28 23:12:11 PST 2006 Hello, World!
Thu Dec 28 23:12:12 PST 2006 Hello, World!

GreetingRunnable Outline

public class GreetingRunnable implements Runnable
{
 public GreetingRunnable(String aGreeting)
 {
 greeting = aGreeting;
 }

 public void run()
 {
 // Task statements go here
 . . .
 }
 // Fields used by the task statements
 private String greeting;
}

Thread Action for GreetingRunnable

• Print a time stamp

• Print the greeting

• Wait a second

GreetingRunnable

• We can get the date and time by constructing a Date object
Date now = new Date();

• To wait a second, use the sleep method of the Thread class

sleep(milliseconds)

• A sleeping thread can generate an InterruptedException
• Catch the exception
• Terminate the thread

Running Threads

• sleep puts current thread to sleep for given number of
milliseconds

Thread.sleep(milliseconds)

• When a thread is interrupted, most common response is to
terminate run

Generic run method

public void run()
{
 try
 {
 Task statements
 }
 catch (InterruptedException exception)
 {
 }
 Clean up, if necessary
}

ch20/greeting/GreetingRunnable.java

01: import java.util.Date;
02:
03: /**
04: A runnable that repeatedly prints a greeting.
05: */
06: public class GreetingRunnable implements Runnable
07: {
08: /**
09: Constructs the runnable object.
10: @param aGreeting the greeting to display
11: */
12: public GreetingRunnable(String aGreeting)
13: {
14: greeting = aGreeting;
15: }
16:
17: public void run()
18: {
19: try
20: {

ch20/greeting/GreetingRunnable.java (cont.)

21: for (int i = 1; i <= REPETITIONS; i++)
22: {
23: Date now = new Date();
24: System.out.println(now + " " + greeting);
25: Thread.sleep(DELAY);
26: }
27: }
28: catch (InterruptedException exception)
29: {
30: }
31: }
32:
33: private String greeting;
34:
35: private static final int REPETITIONS = 10;
36: private static final int DELAY = 1000;
37: }

To Start the Thread

• Construct an object of your runnable class
Runnable t = new GreetingRunnable("Hello World");

• Then construct a thread and call the start method.
Thread t = new Thread(r);
t.start();

ch20/greeting/GreetingThreadRunner.java

01: /**
02: This program runs two greeting threads in parallel.
03: */
04: public class GreetingThreadRunner
05: {
06: public static void main(String[] args)
07: {
08: GreetingRunnable r1 = new GreetingRunnable("Hello, World!");
09: GreetingRunnable r2 = new GreetingRunnable("Goodbye, World!");
10: Thread t1 = new Thread(r1);
11: Thread t2 = new Thread(r2);
12: t1.start();
13: t2.start();
14: }
15: }
16:

Continued

ch20/greeting/GreetingThreadRunner.java (cont.)

Output:
Tue Dec 19 12:04:46 PST 2006 Hello, World!
Tue Dec 19 12:04:46 PST 2006 Goodbye, World!
Tue Dec 19 12:04:47 PST 2006 Hello, World!
Tue Dec 19 12:04:47 PST 2006 Goodbye, World!
Tue Dec 19 12:04:48 PST 2006 Hello, World!
Tue Dec 19 12:04:48 PST 2006 Goodbye, World!
Tue Dec 19 12:04:49 PST 2006 Hello, World!
Tue Dec 19 12:04:49 PST 2006 Goodbye, World!
Tue Dec 19 12:04:50 PST 2006 Hello, World!
Tue Dec 19 12:04:50 PST 2006 Goodbye, World!
Tue Dec 19 12:04:51 PST 2006 Hello, World!
Tue Dec 19 12:04:51 PST 2006 Goodbye, World!
Tue Dec 19 12:04:52 PST 2006 Goodbye, World!
Tue Dec 19 12:04:52 PST 2006 Hello, World!
Tue Dec 19 12:04:53 PST 2006 Hello, World!

Continued

ch20/greeting/GreetingThreadRunner.java (cont.)

Output (cont.)
Tue Dec 19 12:04:53 PST 2006 Goodbye, World!
Tue Dec 19 12:04:54 PST 2006 Hello, World!
Tue Dec 19 12:04:54 PST 2006 Goodbye, World!
Tue Dec 19 12:04:55 PST 2006 Hello, World!
Tue Dec 19 12:04:55 PST 2006 Goodbye, World!

Thread Scheduler

• The thread scheduler runs each thread for a short amount of
time (a time slice)

• Then the scheduler activates another thread

• There will always be slight variations in running times
especially when calling operating system services (e.g. input
and output)

• There is no guarantee about the order in which threads are
executed

Self Check 20.1

What happens if you change the call to the sleep method in the
run method to Thread.sleep(1)?

 Answer: The messages are printed about one millisecond
 apart.

Self Check 20.2

What would be the result of the program if the main method
called
r1.run();
r2.run();

instead of starting threads?

 Answer: The first call to run would print ten "Hello" messages,
 and then the second call to run would print ten "Goodbye"
 messages

Terminating Threads

• A thread terminates when its run method terminates

• Do not terminate a thread using the deprecatedstop method

• Instead, notify a thread that it should terminate

t.interrupt();
• interrupt does not cause the thread to terminate – it sets a

boolean field in the thread data structure

Terminating Threads

• The run method should check occasionally whether it has been
interrupted

• Use the interrupted method
• An interrupted thread should release resources, clean up, and exit

public void run()
{
 for (int i = 1;
 i <= "REPETITIONS" && !Thread.interrupted();
 i++)
 {
 Do work
 }
 Clean up
}

Terminating Threads

• The sleep method throws an InterruptedException when a
sleeping thread is interrupted

• Catch the exception
• Terminate the thread

public void run()
{
 try
 {
 for (int i = 1; i <= REPETITIONS; i++)
 {
 Do work
 }
 }
 catch (InterruptedException exception)
 {
 }
 Clean up
}

Terminating Threads

• Java does not force a thread to terminate when it is interrupted

• It is entirely up to the thread what it does when it is interrupted

• Interrupting is a general mechanism for getting the thread's
attention

Self Check 20.3

Suppose a web browser uses multiple threads to load the images
on a web page. Why should these threads be terminated when
the user hits the "Back" button?

 Answer: If the user hits the "Back" button, the current web page
 is no longer displayed, and it makes no sense to expend
 network resources for fetching additional image data.

Self Check 20.4

Consider the following runnable.
public class MyRunnable implements Runnable
{
 public void run()
 {
 try
 {
 System.out.println(1);
 Thread.sleep(1000);
 System.out.println(2);
 }
 catch (InterruptedException exception)
 {
 System.out.println(3);
 }
 System.out.println(4);
 }
}

Continued

Self Check 20.4 (cont.)

Suppose a thread with this runnable is started and immediately
interrupted.
Thread t = new Thread(new MyRunnable());
t.start();
t.interrupt();

What output is produced?

 Answer: The run method prints the values 1, 3, and 4. The call
 to interrupt merely sets the interruption flag, but the sleep
 method immediately throws an InterruptedException.

Race Conditions

• When threads share a common object, they can conflict with
each other

• Sample program: multiple threads manipulate a bank account
Here is the run method of DepositRunnable:
public void run()
{
 try
 {
 for (int i = 1; i <= count; i++)
 {
 account.deposit(amount);
 Thread.sleep(DELAY);

Continued

Race Conditions (cont.)

 }
 }
 catch (InterruptedException exception)
 {
 }
}

• The WithdrawRunnable class is similar

Sample Application

• Create a BankAccount object

• Create two sets of threads:
• Each thread in the first set repeatedly deposits $100
• Each thread in the second set repeatedly withdraws $100

• deposit and withdraw have been modified to print messages:
public void deposit(double amount)
{
 System.out.print("Depositing " + amount);
 double newBalance = balance + amount;
 System.out.println(", new balance is " + newBalance);
 balance = newBalance;
}

Sample Application

• The result should be zero, but sometimes it is not

• Normally, the program output looks somewhat like this:
Depositing 100.0, new balance is 100.0
Withdrawing 100.0, new balance is 0.0
Depositing 100.0, new balance is 100.0
Depositing 100.0, new balance is 200.0
Withdrawing 100.0, new balance is 100.0
. . .
Withdrawing 100.0, new balance is 0.0

• But sometimes you may notice messed-up output, like this:
Depositing 100.0Withdrawing 100.0, new balance is 100.0,
 new balance is -100.0

Scenario to Explain Non-zero Result: Race Condition

1. A deposit thread executes the lines
System.out.print("Depositing " + amount);
double newBalance = balance + amount;

The balance field is still 0, and the newBalance local variable is
100

2. The deposit thread reaches the end of its time slice and a
withdraw thread gains control

3. The withdraw thread calls the withdraw method which
withdraws $100 from the balance variable;
it is now -100

4. The withdraw thread goes to sleep

Continued

Scenario to Explain Non-zero Result: Race Condition

5. The deposit thread regains control and picks up where it left off;
it executes:
System.out.println(", new balance is " + newBalance);
balance = newBalance;

The balance is now 100 instead of 0 because the deposit
method used the OLD balance

Corrupting the Contents of the balance Field

Race Condition

• Occurs if the effect of multiple threads on shared data depends
on the order in which they are scheduled

• It is possible for a thread to reach the end of its time slice in the
middle of a statement

• It may evaluate the right-hand side of an equation but not be
able to store the result until its next turn
public void deposit(double amount)
{
 balance = balance + amount;
 System.out.print("Depositing " + amount + ", new
 balance is " + balance); }

Race condition can still occur:
balance = the right-hand-side value

ch20/unsynch/BankAccountThreadRunner.java

01: /**
02: This program runs threads that deposit and withdraw
03: money from the same bank account.
04: */
05: public class BankAccountThreadRunner
06: {
07: public static void main(String[] args)
08: {
09: BankAccount account = new BankAccount();
10: final double AMOUNT = 100;
11: final int REPETITIONS = 100;
12: final int THREADS = 100;
13:
14: for (int i = 1; i <= THREADS; i++)
15: {
16: DepositRunnable d = new DepositRunnable(
17: account, AMOUNT, REPETITIONS);
18: WithdrawRunnable w = new WithdrawRunnable(
19: account, AMOUNT, REPETITIONS);
20:

Continued

ch20/unsynch/BankAccountThreadRunner.java (cont.)

21: Thread dt = new Thread(d);
22: Thread wt = new Thread(w);
23:
24: dt.start();
25: wt.start();
26: }
27: }
28: }
29:

ch20/unsynch/DepositRunnable.java

01: /**
02: A deposit runnable makes periodic deposits to a bank account.
03: */
04: public class DepositRunnable implements Runnable
05: {
06: /**
07: Constructs a deposit runnable.
08: @param anAccount the account into which to deposit money
09: @param anAmount the amount to deposit in each repetition
10: @param aCount the number of repetitions
11: */
12: public DepositRunnable(BankAccount anAccount, double anAmount,
13: int aCount)
14: {
15: account = anAccount;
16: amount = anAmount;
17: count = aCount;
18: }
19:

Continued

ch20/unsynch/DepositRunnable.java (cont.)

20: public void run()
21: {
22: try
23: {
24: for (int i = 1; i <= count; i++)
25: {
26: account.deposit(amount);
27: Thread.sleep(DELAY);
28: }
29: }
30: catch (InterruptedException exception) {}
31: }
32:
33: private static final int DELAY = 1;
34: private BankAccount account;
35: private double amount;
36: private int count;
37: }

ch20/unsynch/WithdrawRunnable.java

01: /**
02: A withdraw runnable makes periodic withdrawals from a bank
account.
03: */
04: public class WithdrawRunnable implements Runnable
05: {
06: /**
07: Constructs a withdraw runnable.
08: @param anAccount the account from which to withdraw money
09: @param anAmount the amount to deposit in each repetition
10: @param aCount the number of repetitions
11: */
12: public WithdrawRunnable(BankAccount anAccount, double anAmount,
13: int aCount)
14: {
15: account = anAccount;
16: amount = anAmount;
17: count = aCount;
18: }
19:

Continued

ch20/unsynch/WithdrawRunnable.java (cont.)

20: public void run()
21: {
22: try
23: {
24: for (int i = 1; i <= count; i++)
25: {
26: account.withdraw(amount);
27: Thread.sleep(DELAY);
28: }
29: }
30: catch (InterruptedException exception) {}
31: }
32:
33: private static final int DELAY = 1;
34: private BankAccount account;
35: private double amount;
36: private int count;
37: }

ch20/unsynch/BankAccount.java

01: /**
02: A bank account has a balance that can be changed by
03: deposits and withdrawals.
04: */
05: public class BankAccount
06: {
07: /**
08: Constructs a bank account with a zero balance.
09: */
10: public BankAccount()
11: {
12: balance = 0;
13: }
14:
15: /**
16: Deposits money into the bank account.
17: @param amount the amount to deposit
18: */
19: public void deposit(double amount)
20: {

Continued

ch20/unsynch/BankAccount.java (cont.)

21: System.out.print("Depositing " + amount);
22: double newBalance = balance + amount;
23: System.out.println(", new balance is " + newBalance);
24: balance = newBalance;
25: }
26:
27: /**
28: Withdraws money from the bank account.
29: @param amount the amount to withdraw
30: */
31: public void withdraw(double amount)
32: {
33: System.out.print("Withdrawing " + amount);
34: double newBalance = balance - amount;
35: System.out.println(", new balance is " + newBalance);
36: balance = newBalance;
37: }
38:
39: /**
40: Gets the current balance of the bank account.
41: @return the current balance
42: */

Continued

ch20/unsynch/BankAccount.java (cont.)

43: public double getBalance()
44: {
45: return balance;
46: }
47:
48: private double balance;
49: }

ch20/unsynch/BankAccount.java (cont.)

Output:
 Depositing 100.0, new balance is 100.0
 Withdrawing 100.0, new balance is 0.0
 Depositing 100.0, new balance is 100.0
 Withdrawing 100.0, new balance is 0.0
 . . .
 Withdrawing 100.0, new balance is 400.0
 Depositing 100.0, new balance is 500.0
 Withdrawing 100.0, new balance is 400.0
 Withdrawing 100.0, new balance is 300.0

Self Check 20.5

Give a scenario in which a race condition causes the bank
balance to be -100 after one iteration of a deposit thread and a
withdraw thread.

Answer: There are many possible scenarios. Here is one:
• The first thread loses control after the first print statement.
• The second thread loses control just before the assignment balance =
newBalance.

• The first thread completes the deposit method.
• The second thread completes the withdraw method.

Self Check 20.6

Suppose two threads simultaneously insert objects into a linked
list. Using the implementation in Chapter 15, explain how the list
can be damaged in the process.

 Answer: One thread calls addFirst and is preempted just
 before executing the assignment first = newLink. Then the
 next thread calls addFirst, using the old value of first. Then
 the first thread completes the process, setting first to its new
 link. As a result, the links are not in sequence.

Synchronizing Object Access

• To solve problems such as the one just seen, use a lock object

• A lock object is used to control threads that manipulate shared
resources

• In Java: Lock interface and several classes that implement it
• ReentrantLock: most commonly used lock class
• Locks are a feature of Java version 5.0
• Earlier versions of Java have a lower-level facility for thread

synchronization

Synchronizing Object Access

• Typically, a lock object is added to a class whose methods
access shared resources, like this:

public class BankAccount
{
 public BankAccount()
 {
 balanceChangeLock = new ReentrantLock();
 . . .
 }
 . . .
 private Lock balanceChangeLock;
}

Synchronizing Object Access

• Code that manipulates shared resource is surrounded by calls to
lock and unlock:
balanceChangeLock.lock();
Code that manipulates the shared resource
balanceChangeLock.unlock();

Synchronizing Object Access

• If code between calls to lock and unlock throws an exception,
call to unlock never happens

• To overcome this problem, place call to unlock into a finally
clause:
public void deposit(double amount)
{
 balanceChangeLock.lock();
 try
 {
 System.out.print("Depositing " + amount);
 double newBalance = balance + amount;
 System.out.println(", new balance is " +
 newBalance); balance = newBalance;
 }
 finally

Continued

Synchronizing Object Access (cont.)

 {
 balanceChangeLock.unlock();
 }
}

Synchronizing Object Access

• When a thread calls lock, it owns the lock until it calls unlock

• A thread that calls lock while another thread owns the lock is
temporarily deactivated

• Thread scheduler periodically reactivates thread so it can try to
acquire the lock

• Eventually, waiting thread can acquire the lock

Visualizing Object Locks

Self Check 20.7

If you construct two BankAccount objects, how many lock objects
are created?

 Answer: Two, one for each bank account object. Each lock
 protects a separate balance field.

Self Check 20.8

What happens if we omit the call unlock at the end of the deposit
method?

 Answer: When a thread calls deposit, it continues to own the
 lock, and any other thread trying to deposit or withdraw money
 in the same bank account is blocked forever.

Avoiding Deadlocks

• A deadlock occurs if no thread can proceed because each
thread is waiting for another to do some work first

• BankAccount example
public void withdraw(double amount)
{
 balanceChangeLock.lock();
 try
 {
 while (balance < amount)
 Wait for the balance to grow
 . . .
 }
 finally
 {
 balanceChangeLock.unlock();
 }
}

Avoiding Deadlocks

• How can we wait for the balance to grow?

• We can't simply call sleep inside withdraw method;
thread will block all other threads that want to use
balanceChangeLock

• In particular, no other thread can successfully execute deposit

• Other threads will call deposit, but will be blocked until withdraw
exits

• But withdraw doesn't exit until it has funds available

• DEADLOCK

Condition Objects

• To overcome problem, use a condition object

• Condition objects allow a thread to temporarily release a lock,
and to regain the lock at a later time

• Each condition object belongs to a specific lock object

Continued

Condition Objects (cont.)

• You obtain a condition object with newCondition method of Lock
interface

public class BankAccount
{
 public BankAccount()
 {
 balanceChangeLock = new ReentrantLock();
 sufficientFundsCondition =
 balanceChangeLock.newCondition();
 . . .
 }
 . . .
 private Lock balanceChangeLock;
 private Condition sufficientFundsCondition;
}

Condition Objects

• It is customary to give the condition object a name that
describes condition to test

• You need to implement an appropriate test

Continued

Condition Objects (cont.)

• As long as test is not fulfilled, call await on the condition object:
public void withdraw(double amount)
{
 balanceChangeLock.lock();
 try
 {
 while (balance < amount)
 sufficientFundsCondition.await();
 . . .
 }
 finally
 {
 balanceChangeLock.unlock();
 }
}

Condition Objects

• Calling await
• Makes current thread wait
• Allows another thread to acquire the lock object

• To unblock, another thread must execute signalAll on the
same condition object

sufficientFundsCondition.signalAll();

• signalAll unblocks all threads waiting on the condition
• signal: randomly picks just one thread waiting on the object and

unblocks it
• signal can be more efficient, but you need to know that every

waiting thread can proceed

• Recommendation: always call signalAll

ch20/synch/BankAccountThreadRunner.java

01: /**
02: This program runs threads that deposit and withdraw
03: money from the same bank account.
04: */
05: public class BankAccountThreadRunner
06: {
07: public static void main(String[] args)
08: {
09: BankAccount account = new BankAccount();
10: final double AMOUNT = 100;
11: final int REPETITIONS = 100;
12: final int THREADS = 100;
13:
14: for (int i = 1; i <= THREADS; i++)
15: {
16: DepositRunnable d = new DepositRunnable(
17: account, AMOUNT, REPETITIONS);
18: WithdrawRunnable w = new WithdrawRunnable(
19: account, AMOUNT, REPETITIONS);
20:

Continued

ch20/synch/BankAccountThreadRunner.java (cont.)

21: Thread dt = new Thread(d);
22: Thread wt = new Thread(w);
23:
24: dt.start();
25: wt.start();
26: }
27: }
28: }
29:

ch20/synch/BankAccount.java

01: /**
02: A bank account has a balance that can be changed by
03: deposits and withdrawals.
04: */
05: public class BankAccount
06: {
07: /**
08: Constructs a bank account with a zero balance.
09: */
10: public BankAccount()
11: {
12: balance = 0;
13: }
14:
15: /**
16: Deposits money into the bank account.
17: @param amount the amount to deposit
18: */
19: public void deposit(double amount)
20: {

Continued

ch20/synch/BankAccount.java (cont.)

21: System.out.print("Depositing " + amount);
22: double newBalance = balance + amount;
23: System.out.println(", new balance is " + newBalance);
24: balance = newBalance;
25: }
26:
27: /**
28: Withdraws money from the bank account.
29: @param amount the amount to withdraw
30: */
31: public void withdraw(double amount)
32: {
33: System.out.print("Withdrawing " + amount);
34: double newBalance = balance - amount;
35: System.out.println(", new balance is " + newBalance);
36: balance = newBalance;
37: }
38:
39: /**
40: Gets the current balance of the bank account.
41: @return the current balance
42: */

Continued

ch20/synch/BankAccount.java (cont.)

43: public double getBalance()
44: {
45: return balance;
46: }
47:
48: private double balance;
49: }

Continued

ch20/synch/BankAccount.java (cont.)

Output:
 Depositing 100.0, new balance is 100.0
 Withdrawing 100.0, new balance is 0.0
 Depositing 100.0, new balance is 100.0
 Depositing 100.0, new balance is 200.0
 . . .
 Withdrawing 100.0, new balance is 100.0
 Depositing 100.0, new balance is 200.0
 Withdrawing 100.0, new balance is 100.0
 Withdrawing 100.0, new balance is 0.0

Self Check 20.9

What is the essential difference between calling sleep and await?

 Answer: A sleeping thread is reactivated when the sleep delay
 has passed. A waiting thread is only reactivated if another
 thread has called signalAll or signal.

Self Check 20.10

Why is the sufficientFundsCondition object a field of the
BankAccount class and not a local variable of the withdraw and
deposit methods?

 Answer: The calls to await and signal/signalAll must be
 made to the same object.

An Application of Threads: Animation

• Shows different objects moving or changing as time progresses

• Is often achieved by launching one or more threads that
compute how parts of the animation change

• Can use Swing Timer class for simple animations

• More advanced animations are best implemented with threads

• An algorithm animation helps visualize the steps in the algorithm

Algorithm Animation

• Runs in a separate thread that periodically updates an image of
the current state of the algorithm

• It then pauses so the user can see the change

• After a short time the algorithm thread wakes up and runs to the
next point of interest

• It updates the image again and pauses again

Selection Sort Algorithm Animation

• Items in the algorithm's state
• The array of values
• The size of the already sorted area
• The currently marked element

• This state is accessed by two threads:
1. One that sorts the array, and
2. One that repaints the frame

• To visualize the algorithm
• Show the sorted part of the array in a different color
• Mark the currently visited array element in red

A Step in the Animation of the Selection Sort Algorithm

Selection Sort Algorithm Animation: Implementation

• Use a lock to synchronize access to the shared state

• Add a component instance field to the algorithm class and
augment the constructor to set it

• That instance field is needed for
• Repainting the component, and
• Finding out the dimensions of the component when drawing the algorithm

state

Continued

Selection Sort Algorithm Animation: Implementation (cont.)

• public class SelectionSorter
{
 public SelectionSorter(int[] anArray, JComponent
 aComponent)
 {
 a = anArray;
 sortStateLock = new ReentrantLock();
 component = aComponent;
 }
 . . .
 private JComponent component;
}

Selection Sort Algorithm Animation: Implementation

• At each point of interest, algorithm needs to pause so user can
observe the graphical output

• We need a pause method that repaints component and sleeps
for a small delay:
public void pause(int steps)
 throws InterruptedException
{
 component.repaint();
 Thread.sleep(steps * DELAY);
}

• Delay is proportional to the number of steps involved
• pause should be called at various places in the algorithm

Selection Sort Algorithm Animation: Implementation

• We add a draw method to the algorithm class
• draw draws the current state of the data structure, highlighting

items of special interest
• draw is specific to the particular algorithm

• In this case, draws the array elements as a sequence of sticks in
different colors

• The already sorted portion is blue
• The marked position is red
• The remainder is black

Selection Sort Algorithm Animation: draw

public void draw(Graphics2D g2)
{
 sortStateLock.lock();
 try
 {
 int deltaX = component.getWidth() / a.length;
 for (int i = 0; i < a.length; i++)
 {
 if (i == markedPosition)
 g2.setColor(Color.RED);
 else if (i <= alreadySorted)
 g2.setColor(Color.BLUE);
 else
 g2.setColor(Color.BLACK);
 g2.draw(new Line2D.Double(i * deltaX, 0, i * deltaX,
 a[i]));
 }
 }

Continued

Selection Sort Algorithm Animation: draw (cont.)

 finally
 {
 sortStateLock.unlock();
 }
}

Selection Sort Algorithm Animation: Pausing

• Update the special positions as the algorithm progresses

• Pause the animation whenever something interesting happens

• Pause should be proportional to the number of steps that are
being executed

• In this case, pause one unit for each visited array element

• Augment minimumPosition and sort accordingly

Selection Sort Algorithm Animation: Pausing

public int minimumPosition(int from)
 throws InterruptedException
{
 int minPos = from;
 for (int i = from + 1; i < a.length; i++)
 {
 sortStateLock.lock();
 try
 {
 if (a[i] < a[minPos]) minPos = i;
 markedPosition = i;
 }
 finally
 {
 sortStateLock.unlock();

Continued

Selection Sort Algorithm Animation: Pausing (cont.)

 }
 pause(2); // two array elements were inspected
 }
 return minPos;
}

Selection Sort Algorithm Animation: paintComponent

• paintComponent calls the draw method of the algorithm object:

 public class SelectionSortComponent extends JComponent
{
 public void paintComponent(Graphics g)
 {
 if (sorter == null) return;
 Graphics2D g2 = (Graphics2D) g;
 sorter.draw(g2);
 }
 . . .
 private SelectionSorter sorter;
}

Selection Sort Algorithm Animation: startAnimation

public void startAnimation()
{
 int[] values = ArrayUtil.randomIntArray(30, 300);
 sorter = new SelectionSorter(values, this);

 class AnimationRunnable implements Runnable
 {
 public void run()
 {
 try
 {
 sorter.sort();
 }
 catch (InterruptedException exception)
 {
 }
 }

Continued

Selection Sort Algorithm Animation: startAnimation (cont.)

 }
 Runnable r = new AnimationRunnable();
 Thread t = new Thread(r);
 t.start();
}

ch20/animation/SelectionSortViewer.java

01: import java.awt.BorderLayout;
02: import javax.swing.JButton;
03: import javax.swing.JFrame;
04:
05: public class SelectionSortViewer
06: {
07: public static void main(String[] args)
08: {
09: JFrame frame = new JFrame();
10:
11: final int FRAME_WIDTH = 300;
12: final int FRAME_HEIGHT = 400;
13:
14: frame.setSize(FRAME_WIDTH, FRAME_HEIGHT);
15: frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
16:
17: final SelectionSortComponent component
18: = new SelectionSortComponent();
19: frame.add(component, BorderLayout.CENTER);
20:

Continued

ch20/animation/SelectionSortViewer.java (cont.)

21: frame.setVisible(true);
22: component.startAnimation();
23: }
24: }

ch20/animation/SelectionSortComponent.java

01: import java.awt.Graphics;
02: import java.awt.Graphics2D;
03: import javax.swing.JComponent;
04:
05: /**
06: A component that displays the current state of the selection sort
algorithm.
07: */
08: public class SelectionSortComponent extends JComponent
09: {
10: /**
11: Constructs the component.
12: */
13: public SelectionSortComponent()
14: {
15: int[] values = ArrayUtil.randomIntArray(30, 300);
16: sorter = new SelectionSorter(values, this);
17: }
18:
19: public void paintComponent(Graphics g)
20: {

Continued

ch20/animation/SelectionSortComponent.java (cont.)

21: Graphics2D g2 = (Graphics2D)g;
22: sorter.draw(g2);
23: }
24:
25: /**
26: Starts a new animation thread.
27: */
28: public void startAnimation()
29: {
30: class AnimationRunnable implements Runnable
31: {
32: public void run()
33: {
34: try
35: {
36: sorter.sort();
37: }
38: catch (InterruptedException exception)
39: {
40: }

Continued

ch20/animation/SelectionSortComponent.java (cont.)

41: }
42: }
43:
44: Runnable r = new AnimationRunnable();
45: Thread t = new Thread(r);
46: t.start();
47: }
48:
49: private SelectionSorter sorter;
50: }
51:

ch20/animation/SelectionSorter.java

001: import java.awt.Color;
002: import java.awt.Graphics2D;
003: import java.awt.geom.Line2D;
004: import java.util.concurrent.locks.Lock;
005: import java.util.concurrent.locks.ReentrantLock;
006: import javax.swing.JComponent;
007:
008: /**
009: This class sorts an array, using the selection sort
010: algorithm.
011: */
012: public class SelectionSorter
013: {
014: /**
015: Constructs a selection sorter.
016: @param anArray the array to sort
017: @param aComponent the component to be repainted when the
animation
018: pauses
019: */

Continued

ch20/animation/SelectionSorter.java (cont.)

020: public SelectionSorter(int[] anArray, JComponent aComponent)
021: {
022: a = anArray;
023: sortStateLock = new ReentrantLock();
024: component = aComponent;
025: }
026:
027: /**
028: Sorts the array managed by this selection sorter.
029: */
030: public void sort()
031: throws InterruptedException
032: {
033: for (int i = 0; i < a.length - 1; i++)
034: {
035: int minPos = minimumPosition(i);
036: sortStateLock.lock();
037: try
038: {
039: swap(minPos, i);
040: // For animation
041: alreadySorted = i;
042: } Continued

ch20/animation/SelectionSorter.java (cont.)

043: finally
044: {
045: sortStateLock.unlock();
046: }
047: pause(2);
048: }
049: }
050:
051: /**
052: Finds the smallest element in a tail range of the array
053: @param from the first position in a to compare
054: @return the position of the smallest element in the
055: range a[from]...a[a.length - 1]
056: */
057: private int minimumPosition(int from)
058: throws InterruptedException
059: {
060: int minPos = from;
061: for (int i = from + 1; i < a.length; i++)
062: {
063: sortStateLock.lock();
064: try
065: { Continued

ch20/animation/SelectionSorter.java (cont.)

066: if (a[i] < a[minPos]) minPos = i;
067: // For animation
068: markedPosition = i;
069: }
070: finally
071: {
072: sortStateLock.unlock();
073: }
074: pause(2);
075: }
076: return minPos;
077: }
078:
079: /**
080: Swaps two entries of the array.
081: @param i the first position to swap
082: @param j the second position to swap
083: */
084: private void swap(int i, int j)
085: {
086: int temp = a[i];
087: a[i] = a[j];
088: a[j] = temp; Continued

ch20/animation/SelectionSorter.java (cont.)

089: }
090:
091: /**
092: Draws the current state of the sorting algorithm.
093: @param g2 the graphics context
094: */
095: public void draw(Graphics2D g2)
096: {
097: sortStateLock.lock();
098: try
099: {
100: int deltaX = component.getWidth() / a.length;
101: for (int i = 0; i < a.length; i++)
102: {
103: if (i == markedPosition)
104: g2.setColor(Color.RED);
105: else if (i <= alreadySorted)
106: g2.setColor(Color.BLUE);
107: else
108: g2.setColor(Color.BLACK);
109: g2.draw(new Line2D.Double(i * deltaX, 0,
110: i * deltaX, a[i]));
111: } Continued

ch20/animation/SelectionSorter.java (cont.)

112: }
113: finally
114: {
115: sortStateLock.unlock();
116: }
117: }
118:
119: /**
120: Pauses the animation.
121: @param steps the number of steps to pause
122: */
123: public void pause(int steps)
124: throws InterruptedException
125: {
126: component.repaint();
127: Thread.sleep(steps * DELAY);
128: }
129:
130: private int[] a;
131: private Lock sortStateLock;
132:

Self Check 20.11

Why is the draw method added to the SelectionSorter class and
not the SelectionSortComponent class?

 Answer: The draw method uses the array values and the values
 that keep track of the algorithm's progress. These values are
 available only in the SelectionSorter class.

Self Check 20.12

Would the animation still work if the startAnimation method
simply called sorter.sort() instead of spawning a thread that calls
that method?

 Answer: Yes, provided you only show a single frame. If you
 modify the SelectionSortViewer program to show two frames,
 you want the sorters to run in parallel.

Embedded Systems

