
1

1

OPI
Lecture 13

Objects, Classes and References

Kasper Osterbye
Carsten Schuermann
IT University Copenhagen

2

2

Introduction
• Teaching staff: Carsten Schuermann, Jeffrey Sarnat

• What will be taught in the remainder of this course
– More object-oriented languages

– More programming

– Some new topics, Generics IO, Threads, Design by contract and Exceptions,
Reflection, Graphics, Graphical User Interfaces.

– OOP and Java – quite some emphasis on the Java language – learn one language
well.

• I will try to have room for, at each lecture:
– Leave time for questions. Please ask in Danish if that is most comfortable.

– New details of known stuff

– New stuff

3

3

Classes and objects

class Ball {

private int x,y;

private String color;

public Ball(String color){

this.color = color;

x=0; y=0;

}

public void move(int dx, dy){

x+=dx;
y+=dy;

}

public String toString(){

return color + ” ball at (” + x +

”,” + y + ”)”;

}

}

public static void main(String[] args){

Ball b1;

Ball b2 = new Ball(”Red”);

b2.move(5,10);

System.out.println(b2);

b1 = b2;

b1.move(3,2);

System.out.println(b2);

b1 = new Ball(”Green”);

b1.move(2,4);

System.out.println(b2);

}

}

This class has one part (the left) that represents a ball in a window. The ball has an x
coordinate, representing its distance from the left side of the window, and a y
coordinate, that represents its distance from the top of the window.

A String represents its color, as ”Red”, ”Blue” etc.

In the constructor, notice the assignment ”this.color = color”.

The move methods takes two parameters, which indicate how much should be
moved. The name dx is a traditional abbriviation for delta-x, where delta in
mathematics is used for a difference, ie. those who are members of the secret
mathematic society will know that dx is a difference to x.

The main method declares two variables b1, and b2 to hold balls. Notice that one do
not need to give a reference variable a value when it is declared, hence both b1 and
b2 are declared correctly.

4

4

b1
b2

x 0
y 0
color ”Red”

2

Drawing objects and references
public static void main(String[] args){

Ball b1; // 1

Ball b2 = new Ball(”Red”); // 2

b2.move(5,10); // 3

System.out.println(b2);

b1 = b2; // 4

b1.move(3,2); // 5

System.out.println(b2);

b1 = new Ball(”Green”); // 6

b1.move(2,4); // 7

System.out.println(b2);

}

b1 1

b1
b2

x 5
y 10
color ”Red” 3

b1
b2

x 5
y 10
color ”Red” 4

b1
b2

x 8
y 12
color ”Red”

5

b1
b2

x 8
y 12
color ”Red”

x 2
y 4
color ”Green”

7
b1
b2

x 8
y 12
color ”Red”

x 0
y 0
color ”Green”

6

One of the most important things to notice in these slides are the figures themselves.

It is important to be able to draw variables, references and objects. Practicing this
will enable you to get a more operational understanding of theses concepts.

At 1, only the reference variable b1 exist. It has not any initializer, hence it has its
default value, which is null – in the drawing indicated by a big dot. All reference
variables have the value null if they are not initialized.

In 2, the reference variable b2 is declared, a new object of type Ball is created using
the new expression, and b2 is set to refer to this new object.

In 4, b1 is set to refer to the same object that b2 refers to.

In 5, the object refered to by b1 is moved 3 units on the x axit, and 2 on the y axis.
Notice the term ”the object refered to by b1”. Neither b1 nor b2 are names of objects,
they are the names of reference variables. The method call b1.move(3,2) thus means
calling the method move on the object that b1 refers to.

In 6 a new Ball object is created, and b1 is set to refer to this object.

5

5

Equality
A test of the kind a == b checks to see of a
and b reference the same object.

b1 == b2 is true

b1 == b2 is false

b1.equals(b2) ?

The test a.equals(b) is intended as a test
to see if the value of the two objects is the
same.
Gregorian date1 = new Gregorian(”2003-02-03”);

Hijri date2 = new Hijri(”1424-12-11”);

if (date1.equals(date2))

OK

else

Error

Check the JavaDoc for Object::equals to see
more.

The implementation of equals depends on the
purpose of the system we build. To a car dealer
two new cars of the same color and make are
different, but to a customer, they might the
same.

b1
b2

x 8
y 12
color ”Red”

b1
b2

x 8
y 12
color ”Red”

x 8
y 12
color ”Green”

The class Object implements the equals method. That means that one can use both
a == b and a.equals(b) for any kind of references; with the one exception that one
cannot do null.equals(null) – no method call on null references.

The implementation of equals in object is to use ==.

The following rules regarding the equals method is taken from JavaDoc

”The equals method implements an equivalence relation:

1.It is reflexive: for any reference value x, x.equals(x) should return true.

2.It is symmetric: for any reference values x and y, x.equals(y) should return true
if and only if y.equals(x) returns true.

3.It is transitive: for any reference values x, y, and z, if x.equals(y) returns true
and y.equals(z) returns true, then x.equals(z) should return true.

4.It is consistent: for any reference values x and y, multiple invocations of
x.equals(y) consistently return true or consistently return false, provided no
information used in equals comparisons on the object is modified.

5.For any non-null reference value x, x.equals(null) should return false.

Note that it is generally necessary to override the hashCode method whenever this
method is overridden, so as to maintain the general contract for the hashCode
method, which states that equal objects must have equal hash codes. ”

The last comment regarding hashCode should be ignored for the moment, we will
return to that later in the course.

6

6

Implementing equals in Ball
public boolean equals(Object obj){

if (obj == null) // 1

return false;

if (obj == this) // 2

return true;

if (!(obj instanceof Ball)) // 3

return false;

/*if (!super.equals(obj)) // 4

return false;*/

Ball other = (Ball)obj;

return // 5

this.x == other.x &&

this.y == other.y;

}

1. The this reference cannot be equal to
null

2. I am me.

3. This one is tricky. For the ball, this is
ok.

4. If the superclass has overridden equals,
we should call equals here to make
sure the fields from the superclass are
tested.

5. Finally, we know we are dealing with
another Ball. I choose to test only the x
and y, and not the colour.

There are some notes on this implementation of equals.

First, there is a predefined test in the equals method of class Object. It will test both
1 and 2, but we cannot really reuse this. If the equals in Object::equals return true,
we know it is because the two objects are the same. But if it returns false, we cannot
know if it is because obj is null or just not the same object as this. Conclusion, we
cannot write a shorter test by reusing the Object::equals method.

The order in which these tests take place is designed to use the fastest test first, and
the slow ones later. Testting using == is very fast, thus 1 and 2 are done first.

I will diskuss 3 below.

Test number four is necessary when we inherit from a class X, which is not Object,
because X might have private fields which we cannot test here. When, as in the Ball
example, we inherrit directly from Object, we must not do it, because the equals in
Object is the same as ==.

When we reach 5, we know that the other object is a Ball (because of test 3). Thus
we can cast obj to a Ball object. We return true if the x and y is the same, false
otherwise.

As I said on the previous slide, the equals method is ment to allow you as a
programmer the choice to define what should be equals in your program. In my ball
example here, the color does not matter, hence I do not check on that.

Regarding test 3, then this test checks to see if the other object is an instance of Ball,
or any subclass of Ball. This is my choice. Sometimes I will not allow objects of
subclasses to be equal. In that case I can use a test (this.getClass() ==
obj.getClass()). This is about 50% faster.

But in the case of the calendars, I might want to allow dates from different Calender
types to be equal. In that case, testing become quite complicated, and with the
Islamic Hijri calender, we need to do lunar calendar computations, which are not at
all simple. And also the Gregorian calendar with its leap-year computations is
complicated.

7

7

What goes on in a method call
class Foo {

int x = 17;
String s=”hello”;
String aroundS(String s){

String r = s + this.s + s;
return r;

}
void pip(){

int dummy = 12+x;
System.out.println(aroundS(”!”));

}
}

length:int 5
s:char[]

:String
0: char h
1: char e
2: char l
3: char l
5: char o

:char[]

x:int 17
s:String

:Foo

s:String ”!”

r:String

this:Foo

return:String

< , >

:Foo::aroundS

:String
”!hello!”

no parameters

dummy:int 29

this:Foo
no return value

unknown in example

:Foo::pip

Just like we can depict objects as boxes with variables in it, we can depict method
invocations. Where we for an object draws each instance variable, there are five
things of interest with methods: 1) Parameters; 2) Local variables; 3) return value; 4)
The ”this” reference; 5) return information.

In the example, some method called the pip method on an object of kind Foo. The
pip method has one local variable ”dummy”, which has been given the value 12+x. x
is the instance variable, which is really this.x ~ having the value 17. Notice the this
reference; ”this.x” means to find the x variable in the object referenced by the this
reference.

I have drawn strings in several different ways. The Foo object (named :Foo) has the
instance variable s, which is a reference to a String object. The String object in turn
has a reference to a char array. It is quite cumbersome to draw this way, so I will
use the notation from the aroundS method invocation, either directly giving the
string, or when I want to emphasize that two variables points to the same String
object, I draw it as can be seen in the return value and r variable.

When the aroundS method call is finished, the program execution must be resumed
where the method was called. The return information consists of two parts, a) the
method invocation which we must return to (in our case pip), and b) the location in
the code where we will resume executing (in our case the println call).

The this reference can be accessed in Java using the keyword this. One cannot
assign a new value to this in Java (or any other OO programming language for that
manner).

Method invocations are often drawn on top of each other, with the topmost
representing the method invocation which is currently active. Because of this,
method invocations are sometimes called stack frames, and alle the method
invocations is named a call stack.

8

8

The drawing of method calls

s:String ”!”

r:String

this:Foo

return:String

< , >

:Foo::aroundS

Name of the method call. I use the format
:Classname::Methodname

Parameters are given a value from the beginning
of the method invocation, the value that was
given as argument.

Local variables are given their default value from
the beginning.

The return value is given a value upon return. If
the return type is void, no return value is stored.

The this reference is given a value from the
beginning. If the method is static, the this
reference is null.

The return information consists of two pieces. 1)
what method call to return to, and 2) where in
the code to resume execution.

The notation used in the pictures is UML inspired. In UML, an object is drawn as a
box with the name and class in the top box, and instance variables (fields) in the box
below. In UML one can give a name to an object, as a:Foo (the underlining is UML
syntax, and means that it is an object, not a class). In Java, as in all other object
oriented programming languages, one cannot name an object, so we omit the name,
and just give the class :Foo. The notion for methods invocation, :Class::method. The
underline indicates that a method invocation

Drawing methods invocations (or calls – two words for the same thing) is very time
consuming. But it is a necessary exercise to get a detailed understanding of how
method calls actually work. Also, it is a very good operational understanding when
we in a few slides time get to the concept of recursion.

9

9

Method calls
class Ball {

private int x,y;
private String color;
public Ball(String color){

this.color = color;
x=0; y=0;

}
public void move(int dx, dy){

x+=dx;
y+=dy;

}
…

}
public static void main(String[] args){

Ball b1;
Ball b2 = new Ball(”Red”);
b2.move(5,10);´

…}

Follow the first two statements in main

b1:Ball

b2:Ball

this: Undef

return:void

< , >

:Ball::main

color:String

this:Ball

return:Ball

< , >

:Ball::Ball

x:int 0
y:int 0
color:String

:Ball

:String
”Red”

Notice that the this reference is null in the main method. In a static method the this
pointer is undefined. The compiler is able to check this at compile time, and gives
an error message if one tries to refer to fields or methods in the class which need the
this reference.

In connection with the constructor call, the following steps takes place.

1. The compiler will have instructed the virtual machine that it needs a String
with the value ”Red”. This object therefore exists beforehand.

2. The virtual machine makes a new Ball object, and initializes the fields
according to the initializers (in the Ball class there are none).

3. The constructor is called. Above this is depicted as a method call.

4. When the constructed terminates, the this referece is the return value, to be
assigned to b2.

Notice the three steps that makes the color of the object Red. First, a String with
”Red” is created. Second, a reference to the string is passed as argument to the
constructor. Finally, the field color is set to refer to the String object.

10

10

Method calls
class Ball {

private int x,y;
private String color;
public Ball(String color){

this.color = color;
x=0; y=0;

}
public void move(int dx, dy){

x+=dx;
y+=dy;

}
…

}
public static void main(String[] args){

Ball b1;
Ball b2 = new Ball(”Red”);
b2.move(5,10);´

…}

Follow the third statement in main

x:int 5
y:int 10
color:String

:Ball

b1:Ball

b2:Ball

this: Undef

return:void

< , >

:Ball::main

dx:int 5

this:Ball

return:void

< , >

:Ball::move
:String
”Red”

dy:int 10

Notice, the this reference is null in the main method. In a static method the this
pointer is undefined. The compiler is able to check this at compile time, and gives
an error message if one tries to refer to fields or methods in the class which need the
this reference.

In a method call o.foo(…), the this reference will be the same as the o reference.

In exercise 1.f I use the terms explicit and implicit this references.

In the move method, we make use of two implicit this references, namely x and y. x
and y are names of fields in the class. We could have written the body with explicit
this references as:

this.x += dx;

this.y += dy;

In the constructor, the parameter color shadows the field named color. We
therefore have no other option than using the explict this reference to refer to the
color field.

11

11

A river system
To find out the total length of a river
system, we need to represent a waterway
(common term for rivers, creaks, streams)
and its tributaries, as well as the source of
each waterway.

We will use the world famous Suså river
as an example.
In particular, we will model that the
source of the river Suså is in Gøgsmose.
Suså has Kongskilde Bæk, Sorø Å and
Ringsted Å as tributaries. The source of
Kongskilde Bæk is in Kongskilden. The
source of Sorø Å is in Sorø Sø. The source
of Ringsted Å is in Gyrstinge Sø. Ringsted
Å has Vigerdalså as its sole tributary,
whose source, in turn, is Valsølille Sø.

(Notes below include the program to set
this up)

The reason to examine this example is to look at recursion. River systems and
family trees are exellent examples for natural recursion.

package dk.itu.oop.lecture1;

class WaterWayTest {

public static void main(String[] args){

WaterWay suså = new WaterWay("Suså", 65.4, new WaterSource("Gøgsmose", 1200));

WaterWay kkbæk = new WaterWay("Kongskilde bæk", 5.3, new WaterSource("Kongskilde", 680));

WaterWay sorøå = new WaterWay("Sorø å", 18.3, new WaterSource("Sorø sø", 2100));

WaterWay ringå = new WaterWay("Ringsted å", 22.6, new WaterSource("Gyrstinge Sø", 3500));

WaterWay vigerdalså = new WaterWay("Vigerdalså", 7.8, new WaterSource("Valsølille sø", 350));

suså.addTributary(kkbæk);

suså.addTributary(sorøå);

suså.addTributary(ringå);

ringå.addTributary(vigerdalså);

System.out.println("Total length of suså riversystem is: "

+ suså.totalLength() + " km."); // 119.4

System.out.println("Total water flow of suså riversystem is: "

+ WaterWay.totalLitersPrHour(suså) + " l/h"); // 7830

}

}

12

12

The total length method
The keyword for the next many slides is
recursion.

Recursion means that the method calls
itself in its body.

The call marked with big fat bold is where
the recursive call takes place.

The idea is that the total length of a river
system is the length of the river itself, plus
the total length of all its tributaries.

Notice, the method will stop calling itself,
when we get to a waterway that do not
have any tributaries.

/* Return the total length og this waterway and all
its tributaries */

public double totalLength(){

double totalLength = length;

int max = numberOfTributaries;

int index = 0;

while (index < max) {

WaterWay ww = tributaries[index];

totalLength += + ww.totalLength();

index++;

}

return totalLength;

}

13

13

Call of suså.length()

name:String suså
length:int 65.4
source:WS
noTrib:int 3
tribs:WW[] [, ,]

:WaterWay
name:String gøgsm.
lph:int 1200

:WaterSource

name:String ringst.å
length:int 22.6
source:WS
noTrib:int 1
tribs:WW[] []

:WaterWay

name:String sorø å
length:int 18.3
source:WS
noTrib:int 0
tribs:WW[] []

:WaterWay
name:String kong.b.
length:int 5.3
source:WS
noTrib:int 0
tribs:WW[] []

:WaterWay

name:String gyrst.sø
lph:int 3500

:WaterSource

name:String Sorø sø
lph:int 2100

:WaterSource

name:String kongsk.
lph:int 680

:WaterSource

name:String Vigerd.å
length:int 7.8
source:WS
noTrib:int 0
tribs:WW[] []

:WaterWay

name:String Val. sø
lph:int 350

:WaterSource

total:int 65.4
max:int 3
index: int 0

this:WW

return:int

< , >

:WaterWay::length

In the next many slides this object structure remains the same. It represents our
simplified Suså River system.

In order to fit things on a slide, I have made a number of abbreviations on drawing.
For WaterWays, the source field is of type WaterSource, here written as WS. The
numberOfTributaries field is abbreviated noTrib, and tributaries are abbreviated
tribs. In the WaterSource objects, lph is short for litersPerHour.

I have made the simplification that I have drawn the array inside the waterway
object. An array is really an object by itself.

In the drawings of the method invocations I have omitted the local variable ww.
This is in order to have room enough on the slides.

Also, I have abbreviated the names of both water ways and water source.

The first call to length is on the object representing Suså.

I have drawn the situation as it is just before the recursive call takes place.

14

14

recursive call 1

name:String suså
length: int 65.4
tribs:WW[] [, ,]

:WaterWay

total:int 65.4
max:int 3
index: int 0

this:WW

return:int

< , >

:WaterWay::length

total:int 22.6
max:int 1
index: int 0

this:WW

return:int

< , >

:WaterWay::length

name:String sorø. å
length: int 18.3
tribs:WW[] []

:WaterWay

name:String ringst. å
length: int 22.6
tribs:WW[] []

:WaterWay

name:String kong. å
length: int 5.3
tribs:WW[] []

:WaterWay

name:String Vigerd. å
length: int 7.8
tribs:WW[] [, ,]

:WaterWay

This drawing depicts the situation after the first recursive call of length. The call is on the first tributary
to Suså, Ringsted å.

The bolded method call box is the active method call.

In this, and many other such drawings, it is normal that one does not include the information regarding
where in the code one should return to. Obviously this information is necessary when the system
actually runs, but there was no room left on the slide to show it.

15

15

recursive call 2
total:int 7.8
max:int 0
index: int 0

this:WW

return:int 7.8

< , >

:WaterWay::length

name:String suså
length: int 65.4
tribs:WW[] [, ,]

:WaterWay

total:int 65.4
max:int 3
index: int 0

this:WW

return:int

< , >

:WaterWay::length

total:int 22.6
max:int 1
index: int 0

this:WW

return:int

< , >

:WaterWay::length

name:String sorø. å
length: int 18.3
tribs:WW[] []

:WaterWay

name:String ringst. å
length: int 22.6
tribs:WW[] []

:WaterWay

name:String kong. å
length: int 5.3
tribs:WW[] []

:WaterWay

name:String Vigerd. å
length: int 7.8
tribs:WW[] [, ,]

:WaterWay

Ringsted å has a tributary as well; therefore there is one more recursive call of the length method.

The bolded method call is sometimes called to ”top of the call stack”. A stack is a data-structure,
where one adds and remove elements from the same end. Think of a stack of dishes. Here one can
add to the top, and remove from the top. In the computer, whenever we call a method, a new method
invocation object is created, and is placed on the top of the stack. The first element in the return
information points back to the second to the top method call. We can not make the same physical
arrangement as with the dishes, and need an explicit reference.

16

16

return to previous call

name:String suså
length: int 65.4
tribs:WW[] [, ,]

:WaterWay

total:int 65.4
max:int 3
index: int 0

this:WW

return:int

< , >

:WaterWay::length

total:int 30.4
max:int 1
index: int 0

this:WW

return:int 30.4

< , >

:WaterWay::length

name:String sorø. å
length: int 18.3
tribs:WW[] []

:WaterWay

name:String ringst. å
length: int 22.6
tribs:WW[] []

:WaterWay

name:String kong. å
length: int 5.3
tribs:WW[] []

:WaterWay

name:String Vigerd. å
length: int 7.8
tribs:WW[] [, ,]

:WaterWay

In the drawing above, we have added the return value from the previous call to the
total in the topmost method invocation.

We have incremented the index counter, and it is now equal the max, and we have
left the for loop, and set the return value to the same as total (an abbriviation for
totalLength). We are now ready to return to where we were called from.

public double totalLength(){

double totalLength = length;

int max = numberOfTributaries;

int index = 0;

while (index < max) {

WaterWay ww = tributaries[index];

totalLength += + ww.totalLength();

index++;

}

return totalLength;

}
The really important aspect to grasp regarding recursion is that there is indeed one
method invocation box per call. Each box holds its own copy of variables, this
reference, and each will remember where itself was calleded from. Remember:
one box per call, one shared piece of code.

17

17

return to previous call

name:String suså
length: int 65.4
tribs:WW[] [, ,]

:WaterWay

total:int 95.8
max:int 3
index: int 0

this:WW

return:int

< , >

:WaterWay::length

name:String sorø. å
length: int 18.3
tribs:WW[] []

:WaterWay

name:String ringst. å
length: int 22.6
tribs:WW[] []

:WaterWay

name:String kong. å
length: int 5.3
tribs:WW[] []

:WaterWay

name:String Vigerd. å
length: int 7.8
tribs:WW[] [, ,]

:WaterWay

We have now return the the original call. Pay attention to the fact that we have
incremented the index variable to 1. It is still less than max, hence we are about to
call length on the second tributary.

Notice also that the return value from the previous call has been added to total.

18

18

Yet a recursive call

name:String suså
length: int 65.4
tribs:WW[] [, ,]

:WaterWay

total:int 95.8
max:int 3
index: int 1

this:WW

return:int

< , >

:WaterWay::length

total:int 18.3
max:int 0
index: int 0

this:WW

return:int 18.3

< , >

:WaterWay::length

name:String sorø. å
length: int 18.3
tribs:WW[] []

:WaterWay

name:String ringst. å
length: int 22.6
tribs:WW[] []

:WaterWay

name:String kong. å
length: int 5.3
tribs:WW[] []

:WaterWay

name:String Vigerd. å
length: int 7.8
tribs:WW[] [, ,]

:WaterWay

We have now called length on Suså’s second tributary. We have, as before, set the
total variable to the length of this.length. Notice how the this reference is different
for each call.

The whole idea of the length method is to let the this reference refer to all the
waterways in the system. That enables us to sum the lengths from each waterway
object.

19

19

and yet a return

name:String suså
length: int 65.4
tribs:WW[] [, ,]

:WaterWay

total:int 114.1
max:int 3
index: int 2

this:WW

return:int

< , >

:WaterWay::length

name:String sorø. å
length: int 18.3
tribs:WW[] []

:WaterWay

name:String ringst. å
length: int 22.6
tribs:WW[] []

:WaterWay

name:String kong. å
length: int 5.3
tribs:WW[] []

:WaterWay

name:String Vigerd. å
length: int 7.8
tribs:WW[] [, ,]

:WaterWay

We have returned from an other call.

20

20

Exercise – fill in the last call

name:String suså
length: int 65.4
tribs:WW[] [, ,]

:WaterWay

total:int 114.1
max:int 3
index: int 2

this:WW

return:int

< , >

:WaterWay::length

total:int
max:int
index: int

this:WW

return:int

< , >

:WaterWay::length

name:String sorø. å
length: int 18.3
tribs:WW[] []

:WaterWay

name:String ringst. å
length: int 22.6
tribs:WW[] []

:WaterWay

name:String kong. å
length: int 5.3
tribs:WW[] []

:WaterWay

name:String Vigerd. å
length: int 7.8
tribs:WW[] [, ,]

:WaterWay

Your task is to figure out what the values and references are for the final call of length. The drawing
should depict the situation just before we return from the call.

21

21

Just one more recursive example
Something about Towers of Hanoi

In the rivers example, the key to
controlling the number of recursive calls
was that each call was on a different this
reference.

In Towers of Hanoi, the controlling of the
recursion is in the parameters.

The object of this puzzle is to move all
disks from the left to the right. The rules
are that one must only move one at a time,
and a larger disk cannot be put on top of a
smaller.

Solution. Move all but the biggest to the
middle, move the biggest to the right, and
move all from the middle to the right peg.

This is a real classic recursion problem.

Once you have grasped the the details of why the solution works, which I will
attempt to explain on the next slides, you have reason to be proud. Go see a movie,
get a good cup of coffee, have a cookie. You are now a real computer scientists who
understands recursion. The rest is practice.

22

22

The Peg class
• We represent a disk as an integer, where

the integer is the size of the disk.
• The constructor did not fit to the right,

and is included below.
• The key is the moveN method. It moves

N disks from this peg to the target peg,
using the auxiliary (aux) peg as a middle
station.

• Notice, if N = 0, no disks need to be
moved. This corresponds to a river with
no tributaries. No new recursive calls
will take place.

Peg(String name, int numberOfDisks){
this.name = name;
while(numberOfDisks > 0){

addOnTop(numberOfDisks);
numberOfDisks--;

}
}

class Peg {
String name;
int[] disks = new int[10];
int topDisk=-1;
public void moveN(int N, Peg target, Peg aux){

if (N > 0){

moveN(N-1, aux, target);

moveTopTo(target);

aux.moveN(N-1, target, this);

}

}

public void moveTopTo(Peg targetPeg){

int disk;

disk = removeTop();

targetPeg.addOnTop(disk);

System.out.println(… info on move…);

}

… removeTop and addOnTop…

}

The is an important thing to grasp here. One must in the beginning learn not to
worry about how the method solves to job of one less.

Convince yourself that it works properly for N=0.

Have faith, trust your Java. Assume it works for N-1.

Convince yourself that it works properly for N.

23

23

The moveN method

L.moveN(3-1, M, R);

L.moveTop(R)

M.moveN(3-1, R, L)

L(eft) M(iddle) R(ight)

24

24

Drawing of the recursive calls for N=3

name:String ”A”
topDisk:int 2
disks:int[] [3,2,1]

:Peg

name:String ”B”
topDisk:int -1
disks:int[] [0,0,0]

:Peg

name:String ”C”
topDisk:int -1
disks:int[] [0,0,0]

:Peg

N:int 3
target:Peg
aux: Peg

this:Peg
return:void

< , >

:Peg::moveN

public void moveN(int N, Peg target, Peg aux){

if (N > 0){

moveN(N-1, aux, target);

moveTopTo(target);

aux.moveN(N-1, target, this);

}

}

N:int 2
target:Peg
aux: Peg

this:Peg
return:void

< , >

:Peg::moveN

N:int 1
target:Peg
aux: Peg

this:Peg
return:void

< , >

:Peg::moveN

So far we have done nothing, Just made recursive calls.

The drawing indicates the situation just after we have entered the method, before
we have done anything. This indicated by the circle in the code.

The topmost (with respect the call stack, on the drawing it is at the bottom) call is
with N=1, and further recursive calls will have no effect as N will be zero, in which
case the method does nothing.

Notice how the target and aux variables swap as we call. For N=3, target is the C-
Peg, for N=2, target is the B-Peg, and for N=1, C is again target.

25

25

Drawing of the recursive calls for N=3

public void moveN(int N, Peg target, Peg aux){

if (N > 0){

moveN(N-1, aux, target);

moveTopTo(target);

aux.moveN(N-1, target, this);

}

}

name:String ”A”
topDisk:int 1
disks:int[] [3,2,0]

:Peg

name:String ”B”
topDisk:int -1
disks:int[] [0,0,0]

:Peg

name:String ”C”
topDisk:int 0
disks:int[] [1,0,0]

:Peg

N:int 3
target:Peg
aux: Peg

this:Peg
return:void

< , >

:Peg::moveN

N:int 2
target:Peg
aux: Peg

this:Peg
return:void

< , >

:Peg::moveN

N:int 1
target:Peg
aux: Peg

this:Peg
return:void

< , >

:Peg::moveN

The first call to moveN with 0 as argument does nothing.

Neither does the last call.

The method call moveTopTo(…) has moved the smallest disk (disk 1) to the C-Peg,
leaving 2 and 3 on the A peg.

Next we are about to return from the move call. Again I indicate where in the code
we are using the dot.

26

26

Drawing of the recursive calls for N=3

public void moveN(int N, Peg target, Peg aux){

if (N > 0){

moveN(N-1, aux, target);

moveTopTo(target);

aux.moveN(N-1, target, this);

}

}

name:String ”A”
topDisk:int 0
disks:int[] [3,0,0]

:Peg

name:String ”B”
topDisk:int 0
disks:int[] [2,0,0]

:Peg

name:String ”C”
topDisk:int 0
disks:int[] [1,0,0]

:Peg

N:int 3
target:Peg
aux: Peg

this:Peg
return:void

< , >

:Peg::moveN

N:int 2
target:Peg
aux: Peg

this:Peg
return:void

< , >

:Peg::moveN

Here we have returned to the N=2 call.

We return to just after the first call of moveN.

Here I have drawn the situation as it is just before the next recursive call. The
moveTopTo call moved the 2-disk to the target, which in this method call is the B-
peg.

We are now ready to call the method recursively again.

27

27

Drawing of the recursive calls for N=3

public void moveN(int N, Peg target, Peg aux){

if (N > 0){

moveN(N-1, aux, target);

moveTopTo(target);

aux.moveN(N-1, target, this);

}

}

name:String ”A”
topDisk:int 0
disks:int[] [3,0,0]

:Peg

name:String ”B”
topDisk:int 1
disks:int[] [2,1,0]

:Peg

name:String ”C”
topDisk:int -1
disks:int[] [0,0,0]

:Peg

N:int 3
target:Peg
aux: Peg

this:Peg
return:void

< , >

:Peg::moveN

N:int 2
target:Peg
aux: Peg

this:Peg
return:void

< , >

:Peg::moveN

N:int 1
target:Peg
aux: Peg

this:Peg
return:void

< , >

:Peg::moveN

This time we called moveN on on other peg, which is reflected in the fact that the
this reference is not the same.

Also observe that the return code pointer this time is different from before, as we
when we return from this call return to after the last of the two recursive calls.

The drawing depicts the state of the system after we have executed the method call,
and is about to return. As with all N=1 calls, there are no recursive calls that does
anything. And a disk has been moved from this peg (peg-C) to the target peg (peg-
B).

When we return from the N=1 call, we can see that there is no more code to be
executed in the N=2 call either. And we can see that we have indeed been able to
move the two topmost disks from A to B, using C as helper. The next thing to
happen in N=3, is that disk 3 will be moved from A to C. Then a N=2 call will be
made to move the two disks on B to C, using A as auxiliary peg.

The drawing of this is left as an exercise.

28

28

Five things to remember
• Draw objects

– Simple values (all but references) are
draw in the object itself, to the right of
the variable name which contain them.

– References are drawn as an arrow
pointing to the object it refers to.

– Remember that arrays are objects
themselves. Draw the indexes as
variables, with the values to the right.

• Draw method calls
– Parameters

– local variables

– return value

– this reference

– return information (method call to
return to, and where in the code to
continue).

• Each time a method is called, a new
method call box is created.

– Each time, each time, each time

– There is no special rule for recursion

• Recursion is not difficult

• Some problems which only has
recursive solutions are difficult

But the most important thing to do now is to work with the exercises.

