
1

1

OOP Spring 2005
Lecture 2

Instance creation, enums, and garbage
collection
Kasper Østerbye

IT University Copenhagen

2

2
Today’s schedule

• Creating objects
– initialization

• objects

• arrays

– constructors

– inheritance

– cloning

– singular objects

– enums and singular objects

– static methods and fields

• Garbage collection
–The problem

–The techniques
• reference counting

• mark and sweep

– finilize() method in class Object

–method calls

3

3
Method call

class Ball {

private int x,y;

private String color;

public Ball(String color){

this.color = color;

x=0; y=0;

}

public void move(int dx, dy){

x+=dx;
y+=dy;

}

…

}

public static void main(String[] args){

Ball b1;

Ball b2 = new Ball(”Red”);

b2.move(5,10);´

…}

Follow the third statement in main

x:int 5

y:int 10

color:String

:Ball

b1:Ball

b2:Ball

this:Ball

return:void

< , >

:Ball::main

:String
”Red”

dx:int 5

this:Ball

return:void

< , >

:Ball::move

dy:int 10

Comments:

1) The return information in the main call cannot be shown. After the program has finished
the java virtual machine stops running.

2) main is a static method. Static methods have no this reference. Perhaps it would be better
to draw static method without a this reference. Here I have drawn it with a null this.

3) Similarly, one can say that void methods do not have a return value field. Here I have
marked it with a cross. In real virtual machines, there will not be a return field.

4) Notice the type of the this reference is the name of the class in which the method occurs.

5) The update in move, where x is changed to 5 and y to 10, is worth noticing. There is no
local variable named x in the method move. The compiler sees this, and looks in the
enclosing class. Here it finds an x. The compiler then knows that x is really this.x.

4

4
Constructor call

class Ball {

private int x,y;

private String color;

public Ball(String color){

this.color = color;

x=0; y=0;

}

public void move(int dx, dy){

x+=dx;
y+=dy;

}

…

}

public static void main(String[] args){

Ball b1;

Ball b2 = new Ball(”Red”);

b2.move(5,10);´

…}

Follow the first two statements in main

b1:Ball

b2:Ball

this:Ball

return:void

< , >

:Ball::main

color:String

this:Ball

return:Ball

< , >

:Ball::Ball

x:int 0

y:int 0

color:String

:Ball

:String
”Red”

This slide is a copy of a slide from lecture 1. Find the comments there.

Pay attention to the order in which the objects are created.

1) First the String object red is created, this is implicit because ”Red” appears in the
argument to the constructor.

2) Then the Ball object is created, with default values for x,y and color. The default values
are 0 for integers, and null for references (color is a String reference).

3) Then the constructor is called, which creates a method call with the newly created Ball
object as this, and the red String object as parameter.

4) The constructor copies the parameter color to the field color in the Ball object.

5) The result of the constructor is always the newly created object.

5

5
Examining object initialization

Object creation is done as

new ASuperClass()

When this expression is executed, the
following happens:

1.An object of class ASuperClass is
allocated from the Java heap.

2.Its fields are initialized to standard
values. All numbers become 0,
booleans are false, and references are
null.

3.The fields that have an initializer, and
initializer blocks are executed in the
order they appear in the class

4.The constructor corresponding to the
new expression is called.

5.The object is returned as result of the
new ASuperClass() expression

public class ASuperClass {

private TellTale field1;

private TellTale field2 = new TellTale("A");

ASuperClass(){

System.out.println

("Starting construtor in ASuperClass");

field1 = new TellTale

("In super constructor");

System.out.println

("Ending construtor in ASuperClass");

}

{System.out.println

("Initializer block in ASuperClass");

}

private TellTale field3 = new TellTale("C");

}

Note: The class named ASuperClass serves no purpose other than to illustrate the order in
which initialization takes place.

The notion of a Java heap will be explained later in the slides. For now, it is just a place in the
computers memory. Where the object ends up in memory cannot be controlled by the Java
programmer. In the C# programming language, it is possible for the programmer to decide
that a given object must be located a specific place in memory. This is normally completely
unimportant where an object is located, but in order to communicate with the hardware
(platform dependence), it is sometimes a necessity.

As an exercise regarding point 2 above, write a class with public fields of primitive different
types (int, double, char, boolean), and print out what their initial value is. This is done in a
main method that creates an object, and reads and prints the value of each field.

So far, you have probably never encountered an initializer block. But they exist in Java. No
one really uses them, but I just want to point out their existence, so you can recognize the
syntax when you see it.

6

6
Examining how Java works

An investigation program is a program one
writes to find out how Java works, or how a
class works.

public class ASubClass extends ASuperClass{

private TellTale field4;

private TellTale field5 = new TellTale("AA");

{ System.out.println

("Initializer block in ASubClass");}

ASubClass(){

super();

System.out.println

("Starting construtor in ASubClass");

field4 = new TellTale

("In subclass constructor");

System.out.println

("Starting construtor in ASubClass");

}

private TellTale field6 = new TellTale("CC");

}

public class TellTale {

TellTale(String s){

System.out.println("[TellTale] " + s);

}

}

public class InitializationOrderTest{

public static void main(String[] args){

System.out.println(

"--- Making new ASuperClass ---");

ASuperClass a = new ASuperClass();

System.out.println(

"--- Done making new ASuperClass ---");

System.out.println(

"--- Making new ASubClass ---");

ASubClass aa = new ASubClass();

System.out.println(

"--- Done making new ASubClass ---")

}

}

The classes ASuperClass, ASubClass, TellTale and InitializationOrderTest are all
part of an investigation into how initialization takes place.

TellTale is the utility I have created for this, it has one constructor, which prints out
its parameter so we can see when exactly the object was created.

When the main method is executed, one should get the following result:
--- Making new ASuperClass ---

[TellTale] A

Initializer block in ASuperClass

[TellTale] C

Starting construtor in ASuperClass

[TellTale] In super constructor

Ending construtor in ASuperClass

--- Done making new ASuperClass ---

--- Making new ASubClass ---

[TellTale] A

Initializer block in ASuperClass

[TellTale] C

Starting construtor in ASuperClass

[TellTale] In super constructor

Ending construtor in ASuperClass

[TellTale] AA

Initializer block in ASubClass

[TellTale] CC

Starting construtor in ASubClass

[TellTale] In subclass constructor

Starting construtor in ASubClass

--- Done making new ASubClass ---

Notice, when we create ASubClass, all initialization (initializers and constructors)
of the super class is done before any initialization of the sub class. This is always the
case.

7

7
Constructors and inheritance

class A {

public String field1;

A(String f){field1 = f;}

A(){this(”Hello”);}

}

class B extends A {

public int field2;

B(String f, int i){

super(f);

field2=i;

}

}

class C extends A{}

These are the important rules for
constructors in Java:

1. All classes have at least one constructor. If
you do not define any constructor, the Java
compiler creates a default constructor with
no arguments.

1. The default constructor for class C is
C(){super();}

2. If you define a constructor yourself, no
default constructor is created.

2.One does not inherit constructors, there is
no constructor for C that takes a string
argument

3.The first statement of a constructor must
be a call to a super constructor, and there
can be no call to a super constructor later.

4.If no super call is placed at the top, an
implicit call to the parameterless super
constructor is inserted before any other
statement in the constructor.

Notice the this(”Hello”) statement in the parameter-less constructor of class A. It means that
the A() constructor calls the A(String) constructor to do the initialization. This is good
programming practice. If a class has more than one constructor, it is a good idea to have only
one constructor that actually sets the fields, and the other constructors call it. That way there
is only one constructor to change if the objects need a different initialization.

At the lecture, I (hoped to) show the following two classes online. They break the rules about
constructors in Java:

class D extends B{} // notice – extends B, not A

This class is erroneous, as a default constructor D(){super();} is created, but B does not have
a constructor without arguments, hence there is no match for the super call.

class E extends B{// notice – extends B, not A

E(){super("Hello");}

}

This class is also erroneous, as the class B does not inherit the constructor that only takes a
String as parameter.

8

8
Array initialization

Remember the following things:

An array is an object.

An array can not change its size once it is
created

All java types has a corresponding array
type, including arrays (known as multiple
dimension arrays).

An instance of an array is created using
new T[10], which makes an array where
the elements are of type T, and are
indexed from 0 to 9.

There are several ways in which one can
initialize an array.

1. The expression new T[10] creates an array
of 10 places, each place initialized with the
default value of T.

2.The expression {x,y,z} can be used in array
initializers such as

T[] field1= {x,y,z}

or
field1 = new T[]{x,y,z}

x, y, and z must have type T.

3.Two dimensional arrays are declared as
T[][]. (Three dimensions as T[][][])

4.The expression new T[2][3] creates a new
array object with two places. Each place is
initialized with an array of three places,
capable of containing a T value.

It is important to remember that arrays are really objects. The important thing is that a
variable students, declared as: ”Person[] students” is a variable containing a reference to an
array. Thus if we have an other array variable participants, declared as Person[] participants,
they both have type ”Person[]”.

Hence, we can assign one to the other as ”students = participants”. An assignment such as
”students[8] = new Person(”Lars”);” will change the array object at index 8. But as both
variables refers to the same array, reading the 8th index via the participants variable, will give
the Person named Lars we just created.

Notice the difference in how array-initializers look, depending on whether the variable is
declared in the statement or not. In the case it is, we can omit the ”new” operator.

Please observe that a two dimensional array is really an array of arrays. In most other
programming languages (including C++, C#, Pascal, Visual Basic), there exist real multiple
dimensional arrays. In Java, int[][] is an array of int[].

This mean that we can declare an array like:

int[][] jagged = { {1}, {2,3}, {4,5,6}, {7,8}, {9}};

where there is a different size to each array in the second dimension array.

If you want to loop through each element, this should be done as:

for (int i=0;i<jagged.length;i++)

for (int j=0; j<jagged[i].length;j++)

sum += jagged[i][j];

Notice that we get a different length for each i in jagged[i].

9

9
Figure for the ArrayInitialization class I

names:String[]

cities:String[]

this:ArrayInitialization

return:void

< , >

:ArrayInitialization ::main

0: String Roma

1: String Paris

2: String London

3: String Lønholt

:String[]

0: String Hans

1: String Sidhartha

2: String Krzysztof

:String[]

twoDim:String[][]

ArrayInitialization is a demo class which can be found on the web

I have here used an abbreviated syntax for the Strings in the figure. In reality, Strings are
objects, which internally contain an array of char. But that is too big a figure to draw.

The code is found in the class ArrayInitialization, and in the code it is shown which snapshots
corresponds to where in the code.

Remember that the main method is static, hence the this reference is null. I have omitted the
args parameter from the main method call, as I do not use it for anything.

The code below is what is shown sofar:

public static void main(String[] args){

String[] names = null;

String[] cities = {"Roma", "Paris", "London", "Lønholt"};

names = new String[3];

names[0] = "Hans";

names[1] = "Sidhartha";

names[2] = "Krzysztof";

// State shown in slide 1

…

}

10

10
Figure for the ArrayInitialization class II

names:String[]

cities:String[]

this:ArrayInitialization

return:void

< , >

:ArrayInitialization ::main

0: String Roma

1: String Paris

2: String London

3: String Lønholt

:String[]

0: String Hans

1: String Sidhartha

2: String Krzysztof

:String[]

twoDim:String[][]

0: String[]

1: String[]

:String[][]
0: String monkey

1: String donkey

:String[]

0: String cow

1: String giraffe

:String[]

0: String Bill

1: String Reagan

2: String Bush Jr.

:String[]

In this figure the following two statements have been executed as well:

names = new String[]{"Bill","Reagan","Bush Jr"};

String[][] twoDim = { {"monkey","donkey"}, {"cow", "giraffe"}};

Observe that there is no longer any reference to the array with the names Hans, Siddhatha,
and Krzyztof. This array will be garbage collected when Java needs space for new objects.

Also, the two dimensional array is really an array of arrays, here drawn as such.

11

11
Figure for the ArrayInitialization class III

names:String[]

cities:String[]

this:ArrayInitialization

return:void

< , >

:ArrayInitialization ::main

0: String Roma

1: String Paris

2: String London

3: String Lønholt

:String[]

0: String Hans

1: String Sidhartha

2: String Krzysztof

:String[]

twoDim:String[][]

0: String[]

1: String[]

:String[][]
0: String monkey

1: String donkey

:String[]

0: String cow

1: String giraffe

:String[]

0: String Bill

1: String Reagan

2: String Bush Jr.

:String[]

Notice, the twoDim array is declared as String[][], but when instantiated, it is really an array
with element type String[]. Therefore it is possible to make the first place in the String[][]
object refer to the String[] refered to by names, and the second to the String[] refered to by
cities.

The above figure shows the situation just after the last two statements in the main method:

twoDim[0] = names;

twoDim[1] = cities;

Observe how the first array in twoDim refers to an array with length 4, and the second refers
to one of length 3 – A jagged array.

We will take one more look at arrays when we next look at cloning

12

12
An other way to get a new object, cloning

Rather than building an object from
scratch each time, sometimes one would
like a copy of an existing object.

In Java, the class Object offers a method
clone(), which returns a copy of the
object. The clone method copies all fields,
private as well as protected.

There are two different approaches to
clone

– Deep clone, in which all objects refered to
are clones as well.

– Shallow clone, in which the original and
the clone refer to the same objects from
their field variables of reference type.

more on deep vs. shallow cloning on next
slide

Typical properties of a clone in Java

1. clone != original

2. clone.getClass() == original.getClass()

3. clone.equals(original) is true

4. If a class should be clonable, it must
implement the Cloneable interface.

5. If one tries to clone an object that does
not implement the Clonable interface, an
exception is thrown.

Most object oriented programming languages support cloning, one way or the other. No
language I am aware of supports deep cloning in the language itself, deep cloning must
always be implemented by the programmer.

Notice the first three properties of a clone.

1) This states that the clone and the original are different objects.

2) This states that the clone and the original are instances of the same class.

3) This states that the clone is equal to its original. In Java, it is your responsibility to
program clone and equals in such a manner that this rule is kept, it is not something
enforced by Java.

Java has done cloning particulary complicated.

1. There is a clone method in class Object, which shallow copies all fields in the
object. That method is protected, which means that one can not in general
clone an object as myObj.clone().

2. If one wants to equip a class C with a clone method, one must override the
clone method from Object. The overridden clone method should then be
declared public.

3. If one wants to be able to use a clone method in a class C, C should
implement the marker interface Cloneable. A marker interface is an
interface without any methods, that the Java Virtual machine uses for its
internal behaviour. In the case of cloning, it throws an exception
CloneNotSupportedException, if one tries to clone on an object which do not
implement Cloneable.

4. Unfortunately, this means that one should always be prepared to catch a
CloneNotSupportedException when you clone an object.

5. Finally, clone is defined in class Object to return something of type Object.
One cannot define clone in class C to return something of type C, but only of
class Object.

Cloning is not used much in Java!

13

13
Deep or Shallow clone

Deep clone Shallow clone

cloned structure cloned structure

In the deep clone version, when one clones an object, one also deep clones all the objects
refered to by the object (notice the recursive definition).

In the shallow copy, one only clones the top object (the message receiver). Therefore all
reference fields in the clone refers to the same objects as the original.

All primitive fields are copied in both versions.

Java clone is shallow clone (sometimes also called copy). But one can override the clone
method to do the kind of clone one wants.

In particluar notice that if one clones an array, the elements are not cloned. That is, arrays are
not different from other objects, and are shallowly cloned.

If one declares a twodimentsional array:

int[][] myTable = { {1,2,3}, {4,5,6}, {7,8,9}};

and creates a clone of it

int[][] clonedTable = (int[][])myTable.clone();

and changes the element at 1,1 in myTable

myTable[1][1]=77;

that also changes the element at 1,1 in the cloned array

System.out.println(clonedTable[1][1]); // prints 77

This is because a two dimentional array is really an array of arrays, and only the outermost
array is cloned. Try to draw myTable as an array of arrays, and shallow clone it.

14

14
A clone example

A tree can be drawn by first drawing a line,
then drawing two smaller trees at the end of
that line. Very small trees are without any
branches.

By tradition we often use a pen object when
drawing.

When drawing a tree, we need to be able to find
back to the end of the first line when we start to
draw the second smaller tree.

private static void tree(Pen p, int height){

if (height < 2) return;

p.move(height);

Pen leftTreePen = (Pen)p.clone();

leftTree.turn(30);

Pen rightTreePen = (Pen)p.clone();

rightTree.turn(-45);

tree(leftTreePen,height-10);

tree(rightTreePen, height-5);

}

The example code is in the file Drawing.java.

It consists of three classes. Drawing, which has the main method, which sets up a
Frame for drawing upon. If you have not seen this before, just ignore the main
method. The Drawing class also has the above tree method.

A MyFrame class is the specific Frame used for drawing.

There is a clue in that class, namely the method makePen. It makes sure that the
new pen has a frame to draw upon, by passing this as its second parameter. This
means that in the rest of the code, the pen knows what paper to draw upon.

The Pen class is the one that implements the simple methods for drawing. A pen
knows where it is (x,y), and what direction it is pointing in (heading). The move
method takes a parameter length, and when called, draws a line of that length,
starting at its current position, drawing in the pen’s direction, and after the line has
been drawn, the (x,y) is updated to the new position. The moveTo method draws
from the current position to the new position given as parameter. The move
methods do not change the heading. The jump methods work the same way, only
they do not draw any line, but just update the position. The turn method changes
the direction of the pen. The clone method creates a clone of the pen, with the same
position and heading.

15

15
Singular object (Singleton)

• In Java, C#, C++ and several other
languages, all objects must be instances
of a named Class.

• Sometimes only one object can or
should exist of the given class. E.g. a
class representing the screen.

• How can we ensure that only one
instance is created, and how can we
make that instance accessible
throughout the system.

• The simple, and OK solution, is shown
to the right, and has two key points

– A static method to get the Santa, as
Santa.theOneAndOnly();

– A private constructor, preventing
new Santa() from outside the class, or from
any subclass.

public class Santa {
private static Santa santa;

public static Santa theOneAndOnly(){
if (santa == null) { // lazy instantiation

santa = new Santa();
}
return santa;

}

private Child[] theGoodOnes;
private Child[] theBadOnes;

private Santa(){
theGoodOnes=new Child[1000000000];
theBadOnes =new Child[1]; // you :-)

}

public String toString(){
return "Ho Ho Ho";

}

// more Santa stuff
}

The trick mentioned in the static method theOneAndOnly called lazy instantiation covers an
ideom (fixed phrase), in which one do not initialize a field in the constructor, but in the get
method. If the reference is null, noone has asked for the field before, and we create a new
object, and stores the reference to that object in the field.

Next time we ask for the object, the field is not null, and we return the object directly.

In general, lazy instantiation is useful for initializing variables one does not know if we will
need, thus we only make an object if anyone is interested. It is called lazy, because is is done
at the latest possible time.

For the principle to work in this context, it is important to program all the methods in Santa
in such a way that the variable Santa is not given a new value inside the class. In particular
one must not set it to null, as that causes a new instance to be created next time
theOneAndOnly() method is called.

Alternatively, we could have written: public static final Santa santa = new Santa();

This alternative initializes the santa variable eagerly (at the earliest possible time). Also
notice that the final keyword ensures that no assignment is made to this reference later.
Hence, it is OK to make it public, noone can assign it any new value, it can only be read.

The principle with the private constructor is worth noticing. It prevents the usage of new
from outside the class.

16

16
Enumeration types

• Sometimes we need not one, but a
few of a specific type.

–Weekdays: Monday, Tuesday, …

–Months: January, February, …

– Playing cards: Spades, Clubs,…

– Traffic light: Red, Yellow, Green

• Common for this situation is that:

– It will often not make any sense to
add yet a value.

– Each of the values do not really
have much state if its own.

– Sometimes we are interested in
their order

• enum types are just for this:

public enum Weekday

{

monday, tuesday, wednesday, thursday,

friday, saturday, Sunday

}

• This is really very similar to:

public class Weekday

{ private Weekday(){};

public static final monday = new Weekday();

public static finale tuesday = new Weekday();

…

}

• This is know as the Typed Enum Pattern

Enumeration types have a long history: You might encounter them in
Pascal/Delphi, and C/C++ and C#.

In some languages (C and C++), enum TrafficLight{ Red, Yellow, Green} becomes
three integer constants. This means that:

TrafficLight.Red+1 == TraficLight.Yellow

TrafficLight.Green + 100 which is not a valid color

In other words, the enumerations are not type-safe, you can compare Monday and
Spades.

In Delphi/Pascal they are implemented as integer constants, but are not type
compatible with integer. Thus, one cannot add two weekdays, one cannot compare a
weekday with a playing card etc.

C# is very similar to Pascal/Dephi.

17

17
Static fields and methods – class objects

• As an alternative to the singular object
implementation, one can declare
everything in Santa as static.

• A static field exists exactly once in the
system, hence we have what
corresponds to one object.

• Santa methods can be accessed as in
Santa.tellStory(”Peters christmas”);

• Initialization can be done in static
initializers, which are executed when
the class is loaded into the virtual
machine.

• In general, one uses the previous
solution.

public class Santa {
private Santa(){throw Exception(”Do not!”);}

private static Child[] theGoodOnes;
private static Child[] theBadOnes;

static { // a static initializer block
theGoodOnes=new Child[1000000000];
theBadOnes =new Child[1]; // you :-)

}

public static String toString(){
return "Ho Ho Ho";

}

public static String tellStory(String storyName){
… return …

}
// more Santa stuff

}

One should in general not use the class to represent a singular object. There are several
things one cannot do with objects represented as classes. If we had defined Santa as a
subclass of Person, a person variable cannot refer to Santa as a class.

Also, we cannot pass Santa as a parameter this way.

And should we later decide to disregard the singular restriction (E.g. putting two screens on
one computer), it is less cumbersome to change the code.

The story below is not required reading. Ask in a break if you are interested.

In some programming languages this notion of the class as an object is pursued a long way.
In the language Java, all classes are instances of one class named Class (one always names a
class after what kind of instances it has, which is another reason not to let Santa be
represented using static only fields).

In the language Smalltalk, which was originally defined in 1980, all classes are instances of
each their own class. So the class Person is an instance of PersonClass. Classes whose
instances are classes, are called meta-classes. Therefore PersonClass is an instance of
MetaClass. MetaClass is then again instance of the class MetaClassClass. The story ought to
go on, but it does not, MetaClassClass is, like PersonCass, considered to be a MetaClass.
Hence MetaClassClass is an instance of MetaClass. This is truly strange, MetaClass is an
instance of MetaClassClass, which is an instance of MetaClass. This is of course not possible,
it is a chicken and egg situation. The virtual machine has these classes predefined, so the
Smalltalk world solves the problem by just having both from the beginning.

The language C++ solves the problem by classes not being objects. Boring, but consistent.
Java says all classes are instances of Class, even though they all have different static methods
and fields.

18

18
Garbage collection/Memory recycling

• What is the problem

– Every time the program creates a new
object, it has to do it somewhere in
memory.

– If all objects require a new place in
memory, we cannot keep on allocating
memory for new objects.

• Therefore

– If the system needs to create more
objects than can fit in memory, we
should be able to recycle the memory of
objects which are no longer in use.

• No recycling is needed when

– The program only needs to make a
limited number of objects

class Garbage {

public static void main(String[] args){

Person p1 = new Person(”Hans”);

Person p2 = new Person(”Olga”);

p1 = new Person(”Lars”);

// what happens to the

//”Hans” person object.

}

So, the assumption is that from now on

• we actually need more objects than can fit in memory, and

• some objects are no longer needed by the program – for example
the person object with name ”Hans” above.

Memory recycling is about automatic reuse of the memory of dead objects. A dead
object is an object which can no longer be used in the program. An object is
certainly dead if no variable in the system refers to it.

Memory recycling (also called garbage collection) is about finding objects which are
no longer refered to by any variable.

On the next slides we shall examine three different approaches to this:

• reference counting

• Mark and sweap

• Copying collectors

Reference counting and mark and sweap leads to a thing called fragmentation.

We shall not dive deep into these algorithms, but just get an overview of the
different approaches. Today virtual machines like JVM uses variations of all three,
they each have different properties, and can be combined for better performance.

19

19
Reference counting

class Garbage {

public static void main(String[] args){

Person p1 = new Person(”Hans”);

Person p2 = new Person(”Olga”);

p1 = new Person(”Lars”);

// what happens to the

//”Hans” person object.

}

name:String ”Hans”

:Person

refCount 1
p1:Person

p2:Person

this:

return:void

< , >

:Garbage ::main

20

20
Reference counting

class Garbage {

public static void main(String[] args){

Person p1 = new Person(”Hans”);

Person p2 = new Person(”Olga”);

p1 = new Person(”Lars”);

// what happens to the

//”Hans” person object.

}

name:String ”Hans”

:Person

refCount 1

name:String ”Olga”

:Person

refCount 1

p1:Person

p2:Person

this:

return:void

< , >

:Garbage ::main

21

21
Reference counting

class Garbage {

public static void main(String[] args){

Person p1 = new Person(”Hans”);

Person p2 = new Person(”Olga”);

p1 = new Person(”Lars”);

// what happens to the

//”Hans” person object.

}

name:String ”Hans”

:Person

refCount 0

name:String ”Olga”

:Person

refCount 1

name:String ”Lars”

:Person

refCount 1

p1:Person

p2:Person

this:

return:void

< , >

:Garbage ::main

22

22
Reference counting

class Garbage {

public static void main(String[] args){

Person p1 = new Person(”Hans”);

Person p2 = new Person(”Olga”);

p1 = new Person(”Lars”);

// what happens to the

//”Hans” person object.

}

name:String ”Hans”

:Person

refCount 0

name:String ”Olga”

:Person

refCount 1

name:String ”Lars”

:Person

refCount 1

p1:Person

p2:Person

this:

return:void

< , >

:Garbage ::main

23

23
Reference counting

The key problem with reference counting
is that the approach can not handle cyclic
structures.

There is no known good solution to this.

But it is useful for objects that themselves
do not have references to other objects,
like strings, pictures, sound. It can also be
used if we are absolutely sure that no
cycles can occur in the data.

Root
1

1

1

2

1

1

1

1

a)

b)

c)

d)

e)

f)

g)

h)

When we remove the reference from the root to the top object (a), its reference
count becomes zero. When the a-object is removed, the reference to the b object is
removed, and b’s reference count becomes zero. When the c-object is removed, d’s
reference count is decreased to 1, not to zero, because h refers to d. Hence, the cycle
of d,e,f,g,h remains, and cannot be reclaimed.

24

24
Memory fragmentation

What is the problem

a) We want a new large object, but
memory is filled, and we must collect
garbage.

b) Garbage has been collected, which
leaves us empty space for new objects.
But there is no space big enough for
the new large object

c) We compact the memory, which
means that we move all objects close
together to make sure all vacant space
is all in one place.

d) Now there is room for our large new
object.

a) b)

c) d)

Memory fragmentation is another problem which is a consequence of the reference
counting principle. The copying garbage collector which we shall look at later, does
not have this problem.

25

25
Mark and Sweep

Assume we removed the reference from c
to d.

1) Mark all objects as garbage (�)

2) Mark all objects that can be reached from

the root as live (☺).

3) Remove all objects marked as garbage
(sweep)

This collects also all cycles.

But it takes long time to do this, one must
examine all objects twice, and nothing can
happen while it goes on.

Root
☺

☺

☺

�

�

�

�

�

a)

b)

c)

d)

e)

f)

g)

h)

The mark and sweep principle has two phases, a mark phase and a sweep phase.

If objects are marked as garbage from the beginning, and in the sweep phase they
are still marked as garbage, then they will be removed.

26

26
Copying garbage collectors

x

y

z

v

A) B)

w

A) B)

w

x

y

z

v

x

y

z

v

A) B)

w

x

w

z

x

y

z

v

A) B)

w

x

y

z

v

A copy based garbage collector has two rooms for allocating objects, A and B.

Only one of the rooms are used for new objects (at any given time).

Top left

Assume room A is filled and we want to add a new object w. The B-room is empty.

Top right

We start from the root (not shown), and copy objects to the new area (B). Objects
which cannot be reached, are not copied.

At any point in time, we can stop copying, and just add new objects. After having
copied x and z, we insert object w.

Bottom left

When all objects have been copied, the old room (A) is full of objects which are
either garbage or has been copied.

Bottom right

The A room can be cleared.

The advantage of this strategy is that it automatically compacts data, and that one
do not have to copy all objects at a time.

The disadvantage is that at any given time, the same object might sit in both rooms,
thus a lot of space is wasted. Another disadvantage is that the more the room is full
of live data, the more often copying will be done, but at the same time, the less
space will be regained.

27

27
finalize method

One cannot change the way Java does
garbage collection. But we have some
possibilities for control:

1) We can call the garbage collector directly:
System.gc();

2) We can do ”one last act” using the
finalize() method.

The finalize method is good for objects
that have references to external resources
like files, databases, network ports.

The simple Garbage program allows us to
follow what goes on:

Observe that:

1) Garbage collection occurs occasionally

2) Different amount of garbage is collected
each time the GC is executed

3) It behaves different for each run.

Conclusion: do not depend on when the
GC is done.

One aspect which is useful to know of, but which is not part of the course is so-
called weak-references. That is references that the garbage collector ignores. It is
useful for some kinds of database systems, and for large web-server programs.

28

28
recycling and method invocations

• Each time a method is called, a method
call instance is created.

– How do we recycle these?

• This can be done very efficiently.

1. We can never get a reference to a
method call instance which can be
stored in a variable.

2. Once we have returned from a method
call, we will never need that method call
again.

• The idea is to place all method
invocations on a stack.
– When a method is called, a new method

call instance is placed on the top

– When we return from a method call
instance, we remove the top element

– the top element represents the
currently executing method call

main main

choose(3)

main

choose(3)

times(3)

main

choose(3)

main

choose(3)

choose(2)

main

choose(3)

choose(2)

incr(2)

main

choose(3)

choose(2)

main

choose(3)

choose(2)

choose(1)

main

choose(3)

choose(2)

choose(1)

times(1)

main

choose(3)

choose(2)

choose(1)

main

choose(3)

choose(2)

main

choose(3)

main

The figures illustrates how the method call instances are allocated on a stack. The
figure starts to the left, with just the main method being called. From main, choose
is called, with parameter 3. The small arrow indicates which method call instance to
return to, when the method call from which the arrow starts returns. In the figures,
we have ommitted the reference to where in the code we return to, we have
ommitted the this reference. Nor is return value, nor local variables indicated on
this figure.

What is worth remembering, is that the place in memory which was used for the
method call instance for the call ”times(3)”, is shortly after reused for the all
”choose(2)”, and similarly, the memory used for the call ”incr(2)” is reused for the
call ”choose(1)”.

Notice, in the figures above, all method call instances seem to have the same size.
This is not necessarily the case in practice. But that is not a problem. Try to draw
the same diagram, with choose method call instances being only half the size of
times and incr. The stack idea still works.

In some languages, we can get a reference to a method invocation instance, and that
reference can be stored in a variable. This has the effect that we cannot know if a
method invocation can be used again, and therefore we cannot assume that the
method call is really finished and can be thrown away.

