
1

1

OOP Spring 2005
Lecture 3

Encapsulation, packages & inner classes

Kasper Østerbye
IT University Copenhagen

2

2

Contents

• What is encapsulation

• Member access modifiers

– client interface

– subclass interface

• packages

– source files

– scope rules

– classpath

• Inner classes and anonymous classes

– local classes

– anonymous classes

– static inner classes

– the this reference for inner classes

3

3

Coupling and cohesion?

• If nothing depends on your class, you
can change it without consequences for
the rest of the system ☺. Such a class is
said to be uncoupled from the rest of the
system.

• If the members of your class does not
depend on each other, you class is said
to have no cohesion.

• When designing software, one strives to
have low (not none) coupling and high
cohesion.

• The hypothesis is that with low
coupling, changes in one location will
not propagate to the rest of the code.

Mechanisms that promote low coupling:

• private fields – renaming a field will not
influence anything outside the class

• non-public classes, which can only be
used inside a package

Mechanisms that enable high cohesion

• all members can be seen from inside a
class

The goal of encapsulation is not to encapsulate the state of an object, that is, the
important goal is not to make all fields private. The important goal is to design one’s
classes in such a way that changes to one part of the system does not influence all
other parts of the system. The goal is thus to have a design that encapsulates the
impact of a change. If in you system this is best done having all fields public and all
methods private, please do it that way.

However, the following guidelines might be useful:

1. If a class A only uses the public interface of B, A and B need not be in the
same package.

2. If A need access to some aspects of B, which should not be used by all classes,
A and B might belong to the same package.

3. If A cannot exist without the presence of B, A might be better seen as an
inner class of B. Making A inner in B tells other programmers that a change
in B will most likely also mean changing A.

4

4

access modifiers

Consider the access modifier for a
member x in class A. If it is:

private – it can only be used inside A.

default – it can be used anywhere in
package1, that is, A,B and C.

protected – it can be used anywhere in
package1, and in subclasses of A in
other packages, here S.

public – it can be used everywhere in the
system.

Note: an inner class I of A can access
private fields of A.

Consider the access modifier for the class
B. If it is:

default – the class can only be used in
package1.

public – the class can be used from
anywhere.

R

package1

package2

B

C

S

A

As said on the previous slide, one should not just make all fields private to make a
class well encapsulated, and then write a getter and setter for all fields. On the next
slide we shall examine a well encapsulated class which does not follow that common
principle.

However, experience is that until one is an expert designer, it is safe to follow the
guidelines:

1. make all fields private.

2. make a getter method for all fields. If necessary also make a setter method.

3. if possible, make a method private, else make it default, or make it public.

These guidelines should be balances by the following:

1. The class has a purpose, and as such must provide a certain behaviour. This
behaviour must be exposed as public methods.

The access modifiers of Java are not too well designed. If the default access modifier
was named ”package”, the protected modifier could be changed to mean that the
member can only be seen in subclasses (but in any package). Using both package
and protected, the member should only be visible in subclasses within the same
package. As it is now, one cannot state that this member should only be visible in
subclasses. protected means also package visibility.

5

5

Encapsulation

Consider the Person class

public class Person {

int CPRnumber;

String name;

String address;

}

What access modifiers should be used,
and which accessors should define?

My analysis is the following

1) The CPR number must be given when the
person object is created, and cannot be
changed later.

2) The Name must be given when the object
is created. Normally it will not change
later.

3) The address need not be present, but it
can be changed along the way.

public class Person {

private final int CPRnumber;

private String name;

private String address;

public Person(int cpr, String name){

CPRnumber = cpr;

this.name = name;

}

public String getName(){ return name;}

public String getAddress(){ return address;}

public void setAddress(String address){

this.address = address;

}

}

Note, it is entirely possible for a person to change name in the real world. Also,
when moving to a different country, that person is likely to receive an extra CPR like
number, thus having two such. However, in any given system, there is a perspective
defined by the purpose of the system, which should be used to delimit how the
different aspects of the object should be used.

In the above, I decide that the address should have both a getter and a setter
method.

Now, consider the change that we change the representation of an address from a
simple string, to an object of type Address (which has such fields as streetname,
streetnumber, flatnumber, postal number, city name, and country), and a
USAddress as a subclass which includes also state name.

How can we encapsulate this?

First, we will assume that the Address class has a toString method, which can be
used to let the getAddress() method be changed into

public String getAddress(){ return address.toString();}

However, it is not quite clear that the setAddress is easy to write, it must be able to
change a purely textual representation into an address object, and it must be able to
figure out if the address is a USAddress or not, and make the instance accordingly.

It is not certain that such a method can be made. Therefore this change will breake
the encapsulation of the Person class.

Even if we can write the setAddress method, we might get the unexpected result
that the string we give as parameter to the setAddress method is not the same as the
one returned by the getAddress method. This is because the toString method in
class Address might format the string differently than the one we gave as input to
setAddress.

6

6

Access modifiers and inheritance

If a method is redefined in a subclass, it
must be at least as visible as in the
superclass.

This rule is checked when the program is
compiled.

Assume the program to the right.

Consider the assignment

The variable a is declared to be of type A,
and in A, the getANumber method is
public. Therefore the call is legal.

But unaware to the poor compiler, a refers
to an instance of B, in which the
getANumber is private. UUPS.

By the rule on top, the error is in the
definition in class B.

public class A {

public int getANumber(){…}

…

}

public class B extends A {

private int getANumber(){…}

}

public class TestAB {

public static void main(String[] args){

A a = new B();

int n = a.getANumber();

}

}

The above situation can be used to illustrate almost all known issues of academic
interest in relation to single inheritance, and we will return to it many times in this
course. The setup is that we have a class A and a subclass B, and a variable a of type
A, which refers to an instance of type B. The general problem is that the compiler
cannot know the a refers to a B-object, and must assume a refers to an A-object.
This has importance in each call to a method like a.getANumber(). We shall later
look at what this means for return types of the message, and for parameters and
exceptions.

In the above situation, it illustrates that we cannot allow a stronger access modifier,
because then we would get a runtime error. The general goal in the design of
languages like Java (all object oriented languages in which one declares the type of
a variable), is that method calls should succeed. One strive to make sure that errors
that could be caught at compile time are indeed caught at compile time

In Java (and all other languages) we cannot normally know what kind of object a
reference refers to, except that it is at least an A.

7

7

Packages

All classes belong to a package. The
default package is used unless an other
package is specified.

The name of a package is a sequence of
names, separated by ”.”. For example,
”java.lang”, or ”dk.itu.oop.lecture3”.

The fully qualified name of a class is the
name of the package followed by the a
”.”followed by the name of the class. The
fully qualified name of class String is
”java.lang.String”.

A package does not declare which classes
belong in it. Instead a class define which
package it belong to.

This is done by the package declaration in
a sourcefile. E.g.

package dk.itu.oop.lecture3;

The class Ball from lecture 1 can be used
in a simple animation of a moving ball.

1. package dk.itu.oop.ballgame;

2. import dk.itu.oop.lecture1.Ball;

3. import java.awt.*;

4. public class MovingBall extends Ball {

5. private final Component myComponent;

6. private Color col;

7. …

8. }

To use a class from an other package, one must either use the fully qualified name,
or import it using an import statement.

In line 2, the class with the fully qualified name dk.itu.oop.lecture1.Ball is given the
nickname Ball in this file.

In line 3, the import statement in effect says – whenever you encounter a class
name in this file, and you do not know it, look in package java.awt to see if it is
there. This means that we do not need to use the fully qualified name
java.awt.Component in line 5, and java.awt.Color in line 6.

8

8

classpath

It is not specified as part of the Java
language how to find all classes that
belong to a package.

It is the job of a specific object in Java,
known as the ”classloader” to find classes.

The standard classloader for applications
use the environment variable ”classpath”
to search for classes.

If the classpath variable has three
directories in it, X,Y,Z, the the classloader
first look for a class C in X. If it is not
there, it will look in Y, and at last it will try
X.

Note. It will look for a class C in package
a.b.c by first looking for C in X/a/b/c,
then in Y/a/b/c, and finally in Z/a/b/c.

import a.b.c.*;

X

Y

Z

a

b

c

R

S

a

b

c

C

S

pip

C

The figure to the right attempts to illustate a file system, with three subdirectories,
X,Y, Z included in the classpath. The directory X has a sub directory A, which again
contains the subdirectoty b, which contains the subdirectory c. In c, the files R.class
and S.class are located.

Similarly C.class is located in the subdirectoty of the pip directory in Y, and C.class
and S.class are located int the X/a/b/c directory.

The standard class loader will in this situation see four classes in the package a.b.c,
namely R, S, C, and S. It will see one class C in the package pip. Note, each directory
can contain contributions to a package.

Note, the directories X,Y,Z are not part of the package names, it is the names of
directories in which the classloader will look for packages.

This behaviour is how the classloader of the javac compiler and the standard virtual
machine java works. The class loader for applets work differently, in that it tries to
locate some files over the network, from where the url in the applet tag tells it to
look.

It is possible to create a classloader yourself, which for instance looks in a database,
or which does other strange stuff.

In the standard setting (javac and java), the classpath need not be the same at
compile time and run time. See exercise 1.

Classpaths are a common source of magnificent frustration. Most modern software
development environments (such as eclipse, JBuilder, …) manages classpaths for
you. Big improvement over doing it yourself!

9

9

Package names

Each package should have globally unique
name.

There exist algorithms for this, which
makes completely unreadable names like

”950365A9-5540-43a0-B28C-9899FC3BF54C”

Java uses a different approach: the web
address in reverse order:

dk.itu.oop.lecture3

However, this is something which should
not be taken too literal:

java.lang –there is nowhere called
lang.java

dk.itu.oop.lecture3 does not exist on the
net either.

But it is useful, readable, and likely to
remain reasonable stable over a long
period.

You can also name your package
something like

horsens.jensen.lars.myproject

10

10

Inner classes

An inner class can be used to describe a
class which is highly coupled to its outer
class.

Consider the following two classes:

package dk.itu.oop.lecture3;

public class Point {

private int x,y;

public Point(int x,int y){

this.x = x; this.y = y; }

public int getX(){ return x;}

public int getY(){ return y;}

public void move(int dx, int dy){

x+=dx; y+=dy; }

public String toString(){

return "Point(" + x + "," + y +")"; }

}

package dk.itu.oop.lecture3;

public class Line {

private EndPoint p1, p2;

private class EndPoint extends Point {

public void move(int dx, int dy){

p1.singleMove(dx,dy);

p2.singleMove(dx,dy); }

private void singleMove(int dx,int dy){

super.move(dx,dy);}

private EndPoint(Point p){

super(p.getX(),p.getY());}

}

public Line(Point start, Point end){

p1 = new EndPoint(start);

p2 = new EndPoint(end);}

public Point getStart(){ return p1; }

public Point getEnd(){ return p2;}

public String toString(){

return "Line("+p1.toString()+","+p2.toString()+")";

}

}

The class Point simply represents a point with two coordinates x and y. These are
private, there is no setter, but their value can be read using getters. Their value can
be changed using the move method. The Point class is not really important for this
example, it just need to exist.

The interesting part is the inner class EndPoint of class Line. A line has two
endpoints, which both works as handles on the line, if one moves either of the
endpoints, the other endpoint is moved as well. One can argue whether this is
desirable, but that is what I wanted.

The inner class EndPoint is private. That is, it cannot be used outside the class Line.

Note that EndPoint is a subclass of Point. It is quite common that inner classes are
subclasses of something else. In most graphical user interfaces (GUI), based on awt
or swing, the event-listener classes are inner classes that specializes say
MouseAdapter.

The constructor for Line takes as arguments two Points, not EndPoints. This is
because EndPoint is private. However, an EndPoint can be constructed from a
Point.

Notice that Line can access the private aspects of EndPoint. That is, EndPoint can
access the private members of Line (for example p1 and p2), and Line can access the
private members of EndPoint (for example, its private constructor).

The move method of an EndPoint must be public, because it overrides a public
method from the super class.

11

11

Testing the Point and Line class

This program follows the usual setup in
which the variables p1 and p2 are of type
Point (a super class), but p2 is assigned a
reference to an instance of a subclass (an
EndPoint).

package dk.itu.oop.lecture3;

public class PointLineTest {

public static void main(String[] args){

Point p1,p2;

p1 = new Point(1,1);

Line l = new Line(new Point(2,2),new Point(3,3));

p2 = l.getEnd();

System.out.println(p1);

System.out.println(l);

System.out.println();

p1.move(5,5);

p2.move(10,10);

System.out.println(p1);

System.out.println(l);

System.out.println();

}

}

12

12

Inner objects and this

If we look at the classes Line and
EndPoint, and an instance of a Line,

public class Line {

private EndPoint p1, p2;

private class EndPoint extends Point {

public void move(int dx, int dy){

p1.singleMove(dx,dy);

p2.singleMove(dx,dy);

}

…

}

…

}

How can an EndPoint refer to p1 in the
move method?

p1:EndPoint

p2:EndPoint

:Line

x: int 2

y: int 2

Line.this:Line

:EndPoint

x: int 3

y: int 3

Line.this:Line

:EndPoint

l:Line

Just like there is an implicit this in
methods, there is an implicit this in inner
objects.

It can be accessed explicitly as ”Line.this”.

p1 actually means Line.this.p1.

Notice, just like the this reference in a method can not be null (remember that the
compiler prevents you to use the this reference in static methods, where it is null),
the this reference in inner objects cannot be null.

This means that an inner object cannot exist without its outer object. Sometimes an
inner class is used to mirror exactly this dependency. For instance, a leg class is
inner to a person, as we for most problem domains do not want loose legs.

The this reference is initialized when the inner object is created. If the inner object
is created inside the outer object, the this reference become the outer object. This is
how it is done in the example.

In the above Line, Point example, the inner class EndPoint is private. Sometimes it
is public. If we assume it was public, then the EndPoint type can be expressed as
Line.EndPoint from outside the Line class. A new inner object can then be created
using the following syntax:

Line l = new Line(…);

Line.EndPoint lep = l.new EndPoint(…);

That is, we prefix the new with an object. That object become the this in the new
EndPoint. Note, this means there are more then two endpoints that claim to
endpoints of the line. I declared EndPoint private to avoid that.

The notion of inner classes was rediscovered by the the Java language in the mid
90ies. Inner classes was first introduced in Simula’68, and is closely related to a
concept of inner methods (procedures) in a language named Algol from the early
60ies. The people who designed Java was visited by one of the designers of Beta, a
successor to Simula, in which there was inner and anonymous classes.

These were the missing link for the Java designers to provide an object oriented
mechanism for specifying actions in user interfaces, which today is what inner
classes is used for in 95% of the cases.

13

13

Moving a line

public static void main(String[] args){

Point p1,p2;

p1 = new Point(1,1);

Line l = new Line(new Point(2,2),new Point(3,3));

p2 = l.getEnd();

p1.move(5,5);

p2.move(10,10);

}

p1:Point

p2:Point

this:PointLineTest

return:void

< , >

:PointLineTest::main

x: int 6

y: int 6

:Point

l:Line

p1:EndPoint

p2:EndPoint

:Line

x: int 2

y: int 2

Line.this:Line

:EndPoint

x: int 3

y: int 3

Line.this:Line

:EndPoint

To get the operation and establishment of the this references in its place, let us
consider the call to the move method in the last line above, where we move the
object referenced by p2. First we can see that the variable p2 is of type Point, but
refers to an object of type EndPoint.

In Java, the method to be executed is determined by the type of the object, not by
the type of the reference. Thus, the call p2.move(10,10) will call the move method
defined in class Endpoint.

The big fat arrow points to the next statement to be executed. The state of the
objects reflect the situation just before we start that statement.

Two Point objects we created as arguments for the Line constructor. These objects
are not drawn in the figure. They are not referenced anymore.

14

14

Calling the move in EndPoint

p1:Point

p2:Point

this:PointLineTest

return:void

< , >

:PointLineTest::main

x: int 6

y: int 6

:Point

l:Line

this:EndPoint

return:void

< , >

:EndPoint::move

public static void main(String[] args){

Point p1,p2;

p1 = new Point(1,1);

Line l = new Line(new Point(2,2),new Point(3,3));

p2 = l.getEnd();

p1.move(5,5);

p2.move(10,10);

}

public void move(int dx, int dy){

p1.singleMove(dx,dy);

p2.singleMove(dx,dy);

}

dx: int 10

dy: int 10

p1:EndPoint

p2:EndPoint

:Line

x: int 2

y: int 2

Line.this:Line

:EndPoint

x: int 3

y: int 3

Line.this:Line

:EndPoint

The ”bold” arrows are the new onesThe ”bold” arrows are the new ones

I am sorry, but this time the call stack grows downwards.

A new method call is created for storing local variables, parameters etc. There are
nothing in particular of interest in this method call. The this reference refers to the
endpoint which is also referred to by p2 in the main method. When we return from
this method call, we return to the main method, and the next thing to be done in the
main method is to return from the method call.

However, the first thing to do in the move method is to handle the call
p1.singleMove(…). p1 is not defined as a local variable, in move, it is not a field in
EndPoint, but it is a field in the Line class. This means that p1 is a shorthand for the
reference path”this.Line.this.p1”.

Note that I have drawn a line separating x and y from Line.this in both end point
objects. This is an attempt to specify that an endpoint consist of fields which come
from Point, and some fields which come form the EndPoint class. In this example,
there are no user defined fields in the EndPoint class. Therefore only the Line.this
variable is included as a result of the subclass EndPoint.

The next thing to happen is that we call the singleMove method on the object we
obtain by: a) looking in the this reference of move, b) looking in the Line.this
reference of that object, c) looking in the p1 variable of the line object. This brings
us to the next slide.

15

15

Calling the singleMove

public static void main(String[] args){

Point p1,p2;

p1 = new Point(1,1);

Line l = new Line(new Point(2,2),new Point(3,3));

p2 = l.getEnd();

p1.move(5,5);

p2.move(10,10);

}

p1:Point

p2:Point

this:PointLineTest

return:void

< , >

:PointLineTest::main

x: int 6

y: int 6

:Point

l:Line

public void move(int dx, int dy){

p1.singleMove(dx,dy);

p2.singleMove(dx,dy);

}

private void singleMove(int dx,int dy){

super.move(dx,dy);

}

this:EndPoint

return:void

< , >

:EndPoint::move

dx: int 10

dy: int 10

this:EndPoint

return:void

< , >

:EndPoint::singleMove

dx: int 10

dy: int 10

p1:EndPoint

p2:EndPoint

:Line

x: int 2

y: int 2

Line.this:Line

:EndPoint

x: int 3

y: int 3

Line.this:Line

:EndPoint

The ”bold” arrows are the new onesThe ”bold” arrows are the new ones

We went from the this in move(), to an Endpoint, to a Line, to an Endpoint, and we
ended up calling the singleMove method on the other end point object, which is
seen by the fact that the this reference in the singleMove method call refers to the
other EndPoint object than does this in EndPoint::move.

The only thing singleMove does is to call super.move(). Super is explained in 9.5 of
Java Precisely as a way in which to call a overridden method. Thus, super.move will
call the move method as it is defined in class Point.

It would have been tempting to try to avoid the singleMove method, and try
something like ”p1.super.move(…)” in the move method of EndPoint. But super
cannot be used that way, it can only be used inside a subclass to refer to a
overridden method.

An other attempt would have been ”((Point)p1).move(…)”. That is casting p1 to be a
reference of type Point rather as EndPoint. But method calls allways use the method
defined on the type of the object rather than the type of the reference, so that does
not help either.

So, I introduced a method singleMove, which only moves a single point, and this
method is then called from move.

16

16

Calling the move in Point

public static void main(String[] args){

Point p1,p2;

p1 = new Point(1,1);

Line l = new Line(new Point(2,2),new Point(3,3));

p2 = l.getEnd();

p1.move(5,5);

p2.move(10,10);

}

public void move(int dx, int dy){

p1.singleMove(dx,dy);

p2.singleMove(dx,dy);

}

private void singleMove(int dx,int dy){

super.move(dx,dy);

}

this:EndPoint

return:void

< , >

:EndPoint::move

dx: int 10

dy: int 10

this:EndPoint

return:void

< , >

:EndPoint::singleMove

dx: int 10

dy: int 10

this:Point

return:void

< , >

:Point::move

dx: int 10

dy: int 10

public void move(int dx, int dy){

x+=dx;

y+=dy;

}

p1:EndPoint

p2:EndPoint

:Line

x: int 12

y: int 12

Line.this:Line

:EndPoint

x: int 3

y: int 3

Line.this:Line

:EndPoint

The ”bold” arrows are the new onesThe ”bold” arrows are the new ones

Here we have entered the move method in Point. The very important thing to notice
is that the this reference refers to the same object as before. The this reference
always refers to the same object in connection with a super call. However, notice
also that the type of the this reference has changed from EndPoint to Point.

Because this is of type Point, we can access the x and y fields (they were declared
private). Had we tried to access them from a reference of type EndPoint, we would
have been told that they were private, and we could not access them.

17

17

Flight example

On march 18th, SAS has a flight (SK0909)
from Copenhagen to New York, Newark,
scheduled to leave 12:05, and arrive 14:50.
The list price for the cheapest ticket is dkr
3290,- for a round-trip ticket. The
airplane to be used is an Airbus 333.

On April 18th, SK0910 is a return flight,
which leaves Newark at 17:50, and arrives
in Copenhagen the next morning at 7:30.

Problems:
– The same flight also leaves March 19th.

– We need to register who will man the
plane.

– We need to register which seats will be
free.

– We need to register the actual departure
time.

class Flight {

public final String flightNo;

public final String departing, arriving;

public final Time departureTime, arrivalTime;

public double monkeyClassPrice;

public final AirPlane airPlane;

public Flight(… … …){…}

public Time flightTime(){

return arrivalTime.span(departureTime);

}

}

…

Flight sk0909 = new Flight(”SK0909”, ”CPH”,

”EWR”, new Time(”March 18, 2004, 12:05 CET”),

new Time(”March 18, 2004, 14:50 EST”), 1645,

AirPlane.get(”Airbus 333”));

18

18

Flight example

The problem with the flight is common,
known under the name of item-descriptor.

The descriptor here being the general
description of SK0909, and the item being
SK0909 on march 18th.

The solution to the right captures all
Scheduled Flights. FlightSchedule
captures information common to all
flights, and Flight the actual flight on
March 18th.

class FlightSchedule {
public final String flightNo;

public final String departing, arriving;

public final Time departureTime, arrivalTime;

public double monkeyClassPrice;

public final AirPlane airPlane;

public final Flight[] flights = new Flight[365];

…

class Flight {

Date departureDate;

Seat[] seats = new Seat[airPlane.noSeats()];

Time actualDeparture, actualArrival;

…

Time delayAtArrival(){

return actualArrival.span(arriving);

}

}

}

The problem occurs in many situation, a few more examples are:

• University courses, where OOP occurs each semester, it has some common
characteristics, and some things that vary from one semester to the next.

• A contract about weekly delivery of Butter to a Supermarket, and the actual
weekly deliveries.

• The relationship between a book with author and title, and concrete copies
with margin notes and coffee stains.

In all the examples, it is an important property that the inner class represents a
weak concept, eg. a concept which has no existence without a relation to the outer
class.

Note the initializer on the seats variable in Flight. The size of the array is
determined as the number of Seats in the airplane. This is possible, because the
airplane is a field in the outer class FlightSchedule. The outer class is known to have
been initialized before any instance of a Flight is created.

Also note, the initialization of the flights array in FlightSchedule. It does not
actually allocate any Flights, it just make an array to contain one flight per day in a
year.

The item-descriptor problem is not always solved by the use of inner classes. There
are cases where the item (the inner class) has an existence independent of the
descriptor, or where more than one descriptor exist for the item. In those cases an
inner class is inappropriate.

19

19

This is an example of how to initialize a
flight schedule, and a flight.

public static void main(String[] args){

FlightSchedule sk0909;

FlightSchedule sk0910;

sk0909 = new FlightSchedule

("SK0909", "CPH", "EWR", "12:05", "14:50",

AirPlane.AIRBUS333);

sk0909.flights[32] =

sk0909.new Flight("February 1st, 2004");

FlightSchedule.Flight sk0909Feb01 =

sk0909.flights[32];

sk0909Feb01.actualDeparture = "12:20";

sk0909Feb01.actualArrival = "15:45";

}

In the final version in the code distibuted on the web page, I have changed a few
types to String. This is just because Time, Date and Seat was missing, and I did not
bother writing them.

20

20

Anonymous inner classes

In Java, we can make inner objects which
are instances of anonymous classes.

Anonymous inner classes can be created
inside methods and in connection with
initializers.

Anonymous inner classes are primarily
used in connection with event handling in
AWT and Swing.

Point flipPoint = new Point(3,4){

public void move(int dx, int dy){

super.move(dy,dx);

}

}

myButton.addActionListener(new ActionListener(){

public actionPerformed(ActionEvent e){

… do stuff …;

}

}

Anonymous class here simply refers to the fact that the class does not have a name.

21

21

Anonymous inner classes and local variables

If we try to compile the code to the right
we get the following error:

local variable p is accessed from within
inner class; needs to be declared final

Why?

Assume, we did not get an error.

The uups.this reference is needed to get to
p in the special getX method.

But when we return from the uups
method, the uups method call is
reclaimed, and the uups.this referece will
not be valid.

public Point uups(Point p){

Point myPoint = new Point(3,4){

public int getX(){ return p.getX(); }

};

return myPoint;

}

Warning: This figure is wrong, it
shows why we cannot have the code
above.

x: int 3

y: int 4

uups.this

:AnonymousPoint

this:SomeClass

return:Point

< , >

:SomeClass::uups

p:Point

x: int 6

y: int 6

:Point

myPoint:Point

The next couple of slides are somewhat complicated. The main thing to get hold of is

”from an inner class, one can only access local variables if they are declared as
final”

The variable p is declared outside the anonymous class. In the previous cases where a
variable has been declared outside the class where it is used, the solution has been to
use vaiable in the object that refered to the outer object.

Either as in the ordinary case, where the this reference gives access to the fields of an
object from the methods calss of the objects (e.g. the this references in the method
call instances on slide 15). Or, as we saw earlier in this lecture, where an inner object
is equipped with a reference to the outer class (e.g. the . Line.this reference on slide
11)

We could be tempted to do something similar here, and make a field in the
anonymous object that had a special this reference that could refere to the method
call instance. Doing this would allow p.getX(), to be a shorthand for
”uups.this.p.getX()”.

But this has a very unattractive consequence.
In the case of this uups method, er return a reference to the anonymous point.
Therefore we can use the anonymous point after we have returned from the uups
method.

As we saw in lecture 2, method call instances are not reclaimed by the garbage
collector, but are managed on a stack. When we return from a method call, the
method call instance is recycled.

But if we used the above solution, we could not recycle the method call instance,
because it is still used by the inner object.

Therefore the compiler complains, we are not allowed to refer to local variables from
within a anonymous class.

The error message however, gives a hint to a solution.

22

22

Why declaring it final helps

The compiler will accept the program to
the right – the only change is that the
parameter p in uups is declared final.

Final means that the variable can never
change. This means the the variable p will
for always point to p.

If a local variable is referenced from
inside an inner class, the local variable
must be final.

Each local variable used inside an inner
class is copied to a field in the inner
object.

This makes it behave as if the inner object
is inner to the method call.

public Point uups(final Point p){

Point myPoint = new Point(3,4){

public int getX(){ return p.getX(); }

};

return myPoint;

}

x: int 3

y: int 4

p:Point

:AnonymousPoint

this:SomeClass

return:Point

< , >

:SomeClass::uups

p:Point

x: int 6

y: int 6

:Point

myPoint:Point

from an inner class, one can only
access local variables if they are

declared as final

from an inner class, one can only
access local variables if they are

declared as final

The clue in the solution is the use of final. Technically final mean that the variable
will never change its value.

The surprising thing is that this helps us.

If you know that your mother knows who your grandmother is, you might as well
remember it yourself, because you mother will never ever get an other mother. This
is unlike the situation of a non-final variable. Your mother might have a boss at
work, and you might remember it to be Johnson. But to find out who it is, you really
have to go through your mother, as she might have gotten a new Job, or a new Boss.

Here we use the final as in the grandmother case. The inner object simply make a
copy of the reference in the object itself.

In case it was not an object, but an integer, we can use the mother example again. If
your mother was born in 1951, then that is final, her year of birth will never change.
Hence, you can remember it, with out worry that one day your mother will call and
say that she was born at some other time. Thus, we can use the same trick on
references as well as simple types (integers, booleans etc.).

Thus, by only allowing inner classes to refer to final local variables, there exist an
implementation which looks like we are really accessing the local varables, but we
are not.

Remember, final means that the variable cannot change. We can still change the
state of the object the variable refers to.

23

23

One more thing about anonymous inner classes

One can extend the anonymous class with
methods not present in the superclass.

But one cannot call these methods.

Point myPoint = new Point(3,4){

public void moveToZero(){

super.move(-getX(), -getY());

}

}

myPoint.moveToZero(); // illegal call

This is quite annoying at times, especially if you have used programming languages
which allow you to do so.

The reason is that myPoint is declared to be of type Point, and class Point does not
have a moveToZero method.

One option could have been if myPoint was declared final, then the compiler could
know that it would always refer to the inner object. But the compiler will not utilize
this.

24

24

Added topic – static and final

There is a secret about classes. A class
represents two kinds of objects.

1) Objects, as we have talked about
them until now.

2) A singleton class object.

The singleton class object contains all the
staticmembers of a class description.

The singleton class object is created by the
virtual machine the first time the class is
used in the program.

The finalmodifier mean that the variable
cannot be changed after it has gotten its
initial value. The initial value must be
given as an intializer or in a constructor.

As a slightly conceived example of static,
is this example:

A Sir is unique in his name, that is, no two
Sir’s exist with the same name.

This means that the constructor should
not allow two Sirs with the same name. It
should throw an exception if one attempt
to make a Sir with a name which already
exist.

An important consequence of this example has to do with equality.

Because we make sure that no two instances of a Sir is created with the same name,
we can always check two Sir’s using ==, and be sure that if they are ==, they have
the same name, and are not two different objects with the same name.

25

25

The class Sir

final private String name;

public Sir(String name) {

if (find(name) != null)

throw new Error

("Do not duplicate Sir " + name);

this.name = name;

allSirs[numberOfSirs] = this;

numberOfSirs ++;

}

public String toString(){return "Sir " + name;}

private static Sir[] allSirs = new Sir[250];

private static int numberOfSirs = 0;

private static Sir find(String name){

int index = 0;

while (index < numberOfSirs){

if (allSirs[index].name == name)

return allSirs[index];

index ++;

}

return null;

}

public static Sir getNewOrFind(String name){

Sir sn = find(name);

if (sn != null)

return sn;

else{

sn = new Sir(name);

return sn;

}

}

The only state of a Sir in this example is the name. The name cannot be changed
once given (final).

The class object is used to store all instances of Sirs, so we can look up and see if a
Sir of a given name has already been created. This is done using two fields, an Array
which contains up to 250 Sirs, and the number of instances in that array,
numberOfSirs.

The method find on the class object examines if there already exist a Sir of the given
name, and if so, returns that Sir, or else return null.

The constructor checks to see if we are trying to make a Sir who already exists. If we
do so, an Error is thrown.

As an alternative to using the constructor, the method getNewOrFind will either
return an existing Sir of a given name, or create a new Sir of that name.

The Program below shows how the Sir class might be used:

class SirTest {

public static void main(String[] args){

Sir sn1 = Sir.getNewOrFind("John");

Sir sn2 = Sir.getNewOrFind("Robert");

Sir sn3 = Sir.getNewOrFind("John");

System.out.println("s1 == sn2: " + (sn1 == sn2));

System.out.println("s1 == sn3: " + (sn1 == sn3));

try{ sn2 = new Sir("John");

}catch(Error e){ System.out.println(e);}

}

}

It results in the following output:

s1 == sn2: false

s1 == sn3: true

java.lang.Error: Do not duplicate Sir John

