
1

OPI
Lecture 16

Encapsulation, packages & inner classes

Kasper Østerbye
Carsten Schuermann
IT University Copenhagen

2

Contents
• What is encapsulation

• Member access modifiers
– client interface

– subclass interface

• packages
– source files

– scope rules

– classpath

• Inner classes and anonymous classes
– local classes

– anonymous classes

– static inner classes

– the this reference for inner classes

3

Coupling and cohesion?
• If nothing depends on your class, you

can change it without consequences for
the rest of the system . Such a class is
said to be uncoupled from the rest of the
system.

• If the members of your class does not
depend on each other, you class is said
to have no cohesion.

• When designing software, one strives to
have low (not none) coupling and high
cohesion.

• The hypothesis is that with low coupling,
changes in one location will not
propagate to the rest of the code.

Mechanisms that promote low coupling:

• private fields – renaming a field will not
influence anything outside the class

• non-public classes, which can only be
used inside a package

Mechanisms that enable high cohesion

• all members can be seen from inside a
class

4

access modifiers
Consider the access modifier for a
member x in class A. If it is:

private – it can only be used inside A.

default – it can be used anywhere in package1,
that is, A,B and C.

protected – it can be used anywhere in
package1, and in subclasses of A in
other packages, here S.

public – it can be used everywhere in the
system.

Note: an inner class I of A can access
private fields of A.

Consider the access modifier for the class
B. If it is:

default – the class can only be used in
package1.

public – the class can be used from
anywhere.

R

package1

package2

B

C

S

A

5

Encapsulation
Consider the Person class

public class Person {

int CPRnumber;

String name;

String address;

}

What access modifiers should be used,
and which accessors should define?

My analysis is the following
1) The CPR number must be given when the

person object is created, and cannot be
changed later.

2) The Name must be given when the object
is created. Normally it will not change
later.

3) The address need not be present, but it
can be changed along the way.

public class Person {

private final int CPRnumber;

private String name;

private String address;

public Person(int cpr, String name){

CPRnumber = cpr;

this.name = name;

}

public String getName(){ return name;}

public String getAddress(){ return address;}

public void setAddress(String address){

this.address = address;

}

}

6

Access modifiers and inheritance
If a method is redefined in a subclass, it
must be at least as visible as in the
superclass.

This rule is checked when the program is
compiled.

Assume the program to the right.

Consider the assignment

The variable a is declared to be of type A,
and in A, the getANumber method is
public. Therefore the call is legal.

But unaware to the poor compiler, a refers
to an instance of B, in which the
getANumber is private. UUPS.

By the rule on top, the error is in the
definition in class B.

public class A {

public int getANumber(){…}

…

}

public class B extends A {

private int getANumber(){…}

}

public class TestAB {

public static void main(String[] args){

A a = new B();

int n = a.getANumber();

}

}

7

Packages
All classes belong to a package. The
default package is used unless an other
package is specified.

The name of a package is a sequence of
names, separated by ”.”. For example,
”java.lang”, or ”dk.itu.oop.lecture3”.

The fully qualified name of a class is the
name of the package followed by the a
”.”followed by the name of the class. The
fully qualified name of class String is
”java.lang.String”.

A package does not declare which classes
belong in it. Instead a class define which
package it belong to.
This is done by the package declaration in
a sourcefile. E.g.

package dk.itu.oop.lecture3;

The class Ball from lecture 1 can be used
in a simple animation of a moving ball.

1. package dk.itu.oop.ballgame;

2. import dk.itu.oop.lecture1.Ball;

3. import java.awt.*;

4. public class MovingBall extends Ball {

5. private final Component myComponent;

6. private Color col;

7. …

8. }

8

classpath
It is not specified as part of the Java
language how to find all classes that
belong to a package.

It is the job of a specific object in Java,
known as the ”classloader” to find classes.

The standard classloader for applications
use the environment variable ”classpath”
to search for classes.

If the classpath variable has three
directories in it, X,Y,Z, the the classloader
first look for a class C in X. If it is not
there, it will look in Y, and at last it will try
X.

Note. It will look for a class C in package
a.b.c by first looking for C in X/a/b/c,
then in Y/a/b/c, and finally in Z/a/b/c.

import a.b.c.*;

X

Y

Z

a

b

c

R

S

a

b

c

C

S

pip

C

9

Package names
Each package should have globally unique
name.

There exist algorithms for this, which
makes completely unreadable names like

 ”950365A9-5540-43a0-B28C-9899FC3BF54C”

Java uses a different approach: the web
address in reverse order:

dk.itu.oop.lecture3

However, this is something which should
not be taken too literal:

java.lang –there is nowhere called
lang.java

dk.itu.oop.lecture3 does not exist on the
net either.

But it is useful, readable, and likely to
remain reasonable stable over a long
period.

You can also name your package
something like

horsens.jensen.lars.myproject

10

Inner classes
An inner class can be used to describe a
class which is highly coupled to its outer
class.

Consider the following two classes:

package dk.itu.oop.lecture3;

public class Point {

private int x,y;

public Point(int x,int y){

this.x = x; this.y = y; }

public int getX(){ return x;}

public int getY(){ return y;}

public void move(int dx, int dy){

x+=dx; y+=dy; }

public String toString(){

return "Point(" + x + "," + y +")"; }

}

package dk.itu.oop.lecture3;

public class Line {

private EndPoint p1, p2;

private class EndPoint extends Point {

public void move(int dx, int dy){

p1.singleMove(dx,dy);

p2.singleMove(dx,dy); }

private void singleMove(int dx,int dy){

super.move(dx,dy);}

private EndPoint(Point p){

super(p.getX(),p.getY());}

}

public Line(Point start, Point end){

p1 = new EndPoint(start);

p2 = new EndPoint(end);}

public Point getStart(){ return p1; }

public Point getEnd(){ return p2;}

public String toString(){

return "Line("+p1.toString()+","+p2.toString()+")";

}

}

11

Testing the Point and Line class
This program follows the usual setup in
which the variables p1 and p2 are of type
Point (a super class), but p2 is assigned a
reference to an instance of a subclass (an
EndPoint).

package dk.itu.oop.lecture3;
public class PointLineTest {

public static void main(String[] args){
Point p1,p2;
p1 = new Point(1,1);

Line l = new Line(new Point(2,2),new Point(3,3));
p2 = l.getEnd();

System.out.println(p1);
System.out.println(l);
System.out.println();

p1.move(5,5);
p2.move(10,10);

System.out.println(p1);
System.out.println(l);
System.out.println();

}
}

12

Inner objects and this
If we look at the classes Line and
EndPoint, and an instance of a Line,

public class Line {

private EndPoint p1, p2;

private class EndPoint extends Point {

public void move(int dx, int dy){

p1.singleMove(dx,dy);

p2.singleMove(dx,dy);

}

…

}

…

}

How can an EndPoint refer to p1 in the
move method?

p1:EndPoint
p2:EndPoint

:Line

x: int 2
y: int 2
Line.this:Line

:EndPoint

x: int 3
y: int 3
Line.this:Line

:EndPoint

l:Line

Just like there is an implicit this in
methods, there is an implicit this in inner
objects.

It can be accessed explicitly as ”Line.this”.

p1 actually means Line.this.p1.

13

Moving a line
public static void main(String[] args){

Point p1,p2;
p1 = new Point(1,1);
Line l = new Line(new Point(2,2),new Point(3,3));
p2 = l.getEnd();
p1.move(5,5);
p2.move(10,10);

}

p1:Point

p2:Point

this:PointLineTest

return:void

< , >

:PointLineTest::main
x: int 6
y: int 6

:Point

l:Line

p1:EndPoint
p2:EndPoint

:Line

x: int 2
y: int 2
Line.this:Line

:EndPoint

x: int 3
y: int 3
Line.this:Line

:EndPoint

14

Calling the move in EndPoint

p1:Point

p2:Point

this:PointLineTest

return:void

< , >

:PointLineTest::main
x: int 6
y: int 6

:Point

l:Line

this:EndPoint

return:void

< , >

:EndPoint::move

public static void main(String[] args){
Point p1,p2;
p1 = new Point(1,1);
Line l = new Line(new Point(2,2),new Point(3,3));
p2 = l.getEnd();
p1.move(5,5);
p2.move(10,10);

}

public void move(int dx, int dy){

p1.singleMove(dx,dy);

p2.singleMove(dx,dy);

}

dx: int 10

dy: int 10

p1:EndPoint
p2:EndPoint

:Line

x: int 2
y: int 2
Line.this:Line

:EndPoint

x: int 3
y: int 3
Line.this:Line

:EndPoint

The ”bold” arrows are the new onesThe ”bold” arrows are the new ones

15

Calling the singleMove
public static void main(String[] args){

Point p1,p2;
p1 = new Point(1,1);
Line l = new Line(new Point(2,2),new Point(3,3));
p2 = l.getEnd();
p1.move(5,5);
p2.move(10,10);

}

p1:Point

p2:Point

this:PointLineTest

return:void

< , >

:PointLineTest::main
x: int 6
y: int 6

:Point

l:Line

public void move(int dx, int dy){

p1.singleMove(dx,dy);

p2.singleMove(dx,dy);

}

private void singleMove(int dx,int dy){

super.move(dx,dy);

}

this:EndPoint

return:void

< , >

:EndPoint::move

dx: int 10

dy: int 10

this:EndPoint

return:void

< , >

:EndPoint::singleMove

dx: int 10

dy: int 10

p1:EndPoint
p2:EndPoint

:Line

x: int 2
y: int 2
Line.this:Line

:EndPoint

x: int 3
y: int 3
Line.this:Line

:EndPoint

The ”bold” arrows are the new onesThe ”bold” arrows are the new ones

16

Calling the move in Point
public static void main(String[] args){

Point p1,p2;
p1 = new Point(1,1);
Line l = new Line(new Point(2,2),new Point(3,3));
p2 = l.getEnd();
p1.move(5,5);
p2.move(10,10);

}

public void move(int dx, int dy){

p1.singleMove(dx,dy);

p2.singleMove(dx,dy);

}

private void singleMove(int dx,int dy){

super.move(dx,dy);

}

this:EndPoint

return:void

< , >

:EndPoint::move

dx: int 10

dy: int 10

this:EndPoint

return:void

< , >

:EndPoint::singleMove

dx: int 10

dy: int 10

this:Point

return:void

< , >

:Point::move

dx: int 10

dy: int 10

public void move(int dx, int dy){

x+=dx;

y+=dy;

}

p1:EndPoint
p2:EndPoint

:Line

x: int 12
y: int 12
Line.this:Line

:EndPoint

x: int 3
y: int 3
Line.this:Line

:EndPoint

The ”bold” arrows are the new onesThe ”bold” arrows are the new ones

17

Flight example
On march 18th, SAS has a flight (SK0909)
from Copenhagen to New York, Newark,
scheduled to leave 12:05, and arrive 14:50.
The list price for the cheapest ticket is dkr
3290,- for a round-trip ticket. The
airplane to be used is an Airbus 333.

On April 18th, SK0910 is a return flight,
which leaves Newark at 17:50, and arrives
in Copenhagen the next morning at 7:30.

Problems:
– The same flight also leaves March 19th.
– We need to register who will man the

plane.
– We need to register which seats will be

free.
– We need to register the actual departure

time.

class Flight {

public final String flightNo;

public final String departing, arriving;

public final Time departureTime, arrivalTime;

public double monkeyClassPrice;

public final AirPlane airPlane;

public Flight(… … …){…}

public Time flightTime(){

return arrivalTime.span(departureTime);

}

}

…

Flight sk0909 = new Flight(”SK0909”, ”CPH”,
”EWR”, new Time(”March 18, 2004, 12:05 CET”),

new Time(”March 18, 2004, 14:50 EST”), 1645,
AirPlane.get(”Airbus 333”));

18

Flight example
The problem with the flight is common,
known under the name of item-descriptor.

The descriptor here being the general
description of SK0909, and the item being
SK0909 on march 18th.

The solution to the right captures all
Scheduled Flights. FlightSchedule
captures information common to all
flights, and Flight the actual flight on
March 18th.

class FlightSchedule {
public final String flightNo;

public final String departing, arriving;

public final Time departureTime, arrivalTime;

public double monkeyClassPrice;

public final AirPlane airPlane;

public final Flight[] flights = new Flight[365];

…

class Flight {

Date departureDate;

Seat[] seats = new Seat[airPlane.noSeats()];

Time actualDeparture, actualArrival;

…

Time delayAtArrival(){

return actualArrival.span(arriving);

}

}

}

19

This is an example of how to initialize a
flight schedule, and a flight.

public static void main(String[] args){

FlightSchedule sk0909;

FlightSchedule sk0910;

sk0909 = new FlightSchedule

("SK0909", "CPH", "EWR", "12:05", "14:50",

AirPlane.AIRBUS333);

sk0909.flights[32] =

sk0909.new Flight("February 1st, 2004");

FlightSchedule.Flight sk0909Feb01 =

sk0909.flights[32];

sk0909Feb01.actualDeparture = "12:20";

sk0909Feb01.actualArrival = "15:45";

}

20

Anonymous inner classes
In Java, we can make inner objects which
are instances of anonymous classes.

Anonymous inner classes can be created
inside methods and in connection with
initializers.

Anonymous inner classes are primarily
used in connection with event handling in
AWT and Swing.

Point flipPoint = new Point(3,4){

public void move(int dx, int dy){

super.move(dy,dx);

}

}

myButton.addActionListener(new ActionListener(){

public actionPerformed(ActionEvent e){

… do stuff …;

}

}

21

Anonymous inner classes and local variables
If we try to compile the code to the right
we get the following error:

local variable p is accessed from within
inner class; needs to be declared final

Why?

Assume, we did not get an error.

The uups.this reference is needed to get to
p in the special getX method.

But when we return from the uups
method, the uups method call is reclaimed,
and the uups.this referece will not be
valid.

public Point uups(Point p){

Point myPoint = new Point(3,4){

public int getX(){ return p.getX(); }

};

return myPoint;

}

Warning: This figure is wrong, it
shows why we cannot have the code
above.

x: int 3
y: int 4
uups.this

:AnonymousPoint

this:SomeClass

return:Point

< , >

:SomeClass::uups

p:Point

x: int 6
y: int 6

:Point

myPoint:Point

22

Why declaring it final helps
The compiler will accept the program to
the right – the only change is that the
parameter p in uups is declared final.

Final means that the variable can never
change. This means the the variable p will
for always point to p.

If a local variable is referenced from
inside an inner class, the local variable
must be final.

Each local variable used inside an inner
class is copied to a field in the inner object.

This makes it behave as if the inner object
is inner to the method call.

public Point uups(final Point p){

Point myPoint = new Point(3,4){

public int getX(){ return p.getX(); }

};

return myPoint;

}

x: int 3
y: int 4
p:Point

:AnonymousPoint

this:SomeClass

return:Point

< , >

:SomeClass::uups

p:Point

x: int 6
y: int 6

:Point

myPoint:Point

from an inner class, one can only
access local variables if they are

declared as final

from an inner class, one can only
access local variables if they are

declared as final

23

One more thing about anonymous inner classes
One can extend the anonymous class with
methods not present in the superclass.

But one cannot call these methods.

Point myPoint = new Point(3,4){

public void moveToZero(){

super.move(-getX(), -getY());

}

}

myPoint.moveToZero(); // illegal call

24

Added topic – static and final
There is a secret about classes. A class
represents two kinds of objects.

1) Objects, as we have talked about
them until now.

2) A singleton class object.

The singleton class object contains all the
static members of a class description.

The singleton class object is created by the
virtual machine the first time the class is
used in the program.

The final modifier mean that the variable
cannot be changed after it has gotten its
initial value. The initial value must be
given as an intializer or in a constructor.

As a slightly conceived example of static,
is this example:

A Sir is unique in his name, that is, no two
Sir’s exist with the same name.

This means that the constructor should
not allow two Sirs with the same name. It
should throw an exception if one attempt
to make a Sir with a name which already
exist.

25

The class Sir
final private String name;

public Sir(String name) {

if (find(name) != null)

throw new Error

("Do not duplicate Sir " + name);

this.name = name;

allSirs[numberOfSirs] = this;

numberOfSirs ++;

}

public String toString(){return "Sir " + name;}

private static Sir[] allSirs = new Sir[250];
private static int numberOfSirs = 0;
private static Sir find(String name){

int index = 0;
while (index < numberOfSirs){

if (allSirs[index].name == name)
return allSirs[index];

index ++;
}
return null;

}
public static Sir getNewOrFind(String name){

Sir sn = find(name);
if (sn != null)

return sn;
else{

sn = new Sir(name);
return sn;

}
}

