OOP Lecture 4
Thread Programming

Mette Jaquet
IT University Copenhagen

Today’s schedule

Goal

« To give a basic understanding of “threads”, how they are used and what some
of the challenges are.

Contents

« What is a thread ?

» How are threads created and used ?

» Issues to consider when using threads

Communicating between threads
Scheduling threads

Synchronization

Deadlocks and other pitfalls to avoid

Thread programming is a big topic and obtaining a thorough understanding of the
challenges and possible approaches is not within the scope of this OOP course.

What is 3 thread ¢

« A thread is shorthand for thread of execution
« In sequential programming there is only one thread.

« Sometimes it takes more than one thread to solve a problem...

An object: A thread:
Is passive Is active
Points to code and data Runs code

Manipulates objects

When running a Java program the JVM will create a thread that calls main() and
executes it sequentially. When the end of main() is reached the thread will die and
the program will exit if no other threads exist.

Secretary.java is an example of a problem that is hard to solve elegantly with one
thread. It can either halt, “busy-wait” or be quite inflexible

Concurrency vs. Parallelism

time

CPU CPU1 CPU2

i N |

Two programs cannot execute simultaneously using one CPU. But we can create the
illusion of parallelism by using multiple threads and assigning them slices of CPU
time to run in.

The management of time and switching of threads takes time as well, so having many
threads is expensive CPU wise. If it is done excessively it may lead to thread
thrashing where not much time is left for executing the code.

Multitasking vs. Multithreading

« Multitasking is a computers ability to « Multithreading is having multiple
do multiple program executions threads in a program
concurrently
« All threads access the same code and
« Each program has its own code, stack share the same heap
and heap

« Each thread has its own stack for local
variables and method arguments

[cuce] [reno] |[cose] o]

Note that because objects and their fields are located on the heap they are shared
among all threads.

The left figure shows two programs or processes that each have a thread. The figure
to the right shows one process with two threads.

Blocking vs. hon-blocking method calls

A blocking (synchronous) method call:

void callingMethod() {
— | void|blockingMethod() {

blockingMethod();

o/ :

A non-blocking (asynchronous) method call:

voidmn’éqlethod() {
Id nonBlockingMethod() {
nonBlockingM ; ﬁ? |
}
| }//‘)DMQ— |

A new thread executes the method

Usage of threads

 Responsive applications

» Monitoring the state of resources
— Databases, servers etc.

« Problems of a parallel nature
— ILe. simulations like Secretary.java

« Listening for events
- GUI
— Network packages

« Operations that take a while to complete
— Printing

Concurrent programs are typically written for one of two reasons: to improve
performance, or to satisfy an inherently concurrent specification.

Two ways of creating threads

By extending Thread:

Declaring:

By implementing Runnable

Declaring:

class MyThread extends Thread {
public void run() {
/I loop doing something

class MyRunnable implements Runnable {
public void run() {
..... /I loop doing something

Starting:

Starting:

MyThread threadObj = new MyThread();
threadObj.start();

MyRunnable runnableObj = new MyRunnable();

new Thread(runnableObj).start();

If you implement Runnable and write a run() method here, you have to pass the

Runnable object to the constructor of a Thread object, and this run-method will be
executed when the thread is started. If you want your class to inherit some other class

than Thread, implementing the Runnable interface is the solution.

Also if run() is the only method on Thread that is overridden and no modifications or
enhancements to the fundamental behavior of the class are made, it is recommended

to implement Runnable instead of extending Thread.

Thread constructors

Thread()

Thread(Runnable target)

Thread(String name)

Thread(Runnable target, String name)

If a Runnable is passed to the constructor it will be the run() method on this object that is
invoked when the thread is started.

If no Runnable argument is given the run() method on the Thread object is invoked.

Note that a Thread can be given name. This can be quite useful when debugging.

Note that the number of threads doesn’t necessarily correspond to the number of
Thread objects !

We don’t cover ThreadGroups in this lecture, but besides from the above constructors
there are 3 more that are almost the same as last 3 above. The only difference is that
they also take a ThreadGroup as an argument and adds the Thread object created to
this group.

Starting a thread

When working with Threads in Java you
always implement run() but call start()

Calling Thread.start() will create a new
thread and enable it.

If the Thread object is a subclass of
Thread the overridden run() method will
be called.

If the Thread instance was constructed
using a Runnable, run() on the Runnable
object will be called.

The method run() is for a thread what
main() is for objects.

A thread will start by running the code in
the run() method.

It may continue running code in other
methods, but it will always return and exit
from the run() method.

When the code in the run() method is
done executing the thread ceases to exist,
but the Thread object still exists.

10

Enabling a thread means scheduling the run() method to be executed when CPU time

is available.

Attempting to call start() more than once on a Thread before the running thread is
done will give an IllegalThreadStateException

If you try calling run() directly on a Thread you will see that it is executed like it was
any other synchronous method and doesn’t get a thread of its own. The start()
method is the key to executing the code in run() in a separate thread of execution.

10

A ThreadPrinterExample

The two different ways of starting threads
are shown to the right:

What will happen when the main() method
below is executed?

class ThreadPrinterExample {

public static void main(String[] args) {
Print p0 = new Print();
Printer p1 = new Printer('l');
Printer p2 = new Printer(-');
pi.start();
p2.start();
new Thread(p0).start();

class Printimplements Runnable {
public void run() {
for(inti=0; i < 50; i++)
System.out.print("R");
1

public void start() {
System.out.printin("Hi there!");
}
}

class Printer extends Thread {
char character;

Printer(char character) { this.character = character; }
public void run () {

for(inti=0; i < 50; i++)
System.out.print(character);

11

11

Joining threads

Two threads can be merged by calling join().

The calling thread will wait for the thread join() is called on to die before it
continues.

So if threadA calls threadB.join(), then threadA will be the one waiting for
threadB to die.

If join(long millis) is called, the thread will sleep till the thread it was called on
dies, or the given time has elapsed.

12

If a timeout occurs an Interrupted Exception is thrown.

12

Daemon threads

Normally a program will continue to run as long as there are any live threads.
An exception to this is daemon threads.

A daemon thread is made by setting Thread.setDaemon(true)

If a new thread is created by a daemon thread it will itself be a daemon thread.

Daemon threads are usually used for processes that run in the background for
an extended period of time. I.e. monitoring state of resources or collecting
garbage.

13

13

Scheduling

Thread scheduling determines how threads are allocated CPU time.
Some approaches are:

Preemptive scheduling — the scheduler pauses (preempts) the running thread
to allow others to execute.

Non-preemptive scheduling — a running thread is never interrupted. The
running thread must yield control to the CPU.

Both types can cause livelocks where threads are assigned CPU time but never

progress.

Non-preemptive scheduling may also cause thread starvation where low-
priority threads never are assigned CPU time.

14

14

Priorities

In Java scheduling is preemptive and based on priorities of threads.

When the scheduler assigns control to a thread it generally favours the one with
the highest priority.

The methods used to influence thread-scheduling with priorities are:
setPriority(int newPriority)
getPriority()
Thread.yield()

The yield() method will voluntarily give up the control and let the scheduler
activate another thread.

Inappropriate use of priorities might lead to thread-starvation

15

When running Java under Windows selfish thread behavior is fought with a strategy
known as time slicing. Time slicing comes into play when there are multiple
“runnable"” threads of equal priority and those threads are the highest priority
threads competing for the CPU.

If all threads have the same priority and no one yields/ waits its would be like non-
preemptive scheduling if it wasn’t for Windows.

In Java priorities are between 1 and 10 and the default priority for a thread is 5.

When a new Thread object is created its will by default get the same priority as the
current thread.

15

The challenge of sharing data

Local variables and method arguments are placed on the stack and are not
available to other threads.

But objects and their fields are located in the heap and can be accessed by
multiple threads.

When multiple threads read, modify and update data simultaneously a
dependency on timing is introduced.

A situation may occur where the values that are updated depend on the
timing. When different threads race to store their values it is called a race
condition.

16

16

An example of 3 race condition

Thread A: // +200
Imagine a bank account with an initial
balance of 500. - Get balance (500)
- Calculate new balance (700)
Two transactions A and B are requested. - Save new balance (700)
Transaction A deposits 200 units.
Thread B: // -100
Transaction B withdraws 100 units.
- Get balance (500)

What is the balance after the two
transactions are done ?

- Calculate new balance (400)
- Save new balance (400)

The answer should be 600, but it will
depend on the timing...

17

17

So what we need is..

A semaphore !

18

A semaphore is like a flag or signal restricting access to a critical area. If it is a binary
semaphore it has two positions — one meaning “go” and one meaning “stop”.

18

Restricting access

Some classical ways of restricting access to critical regions are:

Semaphores

— Are like flags signaling availability. They can be counting semaphores allowing a
finite number of threads to enter at the same time, or binary semaphores allowing
only one

Locks
— Are binary semaphores that can only be released by the thread holding the lock

Monitors

— Are encapsulations of resources that can only be accessed under certain
conditions. A conditional expression determines if a given thread may enter the
monitor or not

19

Semaphores have a non-negative integer value and counter. If it is a binary
semaphore the value is 1 and the counter is always 0 or 1.

A pseudo code example of a the use of a semaphore for a boat rental booth with 6
boats available could be:

semaphore boat = 6; ... acquire(boat); useBoat(); release(boat);

When a boat is acquired the semaphores counter is decremented, when it is released
it is incremented. If someone calls acquire(boat) and the counter is 0 they will have to
wait till it is incremented by someone else calling release(boat).

Monitors are a synchronization mechanism based in some sense on data
abstraction. A monitor encapsulates the representation of a shared resource and
provides operations that are the only way of manipulating it. In other words, a
monitor contains variables that represent the state of the resource and procedures
that implement operations on the resource; a process or thread can access the
monitor's variables only by calling one of its procedures. Mutual exclusion among the
procedures of a monitor is guaranteed; execution of different procedures, or two calls
to the same procedure, cannot overlap. Conditional synchronization is provided by
condition variables

Not that the definitions above relate to concurrency issues in general and do not
correspond directly to the mechanisms available in Java ! They will be described in
following slides.

19

Synchronization

Some sequences of instructions depend on Statements can be synchronized...
the state of an object to be unchanged.

synchronized (this) {
In Java the keyword synchronized is used to // critical code
mark such critical regions of code that have }
to be executed in an atomic manner.

..or methods can be synchronized
Java has a single lock associated with
every object, array and class, and any thread synchronized void myMethod () {
entering a synchronized area of code is // critical code
blocked if there is already another thread }
holding the lock on the requested object.

20

A critical section is a block or a method identified with the synchronized keyword.

Java associates a lock with every object that has synchronized code.

Note that if someone writes a subclass of your class and overrides a synchronized
method they don’t have to make it synchronized as it is just “syntactic sugar”

synchronized void myMethod () {
I/ critical code

Is the same as writing:

void myMethod () {
synchronized (this) {
Il critical code

Constructors and initializers cannot be synchronized.

Fields in an object cannot be synchronized, but an array can be passed as the object
for a synchronized (array) { } clause.

20

Deadlocks

« Most commonly occur when threads are mutually blocking each other.
» Not normally detected by runtime system
« Often not detectable because it only shows under certain timing constraints.

« Avoid by design !

An Example:
Thread 1 Thread 2
syncronize(A){ syncronize(B){
syncronize(B) { syncronize(A){

21

Note that not just symmetric blocking like the above synchronization pattern of A
waiting for B and B waiting for A is a problem. A deadlock can also be caused by a
cyclic synchronization pattern like A waiting for B, B waiting for C and C waiting for
A.

Another type of deadlocks is when two threads are waiting to join each other, i.e
A_join(B) and B.join(A) effective at the same time.

21

Avoiding deadlocks

+ A rule of thumb to avoid having deadlocks, is to avoid having code in a
restricted area that can halt a thread.

« If multiple locks are required, one way to avoid deadlocks is to use
hierarchical locking where locks are always requested in the same order

It would not have been a problem if the previous example had been:

Thread 1 Thread 2
syncronize(A){ syncronize(A){
syncronize(B) { syncronize(B){

} }

22

Halting a thread can be caused in many different ways. It can be calling wait() or
join() or it can be waiting for a database connection or network package.

22

Monitors

A monitor encapsulates an object
ensuring that only one thread at a time
can access the monitor.
Thread A

Other threads will be blocked until the Thread B
monitor is available.

In Java a monitor can be implemented
by making all fields of a class private
and all areas that manipulate the fields
synchronized.

23

The difference between classical monitors and Java's built in monitors, is that there is
no condition variable associated with a monitor in Java, and that the threads waiting
to access the monitor will be notified in random order, independent on priority and
who has waited the longest.

23

Wait & Notify

The following methods on the Object class can be used for monitors:

void wait(): Causes the calling thread to wait until another thread calls
notify() or notifyAll() on the object wait() was called on. A thread can only call
wait() on an object o if it has the lock on o. This means wait() can only be
called inside a synchronized block of code.

void wait(long timeout): As wait() but with a maximum limit of time to
wait.

void notify(): Wakes a thread waiting for the object. If more than one thread
is waiting only one is notified.

void notifyAll(): Wakes all threads waiting for an object.

24

Note that a higher priority thread is not favored over a lower priority one in the
selection of which should receive a notification !

24

Inter—thread communication

A few common patterns of inter-thread communications are:

Wait & Notify Blocks current thread with monitor.wait()
and wakes up another thread with
monitor.notify()

Thread must hold lock when calling wait or
notify

Send & Receive Blocks current thread with socket.receive()
and wakes up another thread with
socket.send()

Can transfer information in the data being
sent

Also works between different programs.
Not dependent on a monitor

Agent An agent has its own life = its own thread
You can stimulate it and get responses
asynchronously. Sending a stimulus does
not wait for a response

Worker-thread All information is provided before the
thread starts.

Wait & notify might be a producer/consumer scenario. In general it is used when a
thread needs to wait for a condition to become true or a resource to be available.

States of 3 thread

« The life cycle of a thread can be described as

N

Created)——(Ready) ——

/

/N
f Com

26

Ready: Ready to run (Enabled)

Running;: The tread currently assigned CPU time
Sleeping: Waiting for a timeout

Joining: Waiting for another thread to die
Locking: Waiting for a lock on an object, or for I/0.
Waiting: Waiting for a notification

26

Blocking and unblocking

Thread state Caused by Changed by
Sleeping Thread.sleep() Time passed
Joining otherThread.join() otherThread dies
Waiting object.wait() object.notify()
Locking synchronized(object) | Object gets unlocked

or waiting for i.e. I/O

or resource available

27

27

Interrupting a thread

« Interrupting a thread is another way of
unblocking a thread and changing its
state.

» What state a thread will enter depends
on its state when interrupt() is called.

If it is sleeping or joining it will be
marked as ready again.

If it is waiting for a lock it will become
locking.

If a thread is either running, ready or
locking the interrupted status will be set
true but no Interrupted Exception is
thrown

Methods on Thread:

void interrupt(): Interrupts the thread it
is called on.

static boolean interrupted(): Returns
the interrupted status of the currently
running thread resets the value.

boolean isInterrupted(): Returns the
interrupted status on the thread it is
called on — without changing the value.

An Interrupted Exception is thrown
when interrupt() is called on a blocked
thread and it becomes running.

28

The Thread.interrupt method can seem a bit confusing. Despite what its name may
imply, the method does not interrupt a running thread.

What the method actually does is to throw an interrupt if the thread is blocked, so
that it exits the blocked state. More precisely, if the thread is blocked at one of the
methods Object.wait, Thread.join, or Thread.sleep, it receives an
InterruptedException, thus terminating the blocking method prematurely.

When a blocked thread is interrupted it becomes enabled and an
InterruptedException is thrown when it becomes running (when it is allocated CPU

time).

28

Stopping a thread

« For a thread to stop in an orderly
manner it needs to release its monitors
and notify any waiting objects before it
dies.

» There is a method on Thread called
stop(), but it is deprecated and unsafe to
use. If called it will stop the thread, but
it might leave the program in an
inconsistent state.

» The recommended way to stop a thread
is by using a private variable that is
checked regularly and changed if the
thread is to stop.

class MyThread {

private Thread running;

public void stop() {
running = null;

}

public void run() {
Thread thisThread = Thread.currentThread();
while (running == thisThread) {
/I do stuff

29

Other deprecated and unsafe methods on Thread are suspend() and resume(). You
can read more about them and why they should be avoided in the Java APIs

documentation of the Tread class.

Note that if a thread is blocked or waiting it may take a long time before it stops. One
way to solve this is by sending an InterruptedException, if the thread is programmed

to handle that:

public void stop() {
Thread tmp = running;
running = null;
tmp.interrupt();

b

29

Is Santa thread-safe ¢

In lecture 2 Santa was given as an
example of a Singleton object (an object
you only allow a single instance of)

public class Santa {
private static Santa santa;

public static Santa theOneAndOnly(){
if (santa == null) { // lazy instantiation

santa = new Santa();

Is Santa thread-safe?

}

return santa;

private Santa() {

30

Note that constructors and initializers cannot be synchronized

30

A summary of pitfalls

A summary of the pitfalls to avoid when using threads includes:

» Race conditions that can leave data inconsistent
» Deadlocks where blocked threads are waiting for each other
« Livelocks where threads are given CPU time, but are unable to progress

» Thread thrashing where excessive thread swapping leads to poor
performance

« Thread starvation where threads with a low priority never get CPU time
« Semantic behavior is changed

So when doing thread programming try to enforce:

Safety and Liveness

31

Deadlock occurs when some threads are blocked to acquire resources held by other
blocked threads. A deadlock may arise due to a dependence between two or more
threads that request resources and two or more threads that hold those resources. In
Java, thread deadlock can occur:

1. When two threads call Thread.join() on one another.

2. When two threads use nested synchronized blocks to lock two objects and the
blocks lock the same objects in different order.

Livelock occurs when all threads are blocked, or are otherwise unable to proceed
due to unavailability of required resources, and there are no unblocked threads to
make those resources available. In Java, thread livelock can occur:

1. When all the threads in a program execute Object.wait(0) on an object with zero
parameter. The program is live-locked and cannot proceed until one or more threads
call Object.notify() or Object.notifyAll() on the relevant objects. Because all the
threads are blocked, neither call can be made.

2. When all the threads in a program are stuck in infinite loops.

Thrashing occurs when a program makes little-to-no progress because threads
perform excessive context switching. This may leave little or no time for the
application (or applet) code to execute.

Starvation occurs when one thread cannot access the CPU because one or more
other threads are monopolizing the CPU. In Java, thread starvation can be caused by
setting thread priorities inappropriately. A lower-priority thread can be starved by
higher-priority threads if the higher-priority threads do not yield control of the CPU
from time to time.

Safety and Liveness are the two key principles of concurrent programming.

The Safety principle states "nothing bad can happen®, meaning data doesn’t get
inconsistent

The Liveness principle states "eventually, something good happens®, meaning there
is always at least one live thread that is capable of unblocking blocked threads.

31

Useful tools

« Some solutions to some specific classical concurrency problems:
—java.util.concurrent
—java.util.concurrent.locks
—java.util.concurrent.atomic

« Non-blocking input and output

—java.nio

« Explicit scheduling
—java.util.Timer
—java.util.TimerTask

32

If you plan on doing serious concurrent programming the these packages can be very
useful, but if you are new to the concept of threads they might be more confusing
than helpful. They are not required to solve any of the exercises given during this
course.

32

A last word on performance

Using threads has an impact on performance.
But you can minimize the effects by:

- Limiting the number of threads

- Making as few areas as possible synchronized

- Using fine-grained locks in order to decrease the time threads wait for a lock
- Prioritizing threads to make selected ones wait less than others.

- Consider using shallow copies (clones) when running through i.e. Collections
to avoid synchronizing large blocks of code.

33

33

