4-solutions.txt
Solutions to exercises from lecture 4 on Thread Programming
Ex. 1:

public class SlowPrinterEx{

public static void main(String[] args) {
int length = 20;
final String[] sl = new String[length];

final String[] s2 new String[length];

final String[] s3 new String[length];
for(int n = 0; n < length; n++) {
sl[n] = "A";
s2[n] = "B";
s3[n] = "C";
}
long startTime = System.currentTimeMillis();

SlowPrinter.blockingPrint (sl);
SlowPrinter.blockingPrint (s2);
SlowPrinter.blockingPrint (s3);

long t = (System.currentTimeMillis() - startTime) / 1000;
System.out.println();

System.out.println("Time for 3 blockingPrints: " + t + " seconds");
System.out.println();

startTime = System.currentTimeMillis();

SlowPrinter.nonBlockingPrint (sl);
SlowPrinter.nonBlockingPrint (s2);
SlowPrinter.nonBlockingPrint (s3);

while (SlowPrinter.busy != 0){} //wait for printing to complete or t
will be wrong

t = (System.currentTimeMillis() - startTime) / 1000;

System.out.println();

System.out.println("Time for 3 nonBlockingPrints: " + t + " seconds");

}

class SlowPrinter{

public static void blockingPrint(String[] s) {
for(int n = 0; n < s.length; n++) {
System.out.print (s[n]);
try{

Thread.sleep(100);

}

catch(InterruptedException e) {
// Never happens

}

}
static int busy = 0; // Is 0 when no threads are doing non-blocking printing

public static void nonBlockingPrint(final String[] s) {
busy++;
final Thread t = new Thread/() {
public void run () {
for(int n = 0; n < s.length; n++) {
System.out.print (s[n]);
try{
Thread.sleep(100);
}
catch(InterruptedException e) {
// Never happens
}

busy--;

Page 1

4-solutions.txt
t.start ();

Ex. 2:

(a) Two threads are implemented using anonymous inner classes. Each thread will write when
it starts and when it stops.

The thread tl waits for 2 seconds and then dies, t2 waits for tl to end and dies. When the
main thread is executed it will start tl and t2 and wait for t2 to die.

So what happens is: tl is started and paused, t2 is started and waits for tl. After 2 sec.
tl dies and allows t2 to die. When t2 dies the main thead is done as well.

(o)
package dk.itu.oop.lectured;

public class JoinSolution{
public static void main(String args[]) {
System.out.println("main started");
Thread tl = new Thread (new Joinl ());
System.out.println("tl made");
Thread t2 = new Thread (new Join2 (tl)):;
System.out.println("t2 made");
tl.start () ;
t2.start () ;
try{
t2.join();
}

catch(InterruptedException e) {

}

System.out.println("main finishes");

}

class Joinl implements Runnable({
public void run () {
System.out.println("tl started");
try{
Thread.sleep(2000);
}catch(InterruptedException e){ }
System.out.println("tl finishes");

}

class Join2 implements Runnable({

Thread tl1;
public Join2 (Thread tl) {
super () ;

this.tl = t1;
}

public void run () {
System.out.println("t2 started");

try{

tl.join();
} catch(InterruptedException e){ }
System.out.println("t2 finishes");

Ex. 3:
(a) The main thread and thread A exist. Thread A has the lock on objl.

(b) The main thread and threads A and B exist. Thread A has the lock on objl and thread B
has the lock on obj2.

Page 2

4-solutions.txt
(c) The main thread and threads A and B exist. Thread A still has the lock on objl and is
waiting for the lock on obj2. Thread B has the lock on obj2.

(d) The main thread and threads A and B exist. Thread A still has the lock on objl and is
waiting for the lock on obj2. Thread B has the lock on obj2 and is waiting for the lock on
objl.

(e) A deadlock.

Ex. 4:

/*

* Ex. 4.a We only synchronize inside the 'receiveTask' of Secretary. We could synchronize
the whole method, but it is

* always a good idea to restrict the synchronization as much as possible. In this case it
makes no difference...

*/

class Task {
String task;
public Task(String task) { this.task = task; }
public String toString() { return task; } }

class Boss extends Thread {
boolean running = true;
Secretary secretary;
Boss (Secretary secretary) { this.secretary = secretary; }

// ex 4.a
public void run () {
while (running) {

try { sleep(500 + (long) (Math.random()*2000)); }
catch (InterruptedException e) {}
secretary.receive (new Task (" (boss) write a letter"));
try { sleep(500 + (long) (Math.random()*2000)); }
catch (InterruptedException e) {}
secretary.receive (new Task (" (boss) clean my desk"));
// ex 4.c
if (secretary.tasks.size () > 7) {
System.out.println ("giving flowers");
secretary.receive (new Flowers());

}

class Student extends Thread {
boolean running = true;
Secretary secretary;
Student (Secretary secretary) { this.secretary = secretary; }

// ex 4.a
public void run () {
while (running) {
try { sleep(500 + (long) (Math.random()*2000)); }
catch (InterruptedException e) {}
secretary.receive (new Task (" (student) Do my homework"));
try { sleep(500 + (long) (Math.random()*2000)); }
catch (InterruptedException e) {}
secretary.receive (new Task (" (student) proof-read my assignment")); }

}

class Secretary extends Thread {
long taskTimeLength = 1000;
boolean running = true;

Page 3

4-solutions.txt
java.util.ArrayList<Task> tasks = new java.util.ArrayList<Task>();

public void receive (Task task) {
// ex 4.a
synchronized(this) {
tasks.add (task) ;
notify(); // ex 4.b ... wake up the secretary

}

// ex 4.c
public void receive (Flowers f) {
new SpeedUpThread(300, 10000).start();

public void run () {
while (running) {
if (tasks.size() > 0) { // If we assume a
precondition that there is only one secretary and that no other threads remove tasks,
Task t = tasks.remove (0); // it is ok not to
syncronize these two lines.
System.out.println ("working on '" + t + "'..");

try { Thread.sleep(taskTimeLength);
}catch (InterruptedException e) {}
System.out.println(tasks.size() + " tasks left...");
}
else { // ex 4.b
try {
synchronized(this) { wait(); } // we must gain
control of the monitor in order to be able to wait
} catch(InterruptedException e) {}
}

// ex 4.c This thread temporarily speeds up the tempo of the secretary
class SpeedUpThread extends Thread {
long newSpeed, duration;
SpeedUpThread (long newSpeed, long duration) {
this.newSpeed = newSpeed;
this.duration = duration;

}

public void run () {
long oldSpeed = taskTimeLength;
taskTimeLength = newSpeed;

try { sleep(duration); } catch(InterruptedException e) {}
taskTimeLength = oldSpeed;

public static void main(String[] args) {
Secretary secr = new Secretary():;
Student sl = new Student (secr);
Boss b = new Boss(secr);
secr.start ();
sl.start();
b.start ();

// ex 4.c - Maybe a bit artificial with an empty class, but it makes it easy to extend in
the future

class Flowers {}

Page 4

4-solutions.txt
Ex. 5:

public class MyTimer extends Thread {
MyTimerListener timerListener;
int timeBetweenCalls;
int repetitions;

public MyTimer (MyTimerListener timerListener, int timeBetweenCalls, int
repetitions) {
this.timerListener = timerListener;
this.timeBetweenCalls = timeBetweenCalls;
this.repetitions = repetitions;

}

public void run () {
int i=0;
try{
while (i<repetitions) {
this.sleep (timeBetweenCalls) ;
timerListener.timeAction () ;
i++;
}
} catch(InterruptedException e){ System.out.println("Interrupted!");

}

public static void main(String[] args) {
TimeUserX tl = new TimeUserX() ;
TimeUserO t2 = new TimeUserO() ;

MyTimer timerl = new MyTimer (tl,500,25);
MyTimer timer2 = new MyTimer (t2,3000,3);
timerl.start();
timer2.start () ;

}

public class TimeUserO extends Thread implements MyTimerListener {
public void timeAction () {
System.out.println ("0O");
}
}

public class TimeUserX extends Thread implements MyTimerListener {
public void timeAction () {
System.out.println ("X");

}

Page 5

}

