
1

OPI
Lecture 16

Thread Programming

Mette Jaquet
Jeffrey Sarnat

IT University Copenhagen

2

Today's schedule

Goal
• To give a basic understanding of “threads”, how they are used and what some

of the challenges are.

Contents
• What is a thread ?

• How are threads created and used ?

• Issues to consider when using threads

- Communicating between threads

- Scheduling threads

- Synchronization

- Deadlocks and other pitfalls to avoid

3

What is a thread ?

• A thread is shorthand for thread of execution

• In sequential programming there is only one thread.

• Sometimes it takes more than one thread to solve a problem…

A thread:

Is active

Runs code

Manipulates objects

An object:

Is passive

Points to code and data

4

Concurrency vs. Parallelism
time

CPU CPU1 CPU2

5

Multitasking vs. Multithreading

• Multitasking is a computers ability to
do multiple program executions
concurrently

• Each program has its own code, stack
and heap

• Multithreading is having multiple
threads in a program

• All threads access the same code and
share the same heap

• Each thread has its own stack for local
variables and method arguments

Stack

HeapCode

Stack

HeapCode HeapCode

Stack Stack

6

Blocking vs. non-blocking method calls
A blocking (synchronous) method call:

A non-blocking (asynchronous) method call:

A new thread executes the method

void callingMethod() {
…
blockingMethod();
…

}

void blockingMethod() {
…

}

void callingMethod() {
…
nonBlockingMethod();
…

}

void nonBlockingMethod() {
…

}

7

Usage of threads

• Responsive applications

• Monitoring the state of resources
– Databases, servers etc.

• Problems of a parallel nature
– I.e. simulations like Secretary.java

• Listening for events
– GUI
– Network packages

• Operations that take a while to complete
– Printing

8

Two ways of creating threads

By extending Thread:

Declaring:

class MyThread extends Thread {

 public void run() {

….. // loop doing something

 }

}

Starting:

MyThread threadObj = new MyThread();

threadObj.start();

By implementing Runnable

Declaring:

class MyRunnable implements Runnable {

 public void run() {

….. // loop doing something

 }

}

Starting:

MyRunnable runnableObj = new MyRunnable();

new Thread(runnableObj).start();

9

Thread constructors

• Thread()

• Thread(Runnable target)

• Thread(String name)

• Thread(Runnable target, String name)

 If a Runnable is passed to the constructor it will be the run() method on this object that is
invoked when the thread is started.

 If no Runnable argument is given the run() method on the Thread object is invoked.

 Note that a Thread can be given name. This can be quite useful when debugging.

10

Starting a thread
When working with Threads in Java you

always implement run() but call start()

Calling Thread.start() will create a new

thread and enable it.

If the Thread object is a subclass of

Thread the overridden run() method will

be called.

If the Thread instance was constructed

using a Runnable, run() on the Runnable

object will be called.

The method run() is for a thread what

main() is for objects.

A thread will start by running the code in

the run() method.

It may continue running code in other

methods, but it will always return and exit

from the run() method.

When the code in the run() method is

done executing the thread ceases to exist,

but the Thread object still exists.

11

A ThreadPrinterExample

The two different ways of starting threads
are shown to the right:

What will happen when the main() method
below is executed?

class ThreadPrinterExample {
public static void main(String[] args) {

Print p0 = new Print();
Printer p1 = new Printer('|');
Printer p2 = new Printer('-');
p1.start();
p2.start();
new Thread(p0).start();

}
}

class Print implements Runnable {
 public void run() {
 for(int i = 0; i < 50; i++)
 System.out.print("R");
 }

 public void start() {
System.out.println("Hi there!");

 }
}

class Printer extends Thread {
char character;

Printer(char character) { this.character = character; }

 public void run () {
 for(int i = 0; i < 50; i++)
 System.out.print(character);
 }
}

12

Joining threads

Two threads can be merged by calling join().

The calling thread will wait for the thread join() is called on to die before it
continues.

So if threadA calls threadB.join(), then threadA will be the one waiting for
threadB to die.

If join(long millis) is called, the thread will sleep till the thread it was called on
dies, or the given time has elapsed.

13

Daemon threads

Normally a program will continue to run as long as there are any live threads.

An exception to this is daemon threads.

A daemon thread is made by setting Thread.setDaemon(true)

If a new thread is created by a daemon thread it will itself be a daemon thread.

Daemon threads are usually used for processes that run in the background for

an extended period of time. I.e. monitoring state of resources or collecting

garbage.

14

Scheduling

Thread scheduling determines how threads are allocated CPU time.

Some approaches are:

Preemptive scheduling – the scheduler pauses (preempts) the running thread
to allow others to execute.

 Non-preemptive scheduling – a running thread is never interrupted. The
running thread must yield control to the CPU.

Both types can cause livelocks where threads are assigned CPU time but never

progress.

Non-preemptive scheduling may also cause thread starvation where low-

priority threads never are assigned CPU time.

15

Priorities

In Java scheduling is preemptive and based on priorities of threads.

When the scheduler assigns control to a thread it generally favours the one with
the highest priority.

The methods used to influence thread-scheduling with priorities are:

 setPriority(int newPriority)
 getPriority()
 Thread.yield()

The yield() method will voluntarily give up the control and let the scheduler
activate another thread.

Inappropriate use of priorities might lead to thread-starvation

16

The challenge of sharing data

Local variables and method arguments are placed on the stack and are not
available to other threads.

But objects and their fields are located in the heap and can be accessed by
multiple threads.

When multiple threads read, modify and update data simultaneously a
dependency on timing is introduced.

A situation may occur where the values that are updated depend on the
timing. When different threads race to store their values it is called a race
condition.

17

An example of a race condition

 Imagine a bank account with an initial
balance of 500.

 Two transactions A and B are requested.

 Transaction A deposits 200 units.

 Transaction B withdraws 100 units.

 What is the balance after the two
transactions are done ?

 The answer should be 600, but it will
depend on the timing…

Thread A: // +200

- Get balance (500)

- Calculate new balance (700)

 - Save new balance (700)

Thread B: // -100

- Get balance (500)

- Calculate new balance (400)

 - Save new balance (400)

18

So what we need is..

A semaphore !

19

Restricting access
Some classical ways of restricting access to critical regions are:

Semaphores
– Are like flags signaling availability. They can be counting semaphores allowing a

finite number of threads to enter at the same time, or binary semaphores allowing
only one

Locks
– Are binary semaphores that can only be released by the thread holding the lock

Monitors
– Are encapsulations of resources that can only be accessed under certain conditions.

A conditional expression determines if a given thread may enter the monitor or
not

20

Synchronization
 Some sequences of instructions depend on

the state of an object to be unchanged.

In Java the keyword synchronized is used to

mark such critical regions of code that have

 to be executed in an atomic manner.

Java has a single lock associated with

every object, array and class, and any thread

entering a synchronized area of code is

blocked if there is already another thread

holding the lock on the requested object.

Statements can be synchronized…

 synchronized (this) {

// critical code

 }

..or methods can be synchronized

 synchronized void myMethod () {

// critical code

 }

21

Deadlocks

• Most commonly occur when threads are mutually blocking each other.

• Not normally detected by runtime system

• Often not detectable because it only shows under certain timing constraints.

• Avoid by design !

An Example:

 Thread 1 Thread 2

syncronize(A){ syncronize(B){

 syncronize(B) { syncronize(A){

… …

 } }

} }

22

Avoiding deadlocks

• A rule of thumb to avoid having deadlocks, is to avoid having code in a
restricted area that can halt a thread.

• If multiple locks are required, one way to avoid deadlocks is to use
hierarchical locking where locks are always requested in the same order

It would not have been a problem if the previous example had been:

Thread 1 Thread 2

syncronize(A){ syncronize(A){
 syncronize(B) { syncronize(B){

… …
 } }
} }

23

Monitors
 A monitor encapsulates an object

ensuring that only one thread at a time
can access the monitor.

 Other threads will be blocked until the
monitor is available.

 In Java a monitor can be implemented
by making all fields of a class private
and all areas that manipulate the fields
synchronized.

Thread A
Thread B

Monitor

24

Wait & Notify
The following methods on the Object class can be used for monitors:

void wait(): Causes the calling thread to wait until another thread calls notify()
or notifyAll() on the object wait() was called on. A thread can only call wait()
on an object o if it has the lock on o. This means wait() can only be called
inside a synchronized block of code.

void wait(long timeout): As wait() but with a maximum limit of time to
wait.

void notify(): Wakes a thread waiting for the object. If more than one thread
is waiting only one is notified.

void notifyAll(): Wakes all threads waiting for an object.

25

Inter-thread communication
A few common patterns of inter-thread communications are:

An agent has its own life = its own thread

You can stimulate it and get responses
asynchronously. Sending a stimulus does
not wait for a response

Agent

All information is provided before the
thread starts.

Worker-thread

Blocks current thread with socket.receive()
and wakes up another thread with
socket.send()

Can transfer information in the data being
sent

Also works between different programs.

Not dependent on a monitor

Send & Receive

Blocks current thread with monitor.wait()
and wakes up another thread with
monitor.notify()

Thread must hold lock when calling wait or
notify

Wait & Notify

26

States of a thread
• The life cycle of a thread can be described as

27

Blocking and unblocking

Locking

Waiting

Joining

Sleeping

Thread state

object.notify()object.wait()

Time passedThread.sleep()

Changed byCaused by

Object gets unlocked

or resource available

synchronized(object)

or waiting for i.e. I/O

otherThread diesotherThread.join()

28

Interrupting a thread
• Interrupting a thread is another way of

unblocking a thread and changing its
state.

• What state a thread will enter depends
on its state when interrupt() is called.

• If it is sleeping or joining it will be
marked as ready again.

• If it is waiting for a lock it will become
locking.

• If a thread is either running, ready or
locking the interrupted status will be set
true but no InterruptedException is
thrown

Methods on Thread:

void interrupt(): Interrupts the thread it
is called on.

static boolean interrupted(): Returns
the interrupted status of the currently
running thread resets the value.

boolean isInterrupted(): Returns the
interrupted status on the thread it is
called on – without changing the value.

An InterruptedException is thrown
when interrupt() is called on a blocked
thread and it becomes running.

29

Stopping a thread
• For a thread to stop in an orderly

manner it needs to release its monitors
and notify any waiting objects before it
dies.

• There is a method on Thread called
stop(), but it is deprecated and unsafe to
use. If called it will stop the thread, but
it might leave the program in an
inconsistent state.

• The recommended way to stop a thread
is by using a private variable that is
checked regularly and changed if the
thread is to stop.

class MyThread {

 private Thread running;

 public void stop() {

 running = null;

 }

 public void run() {

 Thread thisThread = Thread.currentThread();

 while (running == thisThread) {

// do stuff

 }

 }

}

30

Is Santa thread-safe ?

 In lecture 2 Santa was given as an
example of a Singleton object (an object
you only allow a single instance of)

 Is Santa thread-safe?

public class Santa {

private static Santa santa;

public static Santa theOneAndOnly(){

 if (santa == null) { // lazy instantiation

santa = new Santa();

 }

 return santa;

}

private Santa() {

….

}

31

A summary of pitfalls
A summary of the pitfalls to avoid when using threads includes:

• Race conditions that can leave data inconsistent

• Deadlocks where blocked threads are waiting for each other

• Livelocks where threads are given CPU time, but are unable to progress

• Thread thrashing where excessive thread swapping leads to poor
performance

• Thread starvation where threads with a low priority never get CPU time

• Semantic behavior is changed

So when doing thread programming try to enforce:

Safety and Liveness

32

Useful tools

• Some solutions to some specific classical concurrency problems:
–java.util.concurrent

–java.util.concurrent.locks

–java.util.concurrent.atomic

• Non-blocking input and output
–java.nio

• Explicit scheduling
–java.util.Timer

–java.util.TimerTask

33

A last word on performance

Using threads has an impact on performance.

But you can minimize the effects by:

- Limiting the number of threads

- Making as few areas as possible synchronized

- Using fine-grained locks in order to decrease the time threads wait for a lock

- Prioritizing threads to make selected ones wait less than others.

- Consider using shallow copies (clones) when running through i.e. Collections
to avoid synchronizing large blocks of code.

