
1

1

OOP Lecture 6

Reflection

Kasper Østerbye

&

Mette Jaquet
IT University Copenhagen

2

2

Today's schedule

• Reflection

–modelling a domain vs. modelling objects

• Two examples

–Checking that all fields are private and have a getter method

– A unit testing framework

• Annotations

–Adding metadata to programs

• Overview of the reflection API

• Summary

3

3

Concepts

A program which manipulates or
examines itself is called reflective.

• Introspectionmeans examining
properties of the program

• Intercession/Manipulation, means
changing properties of the program

• Structural reflection means to have
access to the structure of the program,
e.g. classes, methods, fields.

• Behavioural reflection means to have
access to the run-time aspects, e.g. how
objects are created, how methods are
called.

• Reflection can take place at compile-
time, load-time, or run-time.

• Traditionally one has in OOP only
considered full reflection, that is both
introspection and intercession, and both
structural and behavioural, and at run-
time.

• Noone has ever succeeded in making
full reflection efficient.

4

4

Usages of reflection

• To find out which methods a class has at
run-time

– Unit testing

– Debugging

– Plug and play systems

• Dynamic loading and maintenance of
running systems

• Enterprise beans

• General storage and transmission of
objects

• Redefining how method invocation is
done, to achieve distribution.

• Transparent persistence.

• Programming language adaptation

• Object browsers

• Semantic checkers

In Java we can navigate the class structure
using the java.lang.reflect package, and
the class Class from java.lang.

Some of the methods of Class are:

getClass() returns the class for any object.

getDeclaredFields() returns an array of all fields
in a class.

getDeclaredMethods() returns an array of all
methods in a class.

newInstance() creates an instance of the class.

getInterfaces() returns an array of interfaces

Some of the methods of Method are:

getParameterTypes() returns an array of Class

getModifiers() returns an integer representing
which modifiers it has.

invoke(Object, Object[]) calls the method.

We will examine the practical usage of the reflection API in greater detail in the rest of
the lecture.

It is an absolute necessity to examine and browse the API to solve the exercises. In the
lecture we will examine some of the more important aspects, but not all.

5

5

Philosophically aside

The objects in the application models
aspects in the application domain.

E.g.

But real cars do not have a toString
method.

•The solution is to model the classes too.

•A class whose instances are classes, is
called a metaclass.

• The program contains not only a model
of the application objects, but also a
model of itself, which is why it is called
reflective

Class
name

superclass
fields

methods
new()

toString(obj)

Modeling

From a symmetry argument, there has
to be a model of the model of the model
etc. This is often ’solved’ by a loop.

Car
color
length

maxSpeed
start()

turn(angle)
crash()

Modeling

toString()

Modeling

Different object oriented programming languages handle the notion of meta classes very
differently.

• Classes are not modelled in the language – C++ is an example of this

• Classes are modelled in the language, but cannot be changed at runtime (Java is
an example of this).

• Classes are modelled in the language, and can be changed at runtime – Smalltalk,
Clos, and some research versions of Java are examples.

There is also an interesting naming issue involved in the notion of Metaclasses.

Normally the name of a class is really a common name of its instances, not the class itself.
Car is the name of a class whose instances are (models of) car’s.

Therefore, the class named Class above is the class whose instances are classes.

In java, class Class is an instance of it self (Talk about a chicken and egg solution – the
chicken is the egg!).

Fortunately, one does not have to worry too much on these philosophical issues to just
use reflection for practical programming.

6

6

The meta-model – an example

class Car{

private Person owner;

private String make;

public Car(String make, Person owner){

this.make = make;

this.owner = owner;

owner.setCar(this);

}

public void setOwner(Person owner){

this.owner.setCar(null);

this.owner = owner;

owner.setCar(this);

}

public String toString(){

return make +" owned by " + owner;

}

}

Car:Class

fields:Fields[] [,]

constr:Constructor[] []

methods:Method[] [,]

Field

name:String

type:Class

Field

name:String

type:Class

Method

name:String

returntype:Class

argTypes: Class[]

throws:Class[]

Method

name:String

returntype:Class

argTypes: Class[]

throws:Class[]

Constructor

name:String

argTypes: Class[]

throws:Class[]

Please note that the reflective objects represent the structure of the program. The class
Field represents the declaration of the field, not a field in a specific object.

Even if no instance of a Car is created the structure shown by the meta model above will
exist.

7

7

Encapsulation checker

Assume we have a rule that all fields
should be private, and they should have a
public getter.

Write a program that gives an error for
each field where this rule is broken.

The program to the right shows the
outline of the program.

import java.lang.reflect.*;

class EncCheck {

StringBuffer errorLog = new StringBuffer();

Class clazz; // The class we are examining

public void check(Class c)

throws Exception {

//… do the check and print out errors

}

public static void main(String[] args)

throws Exception {

String className = args[0];

Class c = Class.forName(className);

EncCheck checker = new EncCheck();

checker.check(c);

}

}

dos:>java EncCheck dk.oop.itu.lecture6.MyClass

We have not used the arguments for the main methods often, but here is an example. To
use this program, we will call it from a prompt

java EncCheck name-of-class-file-to-be-checked.

Notice, for reflection to be used, the program to be examined must be able to compile.
That is, the class we want to check must be compiled by the javac compiler first.

The reflection package is very very full of methods which can throw exceptions. The code
for this example simply solves this by having nearly all methods throw Exception.

The code above uses the static method forName in class Class, to find the class object for
the corresponding string name. This is one of two typical situations. Either we, like here,
have the name of a class (or method or field), and need to find the corresponding object.
The other typical situation is that we have an array of classes (or more often methods or
fields), and we need to search for a specific one, or we need to do something for all of
them.

The definition of forName is:

public static Class forName(String className)

throws ClassNotFoundException

Do not confuse the class name Class with the keyword class. Class above is the return
type of the method ’forName’.

8

8

Finding all fields

The first thing we need to do is to find all
fields in the class, and make sure they are
private.

Does the rule apply to static fields as well?
We will ignore static fields.

The underlined aspects are part of the
reflection package, the rest is plain java.

List<Field> nonStaticFields;

public void findAllNonStaticFields(){

Field[] fields = clazz.getDeclaredFields();

nonStaticFields = new ArrayList<Field>();

for (Field f : fields){

int modifiers = f.getModifiers();

if (! Modifier.isStatic(modifiers))

nonStaticFields.add(f);

}

}

The method getDeclaredFields returns all the fields declared in the class, but it does not
give us the fields of the super class. However, we can check the superclass independently,
because private fields cannot be used in the subclass anyway.

There is also a method called getFields that returns all public fields that are declared in a
class or inherited from its superclass. This method however does not return private and
protected fields.

All methods in the reflection package that return collections, use plain arrays for this.

The for loop examines each field in turn.

The getModifiers method returns an integer, which might at first seem quite strange. The
integer contains a coding of a set of modifiers. In the class Modifier, there is a range of
methods which can be used to check if a given modifier is in that set.

The implementation is using the integer as a bitmap. If we look at only three modifiers
public, static, final, we can say that public is represented by bit 0, static by bit 1, and final
by bit 2. A public static final field is then represented as 20+21+22 = 7, and one which is
only final is represented as 22=4. A public final is represented as 20 + 22 = 5. This is a
standard trick in programming, it is very efficient for small sets.

The modifiers do therefore only exist as bit-patterns in an integer, and it is not possible to
make methods on integers. Therefore there is a class Modifier, which has all its methods
static, and expect the argument to be a bitmap encoded the right way.

If you do not want to be bothered by bitmaps, just note the way it is used in the code
above, that is the standard way.

9

9

Checking that all non-static fields are private

This is a combination of using an iterator,
and the somewhat funny way to check for
the modifiers.

Alternatively, the check could be written
in one line:

Modifier.isPrivate(f.getModifiers())

Some find that more succinct

public void ensurePrivate() {

for (Field f : nonStaticFields){

int modifiers = f.getModifiers();

if (! Modifier.isPrivate(modifiers))

errorLog.append

(f.toString() + " is not private\n");

}

}

The errorLog depends on the field having a toString method. It will print the type of the
field, and the name of the field and what class the field is located in.

10

10

Check that there are get accessors for each field

Here we use the method getMethod on
Class, which finds a method based on the
signature of the method.

The signature of a method is its name,
and the type of the parameters.

We follow the principle of accessors
having the same name as the field, but
prefixed by ”get”, and the first letter of
the field name as upper case.

E.g. if the field is named foo, the getter is
named getFoo.

private static final Class[] noParameters = new Class[0];

public void ensureGetters(){

for (Field f : nonStaticFields){

try{

clazz.getMethod(getter(f), noParameters);

}catch(NoSuchMethodException ex){

errorLog.append

(f.toString() + " has no accessor\n");

}

}

}

private String getter (Field f){

String name = f.getName();

String first = name.substring(0,0).toUpperCase();

String rest = name.substring(1,name.length());

return "get"+ first + rest;

}

The method getMethod will throw an exception if there is no method with the requested
signature. We catch this, and write a note to the error log.

If we run the program with itself as input, we get the following warnings:

java.lang.StringBuffer EncCheck.errorLog is not private

java.lang.Class EncCheck.clazz is not private

java.util.List EncCheck.nonStaticFields is not private

java.lang.StringBuffer EncCheck.errorLog has no accessor

java.lang.Class EncCheck.clazz has no accessor

java.util.List EncCheck.nonStaticFields has no accessor

If we examine the first line, we can see that the field is printed in the format

FieldType FieldClass.FieldName

java.lang.StringBuffer is the type of the field, EncCheck is the name of the class
containing the field, and errorLog is the name of the field in that class.

11

11

Specifying signatures

The method getMethod() takes as argument the name of the method, and an array of
classes, which specify what parameters the method expects.

Assume we have a method

foo(boolean b , Person p, int i)

The parameters should be written up as the elements in an array

Such an array can be written as:

Class[] fooParam = new Class[] {boolean.class, Person.class, int[].class};

In general, one can obtain a class object for a given class, interface or primitive type as

type.class

12

12

Test Driven Development

Unit testing is one of several core practices of the eXtreme Programming

(XP) methodology.

Using a testing framework like JUnit, tests for all classes in a system can be

collected in a test suite, and all tests can be run and evaluated by a push on

a button.

Some benefits of unit testing:

• Quick feedback

• Automated validation of testresults

• Confidence in the code

• Collective code ownership

• Reuse of tests

XP features around 12 core practices and many of them are related and enhance the
benefits of each other. Some of the other practices that work very well with test driven
development are:

• Continuous integration

• Refactoring

• Simple Design

• Collective code ownership

13

13

Unit Testing

The principle is that together with the development of a class, one should also

write a set of tests, to ensure that the class works as expected.

Unit testing step by step:

1. Write one test.

2. Compile the test. It should fail, as you haven't implemented anything yet.

3. Implement just enough to compile.

4. Run the test and see it fail.

5. Implement just enough to make the test pass.

6. Run the test and see it pass

7. Repeat from the top.

14

14

Test framework

A framework to be used for
performing unit tests can be
implemented using reflection.

The next slides are about the
development of such a system
and how to write the tests.

A typical test class might look
as the class to the right.

Each method that is prefixed
by ”test” should be executed.
All failures are collected and
printed in the main method.

public class MyTestClass extends TestClass

{ public void testParseInt(){

check("'123' is 123",Integer.parseInt(”123”)==123);

}

public void testParseDouble(){ //Should fail

check("15 is 12.5",Double.parseDouble(”15”) == 12.5);

}

public void testStringEquality(){

String s = "abc";

check("abc is aBc", s.equalsIgnoreCase("aBc"));

}

}

// main method in some class – does not matter which

public static void main(String[] args){

System.out.println(

UnitTester.testTheClass("dk.itu.oop.lecture6.MyTestClass"));

}

The underlined method calls are those which play an important role in the test
framework.

The essence of a TestClass is that it has a number of testMethods, each one containing
one or more check’s.

When one runs a Test, each test method is executed, and the results of each test method
is recorded, and printed in the end.

In the above, the testing framework has two visible parts. First, the class MyTestClass
extends the general TestClass. The purpose is to inherit the check method used in each
test method. Second, in the main method, the static method testTheClass gets the name of
the class to be tested as argument.

The testTheClass method does the following steps:

1) Look up the class with the name given as parameter

2) Finds all methods that have a name starting with “test”

3) Execute those methods, collecting the results as we go along.

We will look at each in turn.

15

15

The TestClass

This is possibly the simplest TestClass
which can be used.

It defines two check methods, each taking
a boolean condition expected to be true.
One also has a String parameter
describing the test.

In addition a CheckFailure exception is
declared. If a check fails, this exception is
thrown.

public class TestClass {

public class CheckFailure extends RuntimeException {

public String msg;

CheckFailure(String msg){

this.msg = msg;

}

}

protected void check(boolean expr) throws CheckFailure{

if (!expr)

throw new CheckFailure("Check failed");

}

protected void check(String msg, boolean expr)

throws CheckFailure{

if (!expr)

throw new CheckFailure(msg);

}

}

The check methods are protected, as they are only intended to be used from subclasses of
TestClass – for example in MyTestClass on the previous slide.

In the test framework JUnit, there are many different check methods, in particular many
that compare two values

check(String msg, int expected, int observed)

check(String msg, double expected, double observed)

etc.

As part of the exercises, you are expected to extend the framework with some of these
methods.

16

16

The unit tester

Note that the testTheClass method is
static, but creates an instance of
UnitTester in the body.

We will examine each of the three
auxiliary methods in turn.

private void setClass(String className)

throws ClassNotFoundException,

InstantiationException,

IllegalAccessException {

testClass = Class.forName(className);

testObject = testClass.newInstance();

}

The method forName is as in the
EncChecker.

newInstance() makes a new Object from
testClass.

public class UnitTester{

/** testClass is the class that contains the

testcases */

private Class testClass;

/** testMethods is an list of the methods that

contain the tests to be executed */

private List testMethods;

/** testObject is an instance of testClass. */

private Object testObject;

…

public static String testTheClass(String name){

try{

UnitTester ut = new UnitTester();

ut.setClass(name);

ut.getMethods();

return ut.performTests();

}catch(Exception uups){

return "Could not find class " + name;

}

}

}

The setClass method is a method in the UnitTest class.

It potentially throws a lot of different exceptions. ClassNotFound is thrown if the
className is not found in the class path. The className must be a fully qualified name,
that is, prefixed with the package name.

InstantiationException is thrown by the newInstance() method if testClass is abstract, is
an interface, an Array, a primitive class (such as int), or has no argumentless constructor.

InstantiationException is thrown by the newInstance() method if testClass or its
argumentless constructor is not accessible.

Note. In normal Java, new objects are created with an expression ”new
ClassName(args)”. This syntax does not allow ClassName to be a String variable, nor a
Class variable, it has to be a name of a class so that the compiler can check it when the
code is compiled.

17

17

Finding the methods which start with ’test’

The method is very similar to the one we
used in EncCheck to find all the fields.

getMethods returns an array of all
methods in the class.

Each method can be asked about its name
using getName.

All methods which starts with ’test’ are
stored in the List testMethods.

private List<Method> testMethods;

private void getMethods(){

testMethods = new ArrayList<Method>();

try{

Method[] allMethods = testClass.getMethods();

for (Method m : allMethods){

if (m.getName().startsWith("test")){

testMethods.add(m);

}

}

}catch(SecurityException whatWasThat){

}

}

This method here is in essence a filter which takes as input all methods in the class, and
as output gives all methods which starts with ”test”.

Note how the variable testMethods is declared to be of the interface type list, but
instantiated to be an instance of ArrayList. There is no deeper reason for this, but to give
an example of how such interfaces are used.

18

18

Calling the test methods

The key method here is invoke. It takes two
arguments:

– the object on which to call the method (the
object that will be this in the method call)

– an array of Objects to be given as
arguments to the method.

So a method normally called as:

myObj.m(args)

can be called using reflection as:

m.invoke(myObj, args)

instanceof is a Java operator, which returns true if
the object on the left hand side is an instance of
the class on the right hand side.

private String performTests(){

String result = "Test of " + testClass.getName() + "\n";

for (Method m: testMethods){

try{

m.invoke(testObject,new Object[0]);

result += m.getName() + " OK\n";

}catch(IllegalAccessException ignore){}

catch(IllegalArgumentException ignore){}

catch(InvocationTargetException uups){

Throwable target = uups.getTargetException();

if (target instanceof TestClass.CheckFailure)

result += m.getName() +" Check failed: ”

+ ((TestClass.CheckFailure)target).msg + "\n";

else

result += m.getName() + " Exception: ”;

}

}

return result;

}

The invoke method will throw an IllegalArgumentException if the elements in the array do not
match in type and position with the parameters declared in the method.

The execution of the method might throw all kinds of exceptions which we cannot know
about. These are encapsulated into an InvocationTargetException, which basically means
that the reflective call was all right, but the method failed because of another problem.

One source of failure is that the check method threw a CheckFailure exception. Those
failures we want to deal with and report that the check failed. One can get to the original
exception by the getTargetException method.

The if statement checks to see if the target (that is, the real problem) is the CheckFailure
exception. In that case we report that the check failed. Otherwise the problem was
something else, and we report that another exception caused the problem.

Please observe, in the code on the net, the error messages are more elaborated than
shown above.

19

19

The Java Meta model

Class

ClassLoader

AccessibleObject

Method Constructor Field

Modifer

Array

Object

Membership

Instantiation

Inheritance

Dotted classes have not been used in
these slides, squared ones have.

The ClassLoader object we have not examined, but it was briefly mentioned in connection
with the lecture on packages. It is the class loader which is responsible for getting classes
from the file system into the virtual machine. The standard class loader is the one which
uses the CLASSPATH variable to control this.

We will not look further on the class Array. It provides static methods to dynamically
create and access Java arrays.

20

20

The class Class

The class Class represents four different
types of java objects, classes, interfaces,
primitive types, and array types.

One can ask a Class what kind of class it is
by using the boolean methods: isArray(),
isPrimitive(), isInterface() – if all return
false, it is a class.

The class can tell what its super class is
(getSuperClass) and which interfaces it
implements (getInterfaces).

The class can tell which inner classes it
has (getClasses), and an inner class can
tell what class it is inner in
(getDeclaringClass).

A class can tell which fields, methods, and
constructors it contains.

The class Class is part of java.lang, and
need not be imported to be used.

There are several ways of retrieving a
Class object, i.e. the Class object for
Person can be obtained using :

Class c1 = hans.getClass();

Class c2 = Class.forName(“Person”);

Class c3 = Person.class;

Note: When using reflection remember that not all operations make sense on all 4 types
of Class objects. For instance it will not make much sense to call getConstructors() on an
Interface or getFields() on an Array.

21

21

Field & AccessibleObject

The class Field represents field variables
in a class, both static and non-static fields.

– Class getDeclaringClass()

– int getModifiers()

– String getName()

– Class getType()

– Object get(Object obj)

– boolean getBoolean(Object obj)

– X getX(Object obj)

– void set(Object obj, Object value)

– void setBoolean(Object obj, boolean z)

– void setX(Object obj, X d)

X can be any primitive type, but that
would be too many methods to fit on a
slide.

AccessibleObject is an abstract super class
for Field, Method, & Constructor.

Its purpose is to allow us to mark a
reflected entity to suppress access control.

– boolean isAccessible()

– void setAccessible(boolean flag)

There is a security control mechanism
which can be set in the virtual machine, to
prevent the manipulation of this flag.

The object passed as argument to get is necessary, because the Field object is a Field in a
class, not a field in a specific object.

Thus, if the Field object f represents the field name of type String in a class Person, then
to find the name of the object representing a specific person p, we find that through the
call f.get(p). The more obvious call might have been p.getField(f), but that would mean
that all the reflective method getField would have been placed in class Object.

With the f.get(p) design, we can separate the reflective methods from the plain methods.

22

22

The classes Method & Constructor

The class Method represents a method in
a class.

– Class getDeclaringClass()

– Class[] getExceptionTypes()

– int getModifiers()

– String getName()

– Class[] getParameterTypes()

– Class getReturnType()

– Object invoke(Object obj, Object[] args)

The class Constructor represents a
constructor in a class. It has nearly the
same methods as Method:

– Class getDeclaringClass()

– Class[] getExceptionTypes()

– int getModifiers()

– String getName()

– Class[] getParameterTypes()

– Object newInstance(Object[] initargs)

The difference being that it has no return
type, and that the invoke method is named
newInstance.

The arguments to a method call is an Object array, but what to do if the method expects
two int’s, as in a method declared as

class InvokeTest{

int c = 8;

int sum(int a, int b){ return a+b+c;}

}

If we want to invoke the sum method on an object o of type InvokeTest with the
arguments 2 and 5, it must be done as:

Method m = … code that finds the sum method…;

Object[] arguments = new Object[]{new Integer(2), new Integer(5)};

Integer resultInteger = ((Integer)m.invoke(o, arguments));

int result = resultInteger.intValue();

Thus, primitive arguments must wrapped in their corresponding wrapper types. They are
automatically unwrapped when calling sum. Similarly, the result of sum, which is an int,
is automatically wrapped in an Integer.

Also note, it takes 20-100 times longer to call a method using reflection than calling it
directly.

23

23

Introducing annotations

- Inspecting meta data can be done using reflection

- Adding custom metadata can be done using annotations

Annotations are used by three types of tools:

• General tools

– I.e. compilers, JavaDoc

• Specific tools

– I.e code generators

• Introspectors

– That access annotations at runtime using reflection

Annotations are a new part of the Java language introduced with Java 5.0

Their purpose is to give a way of adding semantic meta data to programs. In earlier
versions of Java there was no formal way of adding metadata to a program, so tools
depending on metadata had to depend on solutions as naming conventions (as in
testmethods in unit testing) and tags used in comments (as in JavaDoc)

24

24

Types of annotations

There are three types of annotations:

• Marker annotations

– Have no parameters

• Single member annotations

– Have a single unnamed parameter

• Normal annotations

– Have several members

@Test

public void myTestMethod() {…}

@Author(“John Doe”)

public class MyClass {…}

@Author(company=“NN Inc.”,
@Name(firstname=“John”,

lastname=“Doe”))

interface MyInterface {…}

The parameters or members of annotations can be primitive types (int, boolean etc.),
Strings, Class types, enumerations, other annotations or arrays of these.

All of the following Java elements can be annotated:

Packages, interfaces, classes, constructors, methods, parameters, local variables,
enumerations and annotations.

In order to use annotations the java.lang.annotation package has to be imported.

25

25

Predefined annotations

@Retention has a RetentionPolicy defining
how long to retain the annotations.

Possible values are:

SOURCE

discarded by compiler

CLASS (= default value)

retained by compiler, not loaded by VM

RUNTIME

retained by compiler and loaded runtime

If annotations are to be accessed using

reflection the RetentionPolicy has to be set to

RUNTIME.

@Target defines what types of Java
elements can be annotated by this
annotation.

Possible values are:

TYPE (class, interface or enum)

ANNOTATION_TYPE

CONSTRUCTOR

METHOD

PARAMETER

FIELD

LOCAL_VARIABLE

PACKAGE

There are several other predefined annotations that we won’t cover here. If you want to
read more about them look in the documentation for java.lang.annotation

The two mentioned annotations are both annotations on annotations. Others like i.e
@Deprecated can be used on other Java elements than annotations.

When setting the retention policy and target of annotations the syntax is:

@Target(ElementType.METHOD)

@Retention(RetentionPolicy.RUNTIME)

26

26

Declaring annotations

A new keyword @interface is used for declaring

annotations. An annotation has a name and

possibly some member methods.

Members can be given default values using the

default keyword. If no default value is given the

value must be specified when the annotation is

applied.

So all of the following are correct:

@MyAnno(someValue=2, otherValues={}, yetAValue=“Hi”)

@MyAnno(someValue=17, otherValues={“a”})

@MyAnno(otherValues={“a”,”b”,”c”})

public @interface Marker { }

public @interface SingleMember {

String value();

}

@Retention(value=RUNTIME)

@Target(value=METHOD)

public @interface MyAnno {

int someValue() default 0;

String[] otherValues();

String yetAValue() default "[blank]";

}

There are some restrictions on annotation declarations:

• No extends clause is permitted. (Annotation types automatically extend a new marker
interface, java.lang.annotation.Annotation.)

• Methods must not have any parameters.

• Methods must not have any type parameters (in other words, generic methods are
prohibited).

• Method return types are restricted to primitive types, String, Class, enum types,
annotation types, and arrays of these types.

• No throws clause is permitted.

If an annotation with just one member called value() is declared it can be accessed

using the shorthand notation:

@SingleMember(“Hi”)

instead of

@SingleMember(value =“Hi”)

27

27

Applying annotations

Annotations can be applied at several levels,

and several different annotations can be

applied at each level.

Arrays of values are entered in brackets {} with

commas between the values.

@ClassLevelAnnotation(arg1="val1",
arg2={"arg2.val1","arg2.val2"})

public class AnnotationExample {

@FieldLevelAnnotation()

public String field;

@ConstructorLevelAnnotation()

public AnnotationExample() {

// code

}

@MethodLevelAnnotationA("val")

@MethodLevelAnnotationB(arg1="val1“,
arg2="val2")

public void someMethod(String string) {

// code

}

}

An annotation marker is placed immediately before the element it annotates, like a
modifier.

An element can have several annotations listed in a row, but only one of each type (again
like modifiers).

28

28

Accessing annotations

Annotations can be inspected at runtime using reflection.

The classes Class, Field, Method and Constructor all have the methods:

boolean isAnnotationPresent(MyAnno.class) returns true if an annotation of
the given annotation type exists on this element

Annotation getAnnotation(MyAnno.class) returns the annotation of the given
annotation type if any exists on this element

Annotation[] getDeclaredAnnotations() Returns all annotations that are
directly present on this element

Annotation[] getAnnotations() Returns all annotations that are present on this
element, including those inherited

29

29

HelloWorldAnnotationTest

// The Annotation Type

@Retention(RetentionPolicy.RUNTIME)

@interface SayHi {

public String value();

}

// The Annotated Class

@ SayHi("Hello, class!")

class HelloWorld {

@ SayHi("Hello, field!")

public String greetingState;

@ SayHi("Hello, constructor!")

public HelloWorld() {

}

@ SayHi("Hello, method!")

public void greetings() {

}

}

//The Annotation consumer

public class HelloWorldAnnotationTest

{

public static void main (String[] args) throws Exception {

Class<HelloWorld> clazz = HelloWorld.class;

System.out.println(clazz.getAnnotation(SayHi.class));

Constructor<HelloWorld> constructor =

clazz.getConstructor((Class[]) null);

System.out.println(

constructor.getAnnotation(SayHi.class));

Method method = clazz.getMethod("greetings");

System.out.println(method.getAnnotation(SayHi.class));

Field field = clazz.getField("greetingState");

System.out.println(field.getAnnotation(SayHi.class));

}

}

This simple example of declaring, applying and accessing annotations shows how an
Annotation can be retrieved from different elements using reflection.

The getConstructor(Class[] parameterTypes) method returns the constructor on the class
that has the given parameters. In this case we want the constructor with no parameters
so parameterTypes is null.

30

30

Other reflection capabilities not discussed

In Java

• The class loader

• Java debugging interface

• Call stack inspection

• References

• Proxy

In other languages than Java

• Changing how method calls work

• Redefining the notion of a subclass

• Redefining how object initialization is done

• Redefining how fields are accessed

• Redefining how objects are addressed

The Java debugging interface is an API which allows you to set breakpoints, inspect local
variables and a lot of cool stuff, so you can write your own individual debugger.

We will take a look at call stack inspection when we examine exceptions in a later lecture.
In essence it allows us to see which method called this one.

One cannot interact with the garbage collector, one can only ask it to collect some
garbage. However, one can tell it to ignore some kinds of references when it figures out if
an object is dead or alive.

The Proxy object is a way in which one can make an object pretend it implements an
interface, but in reality it just forwards each call to some other objects. This is very
practical, and necessary if one wants to do a distributed object system from scratch.

If one want to go beyond the capabilities in Java, the languages Smalltalk and especially
CLOS are the obvious choices.

31

31

Summary

From a programming point of view, reflection does not deal with things in the

application domain, but with the internals of the programs themselves.

The reflection library is for very general abstractions. Not abstractions from the

application domain, but abstractions of objects.

Annotations can add custom abstractions for specific tools to use.

Use with care. It is a powerful tool. It is meant for framework development, not for

application development.

