
1

OPI
Lecture 18
Reflection

Kasper Østerbye
Mette Jaquet

Carsten Schuermann
IT University Copenhagen

2

Today's schedule
• Reflection

– modelling a domain vs. modelling objects

• Two examples
– Checking that all fields are private and have a getter method

– A unit testing framework

• Annotations
– Adding metadata to programs

• Overview of the reflection API

• Summary

3

Concepts
A program which manipulates or
examines itself is called reflective.

• Introspection means examining
properties of the program

• Intercession/Manipulation, means
changing properties of the program

• Structural reflection means to have
access to the structure of the program,
e.g. classes, methods, fields.

• Behavioural reflection means to have
access to the run-time aspects, e.g. how
objects are created, how methods are
called.

• Reflection can take place at compile-
time, load-time, or run-time.

• Traditionally one has in OOP only
considered full reflection, that is both
introspection and intercession, and both
structural and behavioural, and at run-
time.

• Noone has ever succeeded in making
full reflection efficient.

4

Usages of reflection
• To find out which methods a class has at

run-time
– Unit testing

– Debugging

– Plug and play systems

• Dynamic loading and maintenance of
running systems

• Enterprise beans

• General storage and transmission of
objects

• Redefining how method invocation is
done, to achieve distribution.

• Transparent persistence.

• Programming language adaptation

• Object browsers

• Semantic checkers

In Java we can navigate the class structure
using the java.lang.reflect package, and
the class Class from java.lang.

Some of the methods of Class are:
getClass() returns the class for any object.

getDeclaredFields() returns an array of all fields
in a class.

getDeclaredMethods() returns an array of all
methods in a class.

newInstance() creates an instance of the class.

getInterfaces() returns an array of interfaces

Some of the methods of Method are:
getParameterTypes() returns an array of Class

getModifiers() returns an integer representing
which modifiers it has.

invoke(Object, Object[]) calls the method.

5

Philosophically aside
The objects in the application models
aspects in the application domain.

E.g.

But real cars do not have a toString
method.

•The solution is to model the classes too.

•A class whose instances are classes, is
called a metaclass.

• The program contains not only a model
of the application objects, but also a
model of itself, which is why it is called
reflective

Class
name

superclass
fields
methods
new()

toString(obj)

Modeling

From a symmetry argument, there has
to be a model of the model of the model
etc. This is often ’solved’ by a loop.

Car
color
length
maxSpeed
start()

turn(angle)
crash()

Modeling

toString()

Modeling

6

The meta model – an example
class Car{

private Person owner;

private String make;

public Car(String make, Person owner){

this.make = make;

this.owner = owner;

owner.setCar(this);

}

public void setOwner(Person owner){

this.owner.setCar(null);

this.owner = owner;

owner.setCar(this);

}

public String toString(){

return make +" owned by " + owner;

}

}

Car:Class
fields:Fields[] [,]

constr:Constructor[] []

methods:Method[] [,]

Field
name:String

type:Class

Field
name:String

type:Class

Method
name:String

returntype:Class

argTypes: Class[]

throws:Class[]

Method
name:String

returntype:Class

argTypes: Class[]

throws:Class[]

Constructor
name:String

argTypes: Class[]

throws:Class[]

7

Encapsulation checker
Assume we have a rule that all fields
should be private, and they should have a
public getter.

Write a program that gives an error for
each field where this rule is broken.

The program to the right shows the
outline of the program.

import java.lang.reflect.*;

class EncCheck {

StringBuffer errorLog = new StringBuffer();

Class clazz; // The class we are examining

public void check(Class c)

throws Exception {

clazz = c; //… do the check and print out errors

}

public static void main(String[] args)
throws Exception {

String className = args[0];

Class c = Class.forName(className);

EncCheck checker = new EncCheck();

checker.check(c);

}

}

dos:>java EncCheck dk.oop.itu.lecture6.MyClass

8

Finding all fields
The first thing we need to do is to find all
fields in the class, and make sure they are
private.

Does the rule apply to static fields as well?
We will ignore static fields.

The underlined aspects are part of the
reflection package, the rest is plain java.

List<Field> nonStaticFields;

public void findAllNonStaticFields(){

Field[] fields = clazz.getDeclaredFields();

nonStaticFields = new ArrayList<Field>();

for (Field f : fields){

int modifiers = f.getModifiers();

if (! Modifier.isStatic(modifiers))

nonStaticFields.add(f);

}

}

9

Checking that all non-static fields are private
This is a combination of using an iterator,
and the somewhat funny way to check for
the modifiers.

Alternatively, the check could be written
in one line:

Modifier.isPrivate(f.getModifiers())

Some find that more succinct

public void ensurePrivate() {

for (Field f : nonStaticFields){

int modifiers = f.getModifiers();

if (! Modifier.isPrivate(modifiers))

errorLog.append

(f.toString() + " is not private\n");

}

}

10

Check that there are get accessors for each field
Here we use the method getMethod on
Class, which finds a method based on the
signature of the method.

The signature of a method is its name,
and the type of the parameters.

We follow the principle of accessors
having the same name as the field, but
prefixed by ”get”, and the first letter of
the field name as upper case.

E.g. if the field is named foo, the getter is
named getFoo.

private static final Class[] noParameters = new Class[0];

public void ensureGetters(){

for (Field f : nonStaticFields){

try{

clazz.getMethod(getter(f), noParameters);

}catch(NoSuchMethodException ex){

errorLog.append

(f.toString() + " has no accessor\n");

}

}

}

private String getter (Field f){

String name = f.getName();

String first = name.substring(0,0).toUpperCase();

String rest = name.substring(1,name.length());

return "get"+ first + rest;

}

11

Specifying signatures
The method getMethod() takes as argument the name of the method, and an array of
classes, which specify what parameters the method expects.

Assume we have a method

foo(boolean b , Person p, int[] i)

The parameters should be written up as the elements in an array

Such an array can be written as:

Class[] fooParam = new Class[] {boolean.class, Person.class, int[].class};

In general, one can obtain a class object for a given class, interface or primitive type as

type.class

12

Test Driven Development

Unit testing is one of several core practices of the eXtreme Programming
(XP) methodology.

Using a testing framework like JUnit, tests for all classes in a system can be
collected in a test suite, and all tests can be run and evaluated by a push on
a button.

Some benefits of unit testing:

• Quick feedback
• Automated validation of testresults
• Confidence in the code
• Collective code ownership
• Reuse of tests

13

Unit Testing

The principle is that together with the development of a class, one should also

write a set of tests, to ensure that the class works as expected.

Unit testing step by step:

1. Write one test.

2. Compile the test. It should fail, as you haven't implemented anything yet.

3. Implement just enough to compile.

4. Run the test and see it fail.

5. Implement just enough to make the test pass.

6. Run the test and see it pass

7. Repeat from the top.

14

Test framework
A framework to be used for
performing unit tests can be
implemented using reflection.

The next slides are about the
development of such a system
and how to write the tests.

A typical test class might look
as the class to the right.

Each method that is prefixed
by ”test” should be executed.
All failures are collected and
printed in the main method.

public class MyTestClass extends TestClass
{ public void testParseInt(){

check("'123' is 123",Integer.parseInt(”123”)==123);
}
public void testParseDouble(){ //Should fail

check("15 is 12.5",Double.parseDouble(”15”) == 12.5);
}

public void testStringEquality(){

String s = "abc";

check("abc is aBc", s.equalsIgnoreCase("aBc"));

}

}

// main method in some class – does not matter which
public static void main(String[] args){

System.out.println(
UnitTester.testTheClass("dk.itu.oop.lecture6.MyTestClass"));

}

15

The TestClass
This is possibly the simplest TestClass
which can be used.

It defines two check methods, each taking
a boolean condition expected to be true.
One also has a String parameter
describing the test.

In addition a CheckFailure exception is
declared. If a check fails, this exception is
thrown.

public class TestClass {

public class CheckFailure extends RuntimeException {
 public String msg;
 CheckFailure(String msg){
 this.msg = msg;
 }

}

protected void check(boolean expr) throws CheckFailure{
if (!expr)

throw new CheckFailure("Check failed");
}
protected void check(String msg, boolean expr)

throws CheckFailure{
if (!expr)

throw new CheckFailure(msg);
}

}

16

The unit tester
Note that the testTheClass method is
static, but creates an instance of
UnitTester in the body.

We will examine each of the three
auxiliary methods in turn.

private void setClass(String className)
throws ClassNotFoundException,

InstantiationException,
IllegalAccessException {

testClass = Class.forName(className);
testObject = testClass.newInstance();

}
The method forName is as in the
EncChecker.
newInstance() makes a new Object from
testClass.

public class UnitTester{
/** testClass is the class that contains the

testcases */
private Class testClass;
/** testMethods is an list of the methods that

contain the tests to be executed */
private List testMethods;
/** testObject is an instance of testClass. */
private Object testObject;
…
public static String testTheClass(String name){

try{
UnitTester ut = new UnitTester();
ut.setClass(name);
ut.getMethods();
return ut.performTests();

}catch(Exception uups){
return "Could not find class " + name;

}
}

}

17

Finding the methods which start with ’test’
The method is very similar to the one we
used in EncCheck to find all the fields.

getMethods returns an array of all
methods in the class.

Each method can be asked about its name
using getName.

All methods which starts with ’test’ are
stored in the List testMethods.

private List<Method> testMethods;

private void getMethods(){

testMethods = new ArrayList<Method>();

try{

Method[] allMethods = testClass.getMethods();

for (Method m : allMethods){

if (m.getName().startsWith("test")){

testMethods.add(m);

}

}

}catch(SecurityException whatWasThat){

}

}

18

Calling the test methods
The key method here is invoke. It takes two
arguments:

– the object on which to call the method
(the object that will be this in the
method call)

– an array of Objects to be given as
arguments to the method.

So a method normally called as:

myObj.m(args)

can be called using reflection as:

m.invoke(myObj, args)

instanceof is a Java operator, which returns
true if the object on the left hand side is
an instance of the class on the right hand
side.

private String performTests(){
String result = "Test of " + testClass.getName() + "\n";
for (Method m: testMethods){

try{
m.invoke(testObject,new Object[0]);
result += m.getName() + " OK\n";

}catch(IllegalAccessException ignore){}
catch(IllegalArgumentException ignore){}

 catch(InvocationTargetException uups){
Throwable target = uups.getTargetException();
if (target instanceof TestClass.CheckFailure)

result += m.getName() +" Check failed: "
 + ((TestClass.CheckFailure)target).msg + "\n";

else
result += m.getName() + " Exception: "+

target.toString() + "\n";
}

}
return result;

}

19

The Java meta model

Class

ClassLoader

AccessibleObject

Method Constructor Field

Modifer

Array

Object

Membership

Instantiation

Inheritance

Dotted classes have not been used in
these slides, squared ones have.

20

The class Class
The class Class represents four different
types of java objects, classes, interfaces,
primitive types, and array types.

One can ask a Class what kind of class it is
by using the boolean methods: isArray(),
isPrimitive(), isInterface() – if all return
false, it is a class.

The class can tell what its super class is
(getSuperClass) and which interfaces it
implements (getInterfaces).

The class can tell which inner classes it
has (getClasses), and an inner class can
tell what class it is inner in
(getDeclaringClass).

A class can tell which fields, methods, and
constructors it contains.

The class Class is part of java.lang, and
need not be imported to be used.

There are several ways of retrieving a
Class object, i.e. the Class object for
Person can be obtained using :

Class c1 = hans.getClass();

Class c2 = Class.forName(“Person”);

Class c3 = Person.class;

21

Field & AccessibleObject
The class Field represents field variables
in a class, both static and non-static fields.

– Class getDeclaringClass()

– int getModifiers()

– String getName()

– Class getType()

– Object get(Object obj)

– boolean getBoolean(Object obj)

– X getX(Object obj)

– void set(Object obj, Object value)

– void setBoolean(Object obj, boolean z)

– void setX(Object obj, X d)

X can be any primitive type, but that
would be too many methods to fit on a
slide.

AccessibleObject is an abstract super class
for Field, Method, & Constructor.

Its purpose is to allow us to mark a
reflected entity to suppress access control.

– boolean isAccessible()

– void setAccessible(boolean flag)

There is a security control mechanism
which can be set in the virtual machine, to
prevent the manipulation of this flag.

22

The classes Method & Constructor
The class Method represents a method in
a class.

– Class getDeclaringClass()

– Class[] getExceptionTypes()

– int getModifiers()

– String getName()

– Class[] getParameterTypes()

– Class getReturnType()

– Object invoke(Object obj, Object[] args)

The class Constructor represents a
constructor in a class. It has nearly the
same methods as Method:

– Class getDeclaringClass()

– Class[] getExceptionTypes()

– int getModifiers()

– String getName()

– Class[] getParameterTypes()

– Object newInstance(Object[] initargs)

The difference being that it has no return
type, and that the invoke method is named
newInstance.

23

Introducing annotations

- Inspecting metadata can be done using reflection

- Adding custom metadata can be done using annotations

Annotations are used by three types of tools:

• General tools
– I.e. compilers, JavaDoc

• Specific tools
– I.e code generators

• Introspectors
– That access annotations at runtime using reflection

24

Types of annotations
There are three types of annotations:

• Marker annotations
– Have no parameters

• Single member annotations
– Have a single unnamed parameter

• Normal annotations
– Have several members

@Test

public void myTestMethod() {…}

@Author(“John Doe”)

public class MyClass {…}

@Author(company=“NN Inc.”,
@Name(firstname=“John”,

lastname=“Doe”))

interface MyInterface {…}

25

Predefined annotations
@Retention has a RetentionPolicy defining

how long to retain the annotations.

Possible values are:

SOURCE

discarded by compiler

CLASS (= default value)

retained by compiler, not loaded by VM

RUNTIME

retained by compiler and loaded runtime

If annotations are to be accessed using

reflection the RetentionPolicy has to be set to

RUNTIME.

@Target defines what types of Java
elements can be annotated by this
annotation.

Possible values are:

TYPE (class, interface or enum)

ANNOTATION_TYPE

CONSTRUCTOR

METHOD

PARAMETER

FIELD

LOCAL_VARIABLE

PACKAGE

26

Declaring annotations
A new keyword @interface is used for declaring

annotations. An annotation has a name and

possibly some member methods.

Members can be given default values using the

default keyword. If no default value is given the

value must be specified when the annotation is

applied.

So all of the following are correct:

@MyAnno(someValue=2, otherValues={}, yetAValue=“Hi”)

@MyAnno(someValue=17, otherValues={“a”})

@MyAnno(otherValues={“a”,”b”,”c”})

public @interface Marker { }

public @interface SingleMember {

String value();

}

@Retention(value=RUNTIME)

@Target(value=METHOD)

public @interface MyAnno {

int someValue() default 0;

String[] otherValues();

String yetAValue() default "[blank]";

}

27

Applying annotations
Annotations can be applied at several levels,

and several different annotations can be

applied at each level.

Arrays of values are entered in brackets {} with

commas between the values.

@ClassLevelAnnotation(arg1="val1",
arg2={"arg2.val1","arg2.val2"})

public class AnnotationExample {

 @FieldLevelAnnotation()

 public String field;

 @ConstructorLevelAnnotation()

 public AnnotationExample() {

 // code

 }

@MethodLevelAnnotationA("val")

@MethodLevelAnnotationB(arg1="val1“,
arg2="val2")

 public void someMethod(String string) {

 // code

 }

}

28

Accessing annotations
Annotations can be inspected at runtime using reflection.

The classes Class, Field, Method and Constructor all have the methods:

boolean isAnnotationPresent(MyAnno.class) returns true if an annotation of
the given annotation type exists on this element

Annotation getAnnotation(MyAnno.class) returns the annotation of the given
annotation type if any exists on this element

Annotation[] getDeclaredAnnotations() Returns all annotations that are
directly present on this element

Annotation[] getAnnotations() Returns all annotations that are present on this
element, including those inherited

29

HelloWorldAnnotationTest
// The Annotation Type
@Retention(RetentionPolicy.RUNTIME)
@interface SayHi {
 public String value();
}

// The Annotated Class
@ SayHi("Hello, class!")
class HelloWorld {

 @ SayHi("Hello, field!")
 public String greetingState;

 @ SayHi("Hello, constructor!")
 public HelloWorld() {
 }

 @ SayHi("Hello, method!")
 public void greetings() {
 }
}

//The Annotation consumer
public class HelloWorldAnnotationTest
{
 public static void main (String[] args) throws Exception {

Class<HelloWorld> clazz = HelloWorld.class;
 System.out.println(clazz.getAnnotation(SayHi.class));

Constructor<HelloWorld> constructor =
 clazz.getConstructor((Class[]) null);
 System.out.println(
 constructor.getAnnotation(SayHi.class));

Method method = clazz.getMethod("greetings");
 System.out.println(method.getAnnotation(SayHi.class));

Field field = clazz.getField("greetingState");
 System.out.println(field.getAnnotation(SayHi.class));
 }
}

30

Other reflection capabilities not discussed

In Java

• The class loader

• Java debugging interface

• Call stack inspection

• References

• Proxy

In other languages than Java

• Changing how method calls work

• Redefining the notion of a subclass

• Redefining how object initialization is done

• Redefining how fields are accessed

• Redefining how objects are addressed

31

Summary
From a programming point of view, reflection does not deal with things in the

application domain, but with the internals of the programs themselves.

The reflection library is for very general abstractions. Not abstractions from the

application domain, but abstractions of objects.

Annotations can add custom abstractions for specific tools to use.

Use with care. It is a powerful tool. It is meant for framework development, not for

application development.

