
1

1

OOP F2005
Lecture 7

Interfaces & Design by Contract

Kasper Østerbye
IT University Copenhagen

2

2

Today's schedule

• Design by Contract

– why the term contract

– what design issue is captured, and why bother

– what is a pre-condition

– what is a post-condition

– what is a class invariant

– How to do this in Java.

• you cannot, only in documentation

• experimental java’s exist

• Assert in Java

– loop invariants

– design by contract

3

3

Design by contract

Consider the service offered by the Danish
postal service:

For 4.50 dkr, they will deliver a letter to
the address printed on the front of the
envelope, if the letter is posted in
Denmark, if it is less than 23x17x0.5 cm.
If it is handed in before a given time of the
day, there are a next day delivery
guarantee.

The advantage for me is that I know how
much postage to put on a standard letter,
I know when to post it, and when I should
expect it to arrive.

The advantage for the postal service is to
receive 4.50, not to have obligations for
late delivery, and not to have obligations
for odd size letters.

class DanishMailBox {

…

/*pre:

l is within size restrictions & current

time is before postingDeadline

post:

letter l is delivered at address next day

*/

public void sendStandardLetter(Letter l){…}

public Time postingDeadline(){…}

…

}

The pre condition is what must be true before we start the method, the post condition is
what must be true after the method has been executed.

It is the responsibility of the caller of the method to make sure the pre-condition is met, it is
the responsibility of the called object to make sure that the post condition is met.

4

4

Iterator contract I

An iterator is an object which will provide
sequential access to a collection.

The java.util.Iterator<E> interface has the
following methods :

boolean hasNext()

E next()

void remove()

hasNext returns true if the iterator is not
empty.

next returns the head, and moves to tail.

remove removes the head from the
underlying collection – or throws an
UnsupportedOperationException

head
tail

An iterator is empty if it will not be able to
produce any more elements. The next
element which it will produce is called its
head, and all the remaining is its tail.

Note, given an iterator itr, itr.tail is an
iterator which will return the same
elements as itr, except for itr.head.

The Iterator in java.util is one of the many examples of bad design in Java (there are more
examples of good design though). It is not considered good design to throw the
UnsupportedOperationException. Instead, the designers should have defined two
interfaces. One named SimpleIterator, which has only the methods hasNext and next. And
an other RemovableIterator, which extends SimpleIterator with the remove method:

interface SimpleIterator{

boolean hasNext()

E next()

}

interface RemoveableIterator extends SimpleIterator{

void remove()

}

This way a (collection) class can decide which kind of Iterator it wants to implement.

5

5

Iterator contract II

An empty pre-condition means that the
method can always be called.

Notice, it is the responsibility of the caller
to make sure that next() and peek() is not
called when the list is empty.

Notice, we will assume that the iterator
does not change as a result of a call to
cloneMe(), since nothing is stated to
indicate such behaviour

public interface Iterator {

/* pre: none

* post: return true if the iterator is not empty. */

boolean hasNext();

/* pre: hasNext()

* post: return head of old.iterator

& this is old.tail. */

Object next();

/* pre: next has been called

& remove has not already been called

& remove is supported by this iterator

* post: removes the last element returned

by next*/

void remove();

}

head
tail

In the paper by Bertrand Meyer, Meyer uses the programming language Eiffel, which he has
designed himself.

The Eiffel language has constructs in the language itself to deal with pre and post conditions.
In Java there is no such constructs and we can only write them in the comment of the
methods.

There is often a need to refer in the post condition to the state of the class as it was before
the operation. In the next() method, we say that this is the old.tail, which means that the
iterator now is the tail of what it was before the next() call.

There exists several experimental tools for Java which extends the Java language with
support for design by contract. Try ”design by contract java” on Google if you want to try the
real thing.

6

6

An array iterator

This iterator will iterate over the elements in an
array which is given as argument to its

constructor.

The iterator can be used as:

String[] names ={”Bill”, ”Ben”,”Jack”};

ArrayIterator itr = new ArrayIterator(names);

while (itr.hasNext())

System.out.println(itr.next());

But, will this actually print out the right
elements?

To examine this, we need to compare the

implementation of each method to the contract
to see if the ArrayIterator satisfies the Iterator
contract, and not just defines methods with the
right signature

public class ArrayIterator implements Iterator{

private final Object[] theArray;

private int index; // index of next element

public ArrayIterator(Object[] objects){

theArray = objects;

index = 0;

}

public boolean hasNext(){

return index < theArray.length;

}

public Object next(){

return theArray[index++];

}

public void remove(){

throw new UnsupportedOperationException();

}

}

The point of this, and the next slide is to introduce the notion of a class invariant.

The reason we need this concept is that we cannot reason about the individual methods in
isolation from the objects the methods works on.

The invariant helps to state something about the relationship between the fields of the
object, and the purpose of the object, so we can argue in that each method does indeed do
the right thing.

7

7

Class invariants

But, we cannot see if the body does the

right thing in isolation from the class
itself. What is the the value of index, and
what is theArray?

A class invariant is a postulate on the
fields of a class. The postulate is supposed
to be true after each method has finished,
and after the constructor has finished.

It is the programmers responsibility to
make certain that the invariant is
maintained.

If we assume that the invariant is as in the
drawing, then hasNext() is correct.

/* pre: none

* post: return true if the iterator is not empty. */

public boolean hasNext(){

return index < theArray.length;

}

theArray

index

if index<theArray.length then
index refers to the head of the iterator.
else the iterator is empty

The rule of class invariants is that it is a postulate must be true after each method call and
after the constructor has finished. Therefore it must also be true at the beginning of each
method call. The invariant cannot be assumed to be true before the constructor has finished.

If we assume the invariant to be true before we call the hasNext() method, we know that

either index<theArray.length, in which case index points to the head of the iterator

or index >=theArray.length, in which case the iterator is empty.

Thus, we test to see which of the two cases we are in, and if it is not empty, we return true.

8

8

Array Iterator, next and constructor

Reg. next.

We assume the invariant is true, and
hasNext() is true, that is the iterator is not
empty. Thus, we know that index refers to
head, which is what we return.

But we also increments index by one,
which is what is needed to make sure that
the iterator now is its tail.

Reg. the constructor

The precondition ensures that we will not
attempt to iterate null.

if objects has elements in it, then index=0
is the head of the iterator

if objects it empty, then length is 0, and
index is not less than 0, hence the iterator
is empty.

In both situations the invariant is true.

/* pre: hasNext()
* post: return head of iterator; this is old.tail.

*/
public Object next(){

return theArray[index++];

}

/* pre: objects != null

* post: invariant

*/

public ArrayIterator(Object[] objects){

theArray = objects;

index = 0;

}

theArray

index

if index<theArray.length then
index refers to the head of the iterator.

else the iterator is empty

I use a dirty trick in the next method. Normally we use the increment operator ”x++” as a
statement to add one to a variable x. But really, x++ is an expression, which returns the
value of x, and then increments x.

If you look at this code fragment:

int x=8;

System.out.println(x++);

System.out.println(++x);

It will print 8, 10. After the first print, x will have the value 9, but will print the value it had
before it was incremented. In the second print, we first increment x, then print its new
value.

x++ is called post-increment, and ++x is called pre-increment, see Java Precisely at page 30,
section 11.2.

So, return theArray[index++] corresponds to the longer

Object o = theArray[index];

index++;

return 0;

It is often much easier to reason about the invariant being true after the constructor is
executed if one does not use initializers.

9

9

Invariants and encapsulation

Please observe the wording used when arguing
for the pre/post conditions.

They all say, ”If the invariant is true, then so
and so and so and so, therefore the invariant is
still true”.

But what if the invariant is not true?

This is why it in general is a good idea to make
fields private.

If the index field was made public, then we
could not be sure the invariant was valid, as

someone might had changed it from the
outside.

Also notice that one should be very careful with
”setter” methods for variables mentioned in the
invariant. A setter for the index would be as

bad as making it public

public class ArrayIterator implements Iterator{

private final Object[] theArray;

private int index; // index of next element

public ArrayIterator(Object[] objects){

theArray = objects;

index = 0;

}

public boolean hasNext(){

return index < theArray.length;

}

public Object next(){

return theArray[index++];

}

public void remove(){

throw new UnsupportedOperationException();

}

}

At a very high level of abstraction, one can say that one purpose of the encapsulation is to
ensure that the invariant of the class can be ensured. There MUST NOT be public methods
which break the invariant, as it is then not possible to know what the program does.

10

10

An invariant on Persons and Cars

Consider the exercise on Persons and Car
from lecture 2. There was three rules:

1. Each car is owned by exactly one person,
that is, no car is without an owner, and no
car is owned by more than one person.

2. If a person owns a car, that car is owned
by that person, and vice versa.

3. A Person can own at most one car

public class Car {

/* inv: owner != null, & owner.myCar == this

private Person owner;

/* pre: p.myCar == null

post: p.myCar = this. */
public Car(Person p){

owner = p;

owner.setCar(this);

}

/* pre: p.myCar == null

post: p.myCar == this */

public void setOwner(Person p){

owner.setCar(null);

owner = p

owner.setCar(this);.

}

}

:Car

owner: Person

:Person

myCar: Car

The invariant states that the owner is not null, and that the myCar field of the owner refers
back to this. That reflects the picture.

Constructor:

A Person cannot own more than one car. We must assume (precondition) that the person
given as parameter to the constructor is one who does not own a car.

post condition states that the person p owns the car afterwards.

owner = p, makes the reference from the car to the person p.

owner.setCar(p) makes the reference back again (See next slide).

setOwner:

We must again assume that the new owner p does not already own a car (precondition).

We start by detaching the old owner of the car from this car, so the old owner does not own
the car nay more.

We then set the reference from car to person, and

the reference from person to car.

The class Person is simpler, it has the following form

class Person{

/* inv: if myCar != null, myCar.owner = this.

private Car myCar;

Person(){};

/* pre: myCar == null, c.owner = this

post: inv

*/

public void setCar(Car c){

11

11

An invariant on Persons and Cars II

The class Person is simpler.
class Person{

/* inv: if myCar != null then myCar.owner = this.

private Car myCar;

Person(){};

/* pre: myCar == null, c.owner = this

post: inv

*/

public void setCar(Car c){

myCar = c;

}

}

:Car

owner: Person

:Person

myCar: Car

The invariant of Person has to take into account two situations, one where the myCar
reference is null, and an other where it is not.

Notice the precondition of setCar.

It assumes that this person does not already own a car, and it assumes that the car c already
refers to this person. These two conditions are exactly matched in the call from the method
setOwner in class Car.

In the C++ programming language there is a special encapsulation mechanism called
“friends”. Rather than letting setCar be a public method, we could have declared it to be a
friend of Car. This way the method could only be called from Car objects.

The friend mechanism is very useful for invariant encapsulation which go across several
objects as is the case here.

12

12

Pre conditions and exception handling

An important property of pre-conditions
is to establish under what conditions a
method will work.

void sort(int[] a)

Is it acceptable to all with a null
reference? An empty array? An array of
length larger than 5.000.000 elements?

It is the responsibility of the client to
ensure that the method’s pre-condition is
true.

The contract avoids that both the client
and the object performs a test if the
argument is null.

/* pre: a not null, a not empty

post: a sorted

*/

void sort(int[] a){

try{

… a extraordinary good

… sorting algorith goes here

}catch(Exception ex){

if (a == null || a.length = 0)

throw new PreConditionVoilation();

}

}

On this topic a resign for a better explanation. Please read from page 49 and the rest of
Bertrand Meyer’s paper, the use of exceptions is very nicely described.

13

13

Java assertions

Java has a mechanism called assertions.

assert boolean-condition;

This statement will throw an exception if
the boolean condition is not true.

However, you must tickle java a bit to do
so.

javac -source 1.4 myfile.java

to compile it

java -enableassertions myfile

to execute and actually test the assertions

Assert statements can be inserted in the
beginning of a method to check pre-
conditions

Assert statements can be inserted just
before return, to check post conditions

Assert statements can be inserted at the
end (just before each return) to check that
the class invariant is true.

Design by contract is supported in Eiffel.

Assertions lack:

– Systematic support for class
invariants

– Support for ”old” variables

– Support for combination of pre and
post conditions when using
inheritance

Assertions are described in Java precisely.

Assertions are much better than nothing! So while I am not impressed with the assert
mechanism, it is clearly better than not using it.

The three points of critique remains however.

14

14

Interfaces

• An interface I declares a set of methods
which a class must implement in order
to be of type I.

• Interfaces are an important mechanism
for achieving low coupling. Declare your
variables (especially fields and
parameters) of interface type.

• This will make your code more robust to
changes in the other code

– You cannot depend on any specific class

– You cannot depend on any fields

• Important: The advantage of using
interfaces is not for the programmer of
”Other code”, but in your code.

• Important: It is the programmer of
”Other code” which implement
interfaces for you to use.

Your
code

Other
code

interface

It is typically the programmer of
”Other code” who have designed the
interface to be used in ”Your code”.

15

15

Abstract classes

• An abstract class is a class which has
been designed to be used as a
superclass.

• Often an abstract class implements an
interface, but leaves out a few details for
you to fill in.

– Your code still use the interface, rather
than your class.

– The abstract class provides useful
implementation of interface

As before, the programmer of other code
has designed the interface, and also the
abstract class.

Your
code

Other
code

interface

Abstract

class

your

class

16

16

The for loop of Java

As of java 5.o is it possible to write loops
of the form:

for(T v: i)

… do stuff with v

Normally, the for loop is used to go
through all elements in a collection, but it
is far more general.

What the for loop really unfolds to is:

Iterator<T> it = i.iterator();

while(it.hasNext()){

v = it.next();

… do stuff with v

}

This means that the type of i must have an
iterator method.

This is ensured by i implementing the
Iterable interface.

The iterator method returns an iterator
which returns elements of type T.

To let your own classes work with the for
loop, several things need to be in place:

– You must define an iterator

– You must create an iterator method
that returns an iterator

– You must impement the Iterable
interfrace

17

17

Reading a file using the for loop

for(String s: new IterableReader(aReader))

System.out.println(s);

class IterableReader implements Iterable<String>{

private Reader reader;

IterableReader(Reader r){

reader = r;

}

public Iterator<String> iterator(){

return new MyIterator(reader);

}

}

class MyIterator implements Iterator<String>{

// Inv: br is tail & nextLineToBeReturned is head

private BufferedReader br;

private String nextLineToBeReturned;

private MyIterator(Reader r){

br = new BufferedReader(r);

readALine();

}

private void readALine(){

try{

nextLineToBeReturned = br.readLine();

}catch(IOException uups){

nextLineToBeReturned = null;

}

}

public boolean hasNext(){

return nextLineToBeReturned != null;

}

public String next(){

String ret = nextLineToBeReturned;

readALine();

return ret;

}

public void remove(){

throw new UnsupportedOperationException();

}

}

The for loop in the beginning will print out all the lines in aReader.

The major part of the slide is the class MyIterator, which will iterate each line in the reader it
gets as argument to its constructor.

The implementation strategy of MyIterator is very common. The problem is the following:

With an iterator, you first ask if there are any more elements (using hasNext()), and if there
is, you go get it (using next()).

With a Reader, you just try to read, and if there were no elements you get a null or -1
response.

So, to turn a Reader into an iterator, we have to try to read before we answer if there are any
elements. Hence, we need to keep the read line waiting for a call to next(). The private
method readAline() is doing the bridging from Reader to Iterator style. It try to read a line,
and if successful, stores the line so that it later can be returned by next(). If there is no line
to be read, the buffered reader will return null, which in hasNext() is used as the test to see
if there is a line to be returned.

Notice in particular the next() method. The line to be returned has already been read (using
readALine()). Next need to return “nextLineToBeReturned”, and to move to the next line.
An auxiliary variable ret is used to hold the return value while we move to the next line.

18

18

The moral of the story

• Interfaces and Abstract classes are
necessary for the division of labor
between

– A) the programmers of frameworks

– B) the programmers who use the
frameworks

• The B) programmers need to
understand this to use frameworks
efficiently

• Interfaces are the part of contracts that
the compiler understands.

• Contracts are the part you as
programmer has to understand.

• Application programmers will rarely
need to define interfaces and abstract
classes, nor to define contracts.

• Application programmers will often
need to implement interfaces or
subclass abstract classes to integrate
their code into the framework.

• Application programmers need to
understand what pre and post
conditions are for the methods called.

• Most programmers are application
programmers.

