
1

OOP
Design by Contract

Carsten Schuermann
Kasper Østerbye

IT University Copenhagen

2

Today's schedule
• Design by Contract

– why the term contract
– what design issue is captured, and why bother

– what is a pre-condition
– what is a post-condition
– what is a class invariant
– How to do this in Java.

• you cannot, only in documentation

• experimental java’s exist

• Assert in Java
– loop invariants

– design by contract

3

Design by contract
Consider the service offered by the
Danish postal service:
For 4.50 dkr, they will deliver a letter to
the address printed on the front of the
envelope, if the letter is posted in
Denmark, if it is less than 23x17x0.5 cm.
If it is handed in before a given time of
the day, there are a next day delivery
guarantee.

The advantage for me is that I know how
much postage to put on a standard letter,
I know when to post it, and when I should
expect it to arrive.

The advantage for the postal service is to
receive 4.50, not to have obligations for
late delivery, and not to have obligations
for odd size letters.

class DanishMailBox {
 …

 /*pre:
 l is within size restrictions & current
 time is before postingDeadline
 post:
 letter l is delivered at address next day

 */
 public void sendStandardLetter(Letter l){…}
 public Time postingDeadline(){…}
 …
}

4

A Crash Course in Propositional Logic

• Boolean values
• Boolean expressions
• Boolean algebra
• Truth assignements
• Interpretations
• Models
• Tautology
• Proof rules

5

Iterator contract I
An iterator is an object which will provide
sequential access to a collection.

The java.util.Iterator<E> interface has the
following methods :

boolean hasNext()
E next()
void remove()

hasNext returns true if the iterator is not
empty.
next returns the head, and moves to tail.

remove removes the head from the
underlying collection – or throws an
UnsupportedOperationException

head
tail

An iterator is empty if it will not be able to
produce any more elements. The next
element which it will produce is called its
head, and all the remaining is its tail.

Note, given an iterator itr, itr.tail is an
iterator which will return the same
elements as itr, except for itr.head.

6

Iterator contract II
An empty pre-condition means that the
method can always be called.
Notice, it is the responsibility of the caller
to make sure that next() and peek() is not
called when the list is empty.

Notice, we will assume that the iterator
does not change as a result of a call to
cloneMe(), since nothing is stated to
indicate such behaviour

public interface Iterator {
 /* pre: none
 * post: return true if the iterator is not empty. */
 boolean hasNext();

 /* pre: hasNext()
 * post: return head of old.iterator
 & this is old.tail. */
 Object next();

 /* pre: next has been called

 & remove has not already been called
 & remove is supported by this iterator
 * post: removes the last element returned
 by next*/
 void remove();
}

head
tail

7

An array iterator
This iterator will iterate over the elements in
an array which is given as argument to its
constructor.

The iterator can be used as:

String[] names ={”Bill”, ”Ben”,”Jack”};
ArrayIterator itr = new ArrayIterator(names);

while (itr.hasNext())
 System.out.println(itr.next());

But, will this actually print out the right
elements?

To examine this, we need to compare the
implementation of each method to the contract
to see if the ArrayIterator satisfies the Iterator
contract, and not just defines methods with the
right signature

public class ArrayIterator implements Iterator{
 private final Object[] theArray;
 private int index; // index of next element
 public ArrayIterator(Object[] objects){
 theArray = objects;
 index = 0;
 }
 public boolean hasNext(){
 return index < theArray.length;
 }
 public Object next(){
 return theArray[index++];
 }

 public void remove(){
 throw new UnsupportedOperationException();
 }
}

8

Representation Invariants
But, we cannot see if the body does the
right thing in isolation from the class
itself. What is the the value of index, and
what is theArray?

A class invariant is a postulate on the
fields of a class. The postulate is supposed
to be true after each method has finished,
and after the constructor has finished.

It is the programmers responsibility to
make certain that the invariant is
maintained.

If we assume that the invariant is as in
the drawing, then hasNext() is correct.

/* pre: none
 * post: return true if the iterator is not empty. */
public boolean hasNext(){
 return index < theArray.length;
}

theArray

index

if index<theArray.length then
index refers to the head of the iterator.
else the iterator is empty

9

Array Iterator, next and constructor
Reg. next.
We assume the invariant is true, and
hasNext() is true, that is the iterator is
not empty. Thus, we know that index
refers to head, which is what we return.

But we also increments index by one,
which is what is needed to make sure that
the iterator now is its tail.

Reg. the constructor
The precondition ensures that we will not
attempt to iterate null.
if objects has elements in it, then index=0
is the head of the iterator

if objects it empty, then length is 0, and
index is not less than 0, hence the iterator
is empty.
In both situations the invariant is true.

/* pre: hasNext()
 * post: return head of iterator; this is old.tail.
 */
public Object next(){
 return theArray[index++];
}
/* pre: objects != null
 * post: invariant
 */
public ArrayIterator(Object[] objects){
 theArray = objects;
 index = 0;
}

theArray

index

if index<theArray.length then
index refers to the head of the iterator.
else the iterator is empty

10

Invariants and encapsulation
Please observe the wording used when arguing
for the pre/post conditions.

They all say, ”If the invariant is true, then so
and so and so and so, therefore the invariant is
still true”.

But what if the invariant is not true?

This is why it in general is a good idea to make
fields private.

If the index field was made public, then we
could not be sure the invariant was valid, as
someone might had changed it from the
outside.

Also notice that one should be very careful
with ”setter” methods for variables mentioned
in the invariant. A setter for the index would be
as bad as making it public

public class ArrayIterator implements Iterator{
 private final Object[] theArray;
 private int index; // index of next element

 public ArrayIterator(Object[] objects){
 theArray = objects;
 index = 0;
 }
 public boolean hasNext(){
 return index < theArray.length;
 }
 public Object next(){
 return theArray[index++];
 }

 public void remove(){
 throw new UnsupportedOperationException();
 }
}

11

An invariant on Persons and Cars
Consider the exercise on Persons and Car
from lecture 2. There was three rules:

1. Each car is owned by exactly one person,
that is, no car is without an owner, and no
car is owned by more than one person.

2. If a person owns a car, that car is owned
by that person, and vice versa.

3. A Person can own at most one car

public class Car {
 /* inv: owner != null, & owner.myCar == this
 private Person owner;

 /* pre: p.myCar == null
 post: p.myCar = this. */
 public Car(Person p){
 owner = p;
 owner.setCar(this);
 }

 /* pre: p.myCar == null
 post: p.myCar == this */
 public void setOwner(Person p){
 owner.setCar(null);
 owner = p
 owner.setCar(this);.
 }
}

:Car
owner: Person

:Person
myCar: Car

12

An invariant on Persons and Cars II
The class Person is simpler.

class Person{
 /* inv: if myCar != null then myCar.owner = this.

 private Car myCar;

 Person(){};

 /* pre: myCar == null, c.owner = this

 post: inv
 */
 public void setCar(Car c){
 myCar = c;
 }

}

:Car
owner: Person

:Person
myCar: Car

13

Pre conditions and exception handling
An important property of pre-conditions
is to establish under what conditions a
method will work.

 void sort(int[] a)
Is it acceptable to all with a null
reference? An empty array? An array of
length larger than 5.000.000 elements?

It is the responsibility of the client to
ensure that the method’s pre-condition is
true.
The contract avoids that both the client
and the object performs a test if the
argument is null.

/* pre: a not null, a not empty
 post: a sorted

*/
void sort(int[] a){
 try{
 … a extraordinary good
 … sorting algorith goes here

 }catch(Exception ex){
 if (a == null || a.length = 0)
 throw new PreConditionVoilation();
 }
}

14

Java assertions
Java has a mechanism called assertions.

 assert boolean-condition;

This statement will throw an exception if
the boolean condition is not true.

However, you must tickle java a bit to do
so.

 javac -source 1.4 myfile.java
to compile it

 java -enableassertions myfile
to execute and actually test the assertions

Assert statements can be inserted in the
beginning of a method to check pre-
conditions
Assert statements can be inserted just
before return, to check post conditions
Assert statements can be inserted at the
end (just before each return) to check that
the class invariant is true.

Design by contract is supported in Eiffel.
Assertions lack:

– Systematic support for class
invariants

– Support for ”old” variables

– Support for combination of pre and
post conditions when using
inheritance

Contracts and Inheritance

• Covariant in y: Psub (y) must imply Psuper(Y)
• Contraviarant in old_y, new_y, result

 Qsuper(old_y, new_y, result) must imply Qsub(old_y, new_y, result)

15

class SuperClass {
 int f (int y) {

 /* Pre: Psuper(y)

 Post: Qsuper(old_y, new_y, result) */

 }
}
class SubClass extends SuperClass {
 int f (int y) {

 /* Pre: Psub(y)

 Post: Qsub(old_y, new_y, result) */

 }
}

16

Interfaces
• An interface I declares a set of methods

which a class must implement in order
to be of type I.

• This will make your code more robust
to changes in the other code

– You cannot depend on any specific class

– You cannot depend on any fields

• Important: The advantage of using
interfaces is not for the programmer of
”Other code”, but in your code.

• Important: It is the programmer of
”Other code” which implement
interfaces for you to use.

Your
code

Other
code

interface

It is typically the programmer of
”Other code” who have designed the
interface to be used in ”Your code”.

17

Abstract classes
• An abstract class is a class which has

been designed to be used as a
superclass.

• Often an abstract class implements an
interface, but leaves out a few details
for you to fill in.

– Your code still use the interface, rather
than your class.

– The abstract class provides useful
implementation of interface

As before, the programmer of other code
has designed the interface, and also the
abstract class.

Your
code

Other
code

interface

Abstract
class

your
class

JML [Slides by Erik Poll, Nijmegen]

18

JML by Gary Leavens et al.

Formal specification language for Java

• to specify behaviour of Java classes

• to record design/implementation decisions

by adding annotations (aka assertions) to Java source
code, eg

• preconditions

• postconditions

• class invariants

as in programming language Eiffel, but more expressive

Goal: JML should be easy to use for any Java programmer.

Erik Poll - FM – p.16/39

JML (cont’d)

19

JML

To make JML easy to use:

• JML annotations are added as comments in .java file,
between /*@ . . .@*/, or after //@.

• Properties are specified as Java boolean expressions,
extended with a few operators

\result, \forall, \old, ==>, ...

and a few keywords

requires, ensures, invariant, ...

Using JML we specify and check properties of the Java
program itself, not of some model of our Java program. Ie.
the Java program itself is our formal model.

Erik Poll - FM – p.17/39

Pre and Post Conditions

20

Pre- and postconditions

Pre- and post-conditions for methods, eg.

/*@ requires amount >= 0;

ensures balance == \old(balance)-amount &&

\result == balance;

@*/

public int debit(int amount) {
...

}

Here \old(balance) refers to the value of balance
before execution of the method.

Erik Poll - FM – p.18/39

Pre and Post Conditions (cont’d)

21

Pre- and postconditions

JML specs can be as strong or as weak as you want.

/*@ requires amount >= 0;

ensures true;

@*/

public int debit(int amount) {
...

}

This default postcondition “ensures true” can be
omitted.

Erik Poll - FM – p.19/39

Pre and Post Conditions (cont’d)

22

Design-by-Contract

Pre- and postconditions define a contract between a class
and its clients:

• Client must ensure precondition and may assume
postcondition

• Method may assume precondition and must ensure
postcondition

Eg, in the example spec for debit, it is the obligation of
the client to ensure that amount is positive.
The requires clause makes this explicit.

Erik Poll - FM – p.20/39

Signals

23

Exceptional postconditions

signals clauses specify when exceptions may be thrown

/*@ requires amount >= 0;

ensures true;

signals (ISOException e)

amount > balance &&

balance == \old(balance) &&

e.getReason()==AMOUNT_TOO_BIG;

@*/

public int debit(int amount) throws ISOException{
...

}

Erik Poll - FM – p.21/39

Signals (cont’d)

24

Exceptional postconditions

Again, specs can be as strong or weak as you want.

/*@ requires amount >= 0;

ensures true;

signals (ISOException) true;

@*/

public int debit(int amount) throws ISOException

NB this specifies that an ISOException is the only
exception that can be thrown by debit

Erik Poll - FM – p.22/39

Signals (cont’d)

25

signals

Exceptions mentioned in throws clause are allowed by
default, i.e. the default signals clause is

signals (Exception) true;

To rule them out, add an explicit

signals (Exception) false;

or use the keyword normal_behavior

/*@ normal behavior

requires ...

ensures ...

@*/

Erik Poll - FM – p.23/39

Signals (cont’d)

26

requires vs. signals

There is often a trade-off between precondition and
exceptional postcondition

/*@ requires amount >= 0 && amount <= balance;

ensures true;

signals (ISOException e) false;

@*/

public int debit(int amount) throws ISOException{
...

}

Maybe “throws ISOException” should now be omitted.

Erik Poll - FM – p.25/39

Invariants

27

Invariants

Invariants (aka class invariants) are properties that must be
maintained by all methods, eg

public class Wallet {
public static final short MAX_BAL = 1000;

private short balance;

/*@ invariant 0 <= balance

&& balance <= MAX_BAL;

@*/

...

Erik Poll - FM – p.26/39

Invariants (con’td)

28

Invariants

Invariants document design decisions.

private final Object[] objs;

/*@ invariant

objs != null

&&

objs.length == CURRENT_OBJS_SIZE

&&

(\forall int i; 0 <= i && i <= CURRENT_OBJS_SIZE

; objs[i] != null);

@*/

Making these design decisions explicit helps in
understanding the code.

Erik Poll - FM – p.28/39

Null Objects

29

non_null

Many invariants, pre- and postconditions are about
references not being null. non_null is a convenient
short-hand for these.

public class Directory {

private /*@ non null @*/ File[] files;

void createSubdir(/*@ non null @*/ String name){
...

Directory /*@ non null @*/ getParent(){
...

Erik Poll - FM – p.29/39

Assertions

30

assert

An assert clause specifies a property that should hold at
some point in the code, eg.

if (i <= 0 || j < 0) {
...

} else if (j < 5) {
//@ assert i > 0 && 0 < j && j < 5;

...

} else {
//@ assert i > 0 && j > 5;

...
}

Erik Poll - FM – p.30/39

Assertions (cont’d)

31

assert

JML keyword assert now also in Java (since Java 1.4).

Still, assert in JML is more expressive, for example in

...

for (n = 0; n < a.length; n++)

if (a[n]==null) break;

/*@ assert (\forall int i; 0 <= i && i < n;

a[i] != null);
@*/

Erik Poll - FM – p.31/39

Mutable Store

32

assignable

Frame properties limit possible side-effects of methods.

/*@ requires amount >= 0;

assignable balance;

ensures balance == \old(balance)-amount;
@*/

public int debit(int amount) { }
...

E.g., debit can only assign to the field balance.
NB this does not follow from the post-condition.

Default assignable clause: assignable \everything.

Erik Poll - FM – p.32/39

Side Effects

33

pure

A method without side-effects is called pure.

public /*@ pure @*/ int getBalance(){...

Directory /*@ pure non null @*/ getParent(){...}

Pure method are implicitly assignable \nothing.
Pure methods, and only pure methods, can be used in
specifications, eg.

//@ invariant 0<=getBalance() && getBalance()<=MAX_BALANCE;

Erik Poll - FM – p.33/39

JML Summary

34

That’s all!

This covers all you need to know to start using JML!

The JML keywords discussed so far:

requires ensures signals invariant
non null normal behavior assignable
pure

and JML operators

\old, \forall, \exists, \result

There are many more features in JML, but these depend on
which tool for JML you use.

Erik Poll - FM – p.34/39

Extended Static Checking (Cok,Kiniry,Poll)

35

extended static checking

ESC/Java(2)

• extended static checking = fully automated program
verification, with some compromises to achieve full
automation

• tries to prove correctness of specifications,
at compile-time, fully automatically

• not sound: ESC/Java may miss an error that is actually
present

• not complete: ESC/Java may warn of errors that are
impossible

• but finds lots of potential bugs quickly

• good at proving absence of runtime exceptions (eg
Null-, ArrayIndexOutOfBounds-, ClassCast-) and verifying
relatively simple properties.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.23/??

Extended Static Checking

36

static checking vs runtime checking

One of the assertions below is wrong:

if (i <= 0 || j < 0) {

...

} else if (j < 5) {

//@ assert i > 0 && 0 < j && j < 5;

...

} else {

//@ assert i > 0 && j > 5;

...

}
Runtime assertion checking may detect this with a
comprehensive test suite.
ESC/Java2 will detect this at compile-time.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.25/??

Extended Static Checking

37

static checking vs runtime checking

Important differences:

• ESC/Java2 checks specs at compile-time,
jmlrac checks specs at run-time

• ESC/Java2 proves correctness of specs,
jml only tests correctness of specs.
Hence

• ESC/Java2 independent of any test suite,
results of runtime testing only as good as the test
suite,

• ESC/Java2 provides higher degree of confidence.

The price for this: you have to specify all pre- and
postconditions of methods (incl. API methods) and
invariants needed for modular verification

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.26/??

 ESC/Java2 Example

38

ESC Java 2/Example (con’t)

39

40

The moral of the story
• Interfaces and Abstract classes are

necessary for the division of labor
between

– A) the programmers of frameworks

– B) the programmers who use the
frameworks

• The B) programmers need to
understand this to use frameworks
efficiently

• Interfaces are the part of contracts that
the compiler understands.

• Contracts are the part you as
programmer has to understand.

• Application programmers will rarely
need to define interfaces and abstract
classes, nor to define contracts.

• Application programmers will often
need to implement interfaces or
subclass abstract classes to integrate
their code into the framework.

• Application programmers need to
understand what pre and post
conditions are for the methods called.

• Most programmers are application
programmers.

