
1

OPI
Lecture 20

Exception handling

Kasper B. Graversen
Kasper Østerbye

Carsten Schuermann
IT University Copenhagen

2

Today's schedule
Goal:
• to enable you to write your own exceptions.
• to throw exceptions from your own code.

Contents:
• The programmers roles in exceptions handling
• Design principles for exception handling

– Checked or unchecked exceptions
– Fitting level of abstraction
– Recovery strategies
– How to get context information from the place the exception was thrown

• The try catch finally statement
• Exceptions and inheritance
• Where can exceptions be thrown, and what is the consequences of that?
• Efficiency of exception handling
• Call stack inspection

3

Motivation I

• What happens if the file can’t be opened?

• What happens if the length of the file can’t be determined?

• What happens if enough memory can’t be allocated?

• What happens if the read fails?

• What happens if the file can’t be closed?

readFile {

 open the file;

 determine its size;

 allocate that much memory;

 read the file into memory;

 close the file;

}

4

Motivation I
errorCodeType readFile {

 initialize errorCode = 0;

 open the file;

 if (theFileIsOpen) {

 determine the length of the file;

 if (gotTheFileLength) {

 allocate that much memory;

 if (gotEnoughMemory) {

 read the file into memory;

 if (readFailed) {

 errorCode = -1;

 }

 } else {

 errorCode = -2;

 }

 } else {

 errorCode = -3;

 ...

 }

 close the file;

 if (theFileDidntClose && errorCode == 0) {

 errorCode = -4;

 } else {

 errorCode = errorCode and -4;

 }

 } else {

 errorCode = -5;

 }

 return errorCode;

}

Nice thought:

Let’s separate code and error handling code

(note: no clean up code is presented)

5

Motivation II –
The two programmers in Exeption handling

The programmer of the class

• Knows the implementation, and
when an error situation occurs

• Do not know what to do with the
error.

• Implements the class independent
of any specific usage

The user of the class (You?)

• Knows that something might go
wrong, but not where.

• Knows how to handle the error

• Uses the class in a specific context

6

Example
public static Class forName(String className)

 throws ClassNotFoundException

Parameters:

className - the fully qualified name
of the desired class.

Returns:

the Class object for the class with the
specified name.

Throws:

LinkageError - if the linkage fails

ExceptionInInitializerError - if the
initialization provoked by this
method fails

ClassNotFoundException - if the class
cannot be located

The programmer of Class

• Finds out that a class does not exist,
but does not know how you want to
handle that.

• Finds out that the class depends on
a class which cannot be loaded, but
does not know how you want to
handle that.

• Finds the class, but it cannot be
initialized. How do you want to
handle that?

7

usage example
class Stack {

LinkedList elements = new LinkedList();

public void push(Object o) {

elements.add(o);

}

public Object pop() throws EmptyException {

if(elements.size() ==0)

throw new EmptyException();

return elements.removeLast();

}

public class EmptyException

extends Exception {

}

}

Stack s = new Stack();

try {

System.out.println(s.pop());

}

 catch(Stack.EmptyException ee) {

…

}

class programmer class user

8

Checked exceptions
• Checked by the compiler

A method foo might declare that it throws
one or more Exceptions.

If your code call foo, the compiler will
check that:

• Either you enclose the call in a try-catch
block, which catches the Exceptions
mentioned in foo.

• Or your own code declares that it does
too throws the samen exceptions.

All exceptions are checked, except from
subclasses of RuntimeException.

void myMethod() {

…

try {

…

Class cl = Class.forName(”…”);

…

}

 catch(ClassNotFoundException e) {

…

}

}

---------------- or -----------------

void myMethod() throws ClassNotFoundException {

…

Class cl = Class.forName(”…”);

…

}

9

Unchecked exceptions
• Not checked by the compiler

A method foo might throw an unchecked
exeption without you knowing it.

If your code call foo, the compiler will not
tell you that foo might throw an
exception.

You are therefore likely not to handle that
situation.

Rationale:

• Every methodcall o.foo() can throw a
NullPointerException if o is null.

• It is not practical that correct code (that
cannot fail) is poluted with error checks

try {

try {

 Foo f = new Foo();

} catch(ClassNotFoundExceptien cnfe) {...}

f.bar();

} catch(NullPointerException e) {...}

• Similarly with arithmetic errors, array
stores, class casts, and other.

• The rule of thumb is that if the pre-
conditions for some method is broken,
the method may throw an unchecked
exception.

10

Checked or unchecked Exceptions?
Errors – use checked Exceptions

The provider (class programmer) is not in
a position to ensure that the operation can
be completed

– that the network is working

– a server is running

– the connection to the phone is not
working

If the provider (class programmer) knows
that this can happen, the client must deal
with that potential problem.

Contract violations (pre conditions) –
use unchecked Exceptions

The client did not ensure the pre-
condition.

– used null argument

– tried to pop empty stack

– tried to read past end of array

If the provider finds out that the pre-
condition is not satisfied, the provider
method should throw an unchecked
exception.

11

The try catch finally statements
try {

Statement0;

}

catch(ExceptionType1 ex1) {

Statement1;

}

catch(ExceptionType2 ex2) {

Statement2;

}

finally {

Statement3

}

•If Statement0 terminates normally, catch
statements are ignored.

•If Statement0 terminates abnormally by
throwing an exception e of type E, the first
catch which matches E is located (if any).

•If a corresponding type is found, e is
bound to the corresponding exi, and
Statementi is executed.

•If no corresponding type is found the
entire statement terminates with
exception e of type E.

•No matter what happens in Statement0
or any of the catch statements,
Statement3 is executed as the last
statement.

•If statement0 throws exception
ExceptionType1 and statement1 throws
ExceptionType2 what happens?

12

How final is finally?

• A Finally block will always be the last code to be executed in a method.
– Thus, pip() will return ”Grete”.

– “Grete” is returned if an exception is raised in the foo() call no matter which exception
it is

• If the result of the try-catch part is to throw the exception e, the finally can throw
an other exception instead.

– Most certainly do not do this.... But Java let’s you.

• Both cases is needed in rare circumstances.

• All finally blocks from the top of the stack to a matching catch block are executed
before the matching catch is executed.

String pip() {
try {

 foo();

 return "Hans";
}

 catch(FooException e) { System.out.println(“123“); }

 finally { return "Grete"; }

}

13

Java exception types hierarchy

Throwable

ExceptionError

RuntimeException

An Error is a subclass of Throwable that indicates serious problems that a reasonable

application should not try to catch. Most such errors are abnormal conditions.

A method is not required to declare in its throws clause any subclasses of Error that

might be thrown during the execution of the method but not caught, since these errors

are abnormal conditions that should never occur.
Direct Known Subclasses of Error:

AnnotationFormatError, AssertionError, AWTError, CoderMalfunctionError, FactoryConfigurationError,
LinkageError, ThreadDeath, TransformerFactoryConfigurationError, VirtualMachineError

14

Design principles

15

Design principle: Fit level of abstraction
The exceptions thrown by an object
should be defined in the same level of
abstraction.

Positive examples:

java.util.Stack has a method peek(),
which throws EmptyStackException.

java.util.ArrayList has a method get(int
index) which throws
IndexOutOfBoundsException

java.lang.Class has a method
getField(String name) which throws
NoSuchFieldException, NullPointerException

SecurityException

–The exception should be
informative

• E.g. IndexOutOfBounds should
contain a reference to the
ArrayList and the index which
failed.

–It must be in the vocabulary of the
class.

Negative example:

javax.swing.JTextField has a method
getText() If the underlying document is
null, will give a NullPointerException.
Should have been NoDocumentException.

It has a method getSelectedText(), which
can throw IllegalArgumentException.But
there are no arguments!

16

Exception handling
There are three reasonable ways to
deal with exceptions

1. Raise the exception to your level
of abstraction (throw a new
exception)

2. Try to recover (esp. network app.)

3. Die

1)
public Object pop() throws EmptyException {

try {

return elements.removeLast();

} catch(NoSuchElementException no) {

throw new EmptyException(this);

}

}

2)
public Object popOr(Object default) {

try {

return elements.removeLast();

}

catch(NoSuchElementException no) {

return default;

}

}

3)
public Object pop() throws EmptyException {

try {

return elements.removeLast();

}

catch(NoSuchElementException no) {

System.exit(1);

}

}

17

Diagram of exceptions
:class::method

• A method call

• try part catch part finally part

• Each box represents a call stack entity
– method call

– try-catch-finally block

• When an exception of type T is thrown, one looks down through the call stack to
find a try block which its black mark in the left side, and with a matching catch.
The try block which has a matching catch is then marked in the middle, and the
execution continues from there.

• If the try block has its black mark in the middle or in the right, it will be ignored
when we look for a matching try block down the call stack.

block #

18

Diagram of exceptions

• We try to
– Use the graphic notation

– Show the propagation down the call
stack upon throwing and catching an
exception

• Skipping some code

• Ensuring the execution of other code

class ExTry {

public static void main(String[] args) {

new ExTry().m1();

}

void m1() {

 try { m2(); }

 catch(Exception e) {

 System.out.println(e);

 }

 finally {

 System.out.println(“hello world”);

 }

 }

void m2() { m3(); System.out.println(“foo”);}

void m3() {

throw new RuntimeException();

}

}

19

Diagram of exceptions
class ExTry {

public static void main(String[] args) {

new ExTry().m1();

}

void m1() {

 try { m2(); }

 catch(Exception e) {

 System.out.println(e);

 }

 finally {

 System.out.println(“hello world”);

 }

 }

void m2() { m3(); System.out.println(“foo”);}

void m3() {

throw new RuntimeException();

}

}
:ExTry::main

:ExTry::ExTry

20

Diagram of exceptions
class ExTry {

public static void main(String[] args) {

new ExTry().m1();

}

void m1() {

 try { m2(); }

 catch(Exception e) {

 System.out.println(e);

 }

 finally {

 System.out.println(“hello world”);

 }

 }

void m2() { m3(); System.out.println(“foo”);}

void m3() {

throw new RuntimeException();

}

}
:ExTry::main

:ExTry::m1

21

Diagram of exceptions
class ExTry {

public static void main(String[] args) {

new ExTry().m1();

}

void m1() {

 try { m2(); }

 catch(Exception e) {

 System.out.println(e);

 }

 finally {

 System.out.println(“hello world”);

 }

 }

void m2() { m3(); System.out.println(“foo”);}

void m3() {

throw new RuntimeException();

}

}

:ExTry::m1

1

:ExTry::main

22

Diagram of exceptions
class ExTry {

public static void main(String[] args) {

new ExTry().m1();

}

void m1() {

 try { m2(); }

 catch(Exception e) {

 System.out.println(e);

 }

 finally {

 System.out.println(“hello world”);

 }

 }

void m2() { m3(); System.out.println(“foo”);}

void m3() {

throw new RuntimeException();

}

}

:ExTry::m1

1

:ExTry::m2

:ExTry::main

23

Diagram of exceptions
class ExTry {

public static void main(String[] args) {

new ExTry().m1();

}

void m1() {

 try { m2(); }

 catch(Exception e) {

 System.out.println(e);

 }

 finally {

 System.out.println(“hello world”);

 }

 }

void m2() { m3(); System.out.println(“foo”);}

void m3() {

throw new RuntimeException();

}

}

:ExTry::m1

1

:ExTry::m2

:ExTry::m3

:ExTry::main

24

Diagram of exceptions
class ExTry {

public static void main(String[] args) {

new ExTry().m1();

}

void m1() {

 try { m2(); }

 catch(Exception e) {

 System.out.println(e);

 }

 finally {

 System.out.println(“hello world”);

 }

 }

void m2() { m3(); System.out.println(“foo”);}

void m3() {

throw new RuntimeException();

}

}

:ExTry::m1

1

:ExTry::m2

:ExTry::m3

RuntimeException

:ExTry::main

25

Diagram of exceptions
class ExTry {

public static void main(String[] args) {

new ExTry().m1();

}

void m1() {

 try { m2(); }

 catch(Exception e) {

 System.out.println(e);

 }

 finally {

 System.out.println(“hello world”);

 }

 }

void m2() { m3(); System.out.println(“foo”);}

void m3() {

throw new RuntimeException();

}

}

:ExTry::m1

1

:ExTry::main

26

Diagram of exceptions
class ExTry {

public static void main(String[] args) {

new ExTry().m1();

}

void m1() {

 try { m2(); }

 catch(Exception e) {

 System.out.println(e);

 }

 finally {

 System.out.println(“hello world”);

 }

 }

void m2() { m3(); System.out.println(“foo”);}

void m3() {

throw new RuntimeException();

}

}

:ExTry::m1

1

:System.out::println

:ExTry::main

27

Diagram of exceptions
class ExTry {

public static void main(String[] args) {

new ExTry().m1();

}

void m1() {

 try { m2(); }

 catch(Exception e) {

 System.out.println(e);

 }

 finally {

 System.out.println(“hello world”);

 }

 }

void m2() { m3(); System.out.println(“foo”);}

void m3() {

throw new RuntimeException();

}

}

:ExTry::m1

1

:ExTry::main

28

Diagram of exceptions
class ExTry {

public static void main(String[] args) {

new ExTry().m1();

}

void m1() {

 try { m2(); }

 catch(Exception e) {

 System.out.println(e);

 }

 finally {

 System.out.println(“hello world”);

 }

 }

void m2() { m3(); System.out.println(“foo”);}

void m3() {

throw new RuntimeException();

}

}

:ExTry::m1

1

:System.out::println

:ExTry::main

29

Diagram of exceptions

• Note we never printed “foo” on the screen

• Would “hello world” be printed if our catch
was declared to catch “IOException” instead?

class ExTry {

public static void main(String[] args) {

new ExTry().m1();

}

void m1() {

 try { m2(); }

 catch(Exception e) {

 System.out.println(e);

 }

 finally {

 System.out.println(“hello world”);

 }

 }

void m2() { m3(); System.out.println(“foo”);}

void m3() {

throw new RuntimeException();

}

}
:ExTry::main

30

Diagram of exceptions

• We try to
– Use the graphic notation in a less terse way

– Show that try-blocks are only candidates for
a match of an exception, if they have their
black mark on the left.

class D {

void m() { throw new ExceptionA(1); }

public static void main(String[] args) {

D d = new D();

try { d.m();}

catch(ExceptionA ea) {

d.m();

} } }

:D::m

1

ExceptionA

:D::main

31

Diagram of exceptions
class D {

void m() { throw new ExceptionA(1); }

public static void main(String[] args) {

D d = new D();

try { d.m();}

catch(ExceptionA ea) {

d.m();

} } }

:D::m

1

ExceptionA

:D::m

ExceptionA

1

:D::main:D::main

32

Diagram of exceptions
class D {

void m() { throw new ExceptionA(1); }

public static void main(String[] args) {

D d = new D();

try { d.m();}

catch(ExceptionA ea) {

d.m();

} } }

:D::m

1

ExceptionA

:D::m

ExceptionA

1

empty call stack:D::main:D::main

33

Other exception handling mechanisms
Return an error code:

List and String have a method called
indexOf(element) which returns –1 if the
element is not in the collection/String.

Error status

The class MediaTracker maintains a list of
images and voice objects to be loaded, and
one can check an error code to see if
anything went wrong.

Differences

-No propagation down the call stack

-No typed information (typically an
integer with a certain value is used rather
than a type)

34

Providing context information
class Stack {

LinkedList elements = new LinkedList();

public void push(Object o) {

elements.add(o);

}

public Object pop() throws EmptyException {

if (elements.size() ==0)

throw new EmptyException(this);

return elements.removeLast();

}

public class EmptyException

extends Exception {

 Stack stack;

EmptyException(Stack stack) {

this.stack = stack;

} } }

Stack s1 = new Stack();

Stack s2 = new Stack();

Stack s3 = new Stack();

try {

 ...

System.out.println(s1.pop());

System.out.println(s2.pop());

System.out.println(s3.pop());

}

 catch(Stack.EmptyException ee) {

System.out.println(“offending stack was: “

+ ee.stack);

}

35

Perspectives on exceptions

36

Inheritance and checked exceptions
A method header specify which checked

exceptions it throws.

The compiler checks to see that the body
of the method does not throw any other
exceptions

But what about inheritance, can we add or
remove exceptions in the throw list?

class A {
public void foo() throws X {…}

}
class B extends A {

public void foo() throws X,Y{…} //legal??
}
class C extends A {

public void foo() {…} // legal??
}

public void useA(A a) {
try {

a.foo();
}
catch(X x) {

… handle x…
}

}
The compiler will accept this code,
because all checked exceptions thrown by
foo are caught.

But if we call the useA method with an
instance of a B, then a Y exception might
be thrown, but not caught.
•We are not allowed to add new
exceptions when overriding a method.
•We are allowed to remove exceptions

37

Inheritance: require less, promise more
A contract is an agreement between the
client C of a method M, and a provider P
of that method M.

Can another provider R substitute P?

Slogan: If R requires less and promises
more, C will not be offended.

E.g. If the post office ask for less postage
and/or delivers the letters faster, we are
happy.

If foo (from class A) has precondition PA,
then foo in B must have a weaker pre-
condition PB. (require less).

If foo in A has post condition QA, then foo
in B can have a stronger post condition QB
(promise more).

If foo in A can go wrong in cases X,Y,Z,
then foo in B promise to fail only in X and
Z (promise more – fewer exceptions to the
contract). I will not be offended if the post
office delivers also things which are too
big.

Contracts

Exceptions

38

Inheritance and catch blocks order
• Catch parts are searched from the top

and down.
• When a match is successful, the code

for that catch block is executed.
• The rest of the catch blocks are

ignored.
• If present the finally block is executed.

class ExceptionA extends Exception
class ExceptionB extends Exception
class ExceptionC extends ExceptionA
...
void bar() throws ExceptionA {...}

• Can bar() throw exceptions of type
ExceptionC ?

• Which of these foo() methods are
correct?

public void foo1() {
try { bar(); }
catch(ExceptionA) { }
catch(ExceptionB) { }
catch(ExceptionC) { }

}
public void foo2() {

try { bar(); }
catch(ExceptionA) { }
catch(ExceptionC) { }
catch(ExceptionB) { }

}
public void foo3() {

try { bar(); }
catch(ExceptionB) { }
catch(ExceptionC) { }
catch(ExceptionA) { }

}

39

Where can exceptions be thrown
• In a method

– terminates the execution of the method along with all other methods on the call
stack from the top till a matching catch is found.

• In a constructor
– terminates the construction of an object, and terminates all other methods on the

call stack from the top till a matching catch is found

• In a static initializer
– terminates the initialization of the class. However, it is still possible to create

instances of that class!! Catching such an exception (outside the initializer) is
extremely problematic, as class loading happens asynchronously and is not fully
specified.

• only unchecked exceptions may be thrown, why?

• In a catch or finally block
– Terminates the rest of the execution of the code in the block and all other methods

on the call stack from the top till a matching catch is found.

• Recall that finally blocks are always executed despite the catch block did not
match the exception thrown.

40

Where to declare the Exception class
If the Exception is bound to a specific

class make it a member class (inner
class).

If one do not need the ’this’ reference in
instances of the Exceptions, make the
exception class static.

Naming: If the class is name Foo, the
exception need not be named Foo as
well. E.g. The EmptyException was not
called StackEmptyException.
Reason: In use situations, one will write

catch(Stack.EmptyException ee)

If the exception can occur in a range of
different classes in your package, make
it a public class in your package.

41

Exception handling
• Program description

Merge two files into one
destination file.

– if the first file i fully read and
written but the second file fails,
then keep the destination.

– if the first file fail, remove the
destination file and ignore
processing the second.

• Our first try is an easy solution.
The customer, however, is
presented with low level error
messages in the form of
exceptions. not good!

– and in case of a failure, we do not
check if we should remove the
destination file.

import java.io.*;

class ReaderWriter {

public static void main(String[] args) throws IOException {

Reader r1 = new FileReader("in1.txt");

Reader r2 = new FileReader("in2.txt");

Writer w = new FileWriter("out.txt");

int ch;

while((ch = r1.read()) != -1) w.write(ch);

while((ch = r2.read()) != -1) w.write(ch);

r1.close(); r2.close();

w.close();

} }

42

Exception handling
• At the place of catching an exception,

one cannot get hold of context
information from where the
exception is thrown.

• Most exceptions in java does not
propagate information with them.

• getSource() is a non-existing
method. We can only get
information as strings from the
exception.

– We cannot write this code!

• We can check in the catch block that
– r1 and r2 == null

– r1 != null, r2 == null

– But then we make a high coupling
between the order of execution and
the error handling (ie. they are not
separated at all).

– Was not possible if we caught the
exception elsewhere but within the
method!

import java.io.*;

class ReaderWriter {

public static void main(String[] args) {

Reader r1 = null, r2 = null; // must be set to null!

try {

r1 = new FileReader("in1.txt");

r2 = new FileReader("in2.txt");

Writer w = new FileWriter("out.txt");

int ch;

while((ch = r1.read()) != -1) w.write(ch);

while((ch = r2.read()) != -1) w.write(ch);

w.close();

}

catch(FileNotFoundException e) {+ report to the user

if(e.getSource()) == r1) {

r2.close(); new File("out.txt").delete(); }

else r1.close();

} } }

43

Exception handling

• read() can throw an IOException
– Somehow the file cannot be read

– access rights

– EOF is reached

• But handling all cases of IO problems is really difficult – just look at how many direct
subclasses there exist for IOException:
Direct subclasses of IOException: ChangedCharSetException, CharacterCodingException, CharConversionException,
ClosedChannelException, EOFException, FileLockInterruptionException, FileNotFoundException, HttpRetryException, IIOException,
InterruptedIOException, InvalidPropertiesFormatException, JMXProviderException, JMXServerErrorException, MalformedURLException,
ObjectStreamException, ProtocolException, RemoteException, SaslException, SocketException, SSLException, SyncFailedException,
UnknownHostException, UnknownServiceException, UnsupportedEncodingException, UTFDataFormatException, ZipException

– And for each exception one should understand the exception and determine (how
is not always clear!) if it applies to the application in the domain it is used, and if
we thus need a special error handling and supply specific information to the user.

• Likewise for write() ...

• For both cases, we must remember to close all three streams!

... while((ch = r1.read()) != -1) w.write(ch);

44

Exception handling
• Reporting to the user may be

separated, but low level clean up
may be difficult to let external
objects take care of.

import java.io.*;

class ReaderWriter {

public static void main(String[] args) {

try {

Reader r1 = null, r2 = null; Writer w = null;

try {

r1 = new FileReader("in1.txt");

try {

r2 = new FileReader("in2.txt");

try {

w = new FileWriter("out.txt"); int ch;

try { while((ch = r1.read()) != -1) w.write(ch); }

catch(IOException e) { new File("out.txt").delete(); /* report deleting output */ }

try { while((ch = r2.read()) != -1) w.write(ch); }

catch(IOException e) { /* report keeping output */ }

}

catch(IOException e) { }

finally { w.close(); }

}

catch(FileNotFoundException e) { }

finally { r2.close(); }

}

catch(FileNotFoundException e) { }

finally { r1.close(); }

}

catch(IOException e) { /* if any close() fail... still we do not know which one! */ }

} } }

45

Exception handling
• Proper clean up may easily entail

almost as bad code as the code
from the motivation showing
intermixed business code and
error handling code!

• Almost more difficult to read
code in this style of programming!
(but still less redundant than the
if-else approach)

• green – business logic

• purple – code which may execute
on error

• red – code which execute on error

import java.io.*;

class ReaderWriter {

public static void main(String[] args) {

try {

Reader r1 = null, r2 = null; Writer w = null;

try {

r1 = new FileReader("in1.txt");

try {

r2 = new FileReader("in2.txt");

try {

w = new FileWriter("out.txt"); int ch;

try { while((ch = r1.read()) != -1) w.write(ch); }

catch(IOException e) { new File("out.txt").delete(); /* report deleting output */ }

try { while((ch = r2.read()) != -1) w.write(ch); }

catch(IOException e) { /* report keeping output */ }

}

catch(IOException e) { /* report failure */ }

finally { w.close(); }

}

catch(FileNotFoundException e) { /* report failure */ }

finally { r2.close(); }

}

catch(FileNotFoundException e) { /* report failure */ }

finally { r1.close(); }

}

catch(IOException e) { /* if any close() fail... still we do not know which one! */ }

} } }

46

Exceptions and efficiency

47

Exceptions and efficiency
In class System there is a method called
currentTimeMillis(), which returns
number of milliseconds since midnight
January 1st 1970.

It can be used as a stopwatch to find out
how long time it takes to execute a piece
of java code:
int N = 100000000; // 100.000.000
long start = System.currentTimeMillis();
long time;
for (int i=0; i<N; i++)

foo(7); // this is what we examine.
time = System.currentTimeMillis()-start;
System.out.println(”Calling an empty method”

+ ” takes ” + (time*1000)/N + ” µ seconds”);

1. Without Exceptions : 0.00401 µ sec
2. With Exceptions : 4.797 µ sec
3. No ex, but finally : 0.0043 µ sec
using java 1.4

Notice, it is about 700-1000 times slower
if the method throws an exception.

The for loop runs 100.000.000 times in
the code to the left. That takes a few
seconds on my laptop.

Beware: 1000 times a 2 seconds is about
half an hour. Run the loop with a small
number at first, and then increase by
factors of 10.

1. Without Exceptions : 0.004 µ sec

2. With Exceptions : 2.780 µ sec

3. No ex, but finally : 0.004 µ sec

using java 5

48

Code for the timing experiment
1) No exception thrown

void pip1(int N) {

for (int i = 0; i<N; i++) {

try {

noUups();

}

 catch(Exception e) { }

}

2) An exception thrown

void pip2(int N) {

for (int i = 0; i<N; i++) {

try{

uups();

} catch(Exception e) {

}

}

3) No exception thrown, but with a finally

void pip3(int N) {

for (int i = 0; i<N; i++) {

try {

noUups();

}

 catch(Exception e) { }

finally {}

}

}

void uups() throws Exception {

throw new Exception("Oh no");

}

void noUups() throws Exception { }

49

What takes time with exceptions
The uups method makes a new Exception

object, and throws it.

It is making the Exception object which is
expensive:

void uups() throws Exception {

throw new Exception("Oh no");

}

void noUups() throws Exception {

new Exception("Oh no");

}

Now the timing results are:

Without Exceptions : 2.643 micro sec

With Exceptions : 2.764 micro sec

No ex, but finally : 2.594 micro sec

That is a difference of ~7%

An alternative is to make the exception object
ahead of time:

static Exception ohNo = new Exception("Oh no no");

void uups1() throws Exception {

throw ohNo;

}

void uups2() throw Exception {

ohNo.fillStackTrace();

throw onNo;

}

Then the timing results become:

With Exceptions1 : 0.1533 micro sec

With Exceptions2 : 0.2424 micro sec

This way exceptions are ”only” 40-60 times
slower, not 700 times.

50

Why is it so expensive to make Exception
objects?

Exception is a subclass of Throwable.

A throwable object has a stacktrace.

The stack trace tells in which method the
Throwable was created, and from which
method it was called, and from where it
was called…

Establishing the stack trace is done when
a new Throwable is created (or any of its
subclasses).

Setting the stack trace accounts for the
remaining cost of throwing an exception.

The deeper the call stack is when you
make the exception object, the more
expensive it is to make the exception
object.

51

Runtime reflection: StackTraceElement
The stack trace is an array of
StackTraceElement, with the most resent
method call being in the zero’th index.

The following method returns true if the
method it was called from is named foo,
false otherwise.
public static boolean amIFoo() {

Throwable t = new Throwable();
StackTraceElement[] trace = t.getStackTrace();
String methodName =trace[1].getMethodName();
return methodName.equals(”foo”);

}
public static void main(String[] args) {

System.out.println("Main:" + amIFoo());
foo(); }

public static void foo() {
System.out.println("Foo: " + amIFoo());}

The API in brief:

String getClassName()

String getFileName()

int getLineNumber()

String getMethodName()

Notice, the methods does not return the
reflection objects, but string names.

Only in recent version of Java is this
possible (Java 1.4 and newer)

