
1

OPI
Lecture 21

Graphical User Interfaces

Kasper Østerbye
Carsten Schuermann
IT University Copenhagen

2

• Goal:
– understand the concepts of Graphical User Interfaces

– understand the fundamentals of event based programming
• Drawing

• System events

• User events

– understand the fundamentals of Swing
• (Panels & Layout)

• Events

• Delegates

• Models

– Enable you to explore Swing or some other GUI library on your own.

3

Simple Drawing
If you run the program to the right, a small
window appears, in which you can draw small
dots under the mouse cursor by left clicking the
mouse.

Each component in a modern windows system
has associated a piece of screen on which it can
draw. In Swing this bitmap is called a Graphics.

A graphics object is the only object through
which one can actually print things on the
screen.

The full name is java.awt.Graphics

It has methods for drawing
– lines, ovals, and other simple figures
– Texts
– Images

It has a current Font and a current draw color.
Both can be changed. Check the API.

public class DotFrame extends JFrame {

 public DotFrame(){
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setSize(400, 400);
 setTitle("DotFrame");
 this.addMouseListener(
 new MouseAdapter(){
 public void mouseClicked(MouseEvent e){
 drawDot(e.getX(), e.getY());
 }
 });
 setVisible(true);
 }

 private void drawDot(int x, int y){
 getGraphics().fillOval(x-5, y-5,10,10);
 }

}

4

Redraw
If the window from before is fully or
partially covered, the dots drawn are
erased.

A Graphics object has no memory.

It is a direct connection to a part of the
screen – but that part might be used by
other windows sometimes.

If the graphics object should be able to
remember its state, it had to keep a copy
of its rendition somewhere else.

It does not do this.

Instead, the Java virtual machine call the
paint(Graphics) method when our screen
is again free.

We will extend to program to have a
memory of which dots have been drawn.

There is a class for representing Points,
we will use that.

(See DotFrame2.java)

5

Clipping area
Consider the program to the right.

The only change is that the paint method
draws blue dots instead of black ones.

A graphics object has associated with it a
“clipping area”, which is the area is in
need of redraw.

Only draw operations which fall inside
this clipping area are really drawn, the
others are ignored.

The clipping area is an important
mechanism to ensure performance.

 private void drawDot(int x, int y){

 getGraphics().setColor(Color.BLACK);

 getGraphics().fillOval(x-5, y-5,10,10);

 Point p = new Point(x,y);

 myDots.add(p);

 }

 public void paint(Graphics g){

 g.setColor(Color.BLUE);

 for(Point p: myDots)

 g.fillOval(p.x-5, p.y-5,10,10);

 }

6

(Not) Drawing text
Consider the following drawing task:

– Each time a key on the keyboard is
pressed, draw it on the graphics
object.

This is done using the code to the right.

However, all letters are drawn on top of
each other.

To do this properly, we must be able to:
– Get the size of each letter
– In the font currently used
– And remember all the letters
– And handle delete
– And handle paste

Do not attempt to write on a graphics.
One can draw a few Strings – nothing
more.

// added in the constructor
 this.addKeyListener(
 new KeyAdapter(){
 public void keyTyped(KeyEvent e){
 drawKey(e.getKeyChar());
 }
 });

 private void drawKey(char c){
 getGraphics().drawString(""+c, 50,50);
 };

7

Swing and AWT
GUI building can roughly be divided into

two parts

• Drawing on graphics

• Using components

We will now examine to the second part.

A user interface is build from components
which can react to user interaction.

Some typical components are:

• Labels

• Text fields

• Buttons

• Radio buttons

• Drop down boxes

• Lists

• Tables

There are three important aspects to
consider:

1. Will the user be able to figure out how
to work with this interface?

2. How can we build the interface so it
looks like we would like it to look?

3. How can we program it to do as we
want when the programmer work
with the window.

We will ignore 1.

The way in which Swing and AWT handles
2 is embarrassingly complex and
unsystematic. There are few general
lessons in that.

We will spend the most of the time on 3.

8

Layout in Swing and AWT
Each component is placed in a container.
A container can contain several
components.

There exist two kinds of containers:

Frames and Panels

Frames are individual windows on the
screen. Panels are areas within the Frame.

A Panel is itself a component.

The physical layout of the components in
a container is controlled using a Layout
manager. There are many different layout
managers, all controlled differently.

One positive thing can be said: The design
is able to handle resizing of non-trivial
user interfaces.

The design above is know as the
composite pattern, and was originally
invented for this particular purpose.

It is well suited for the arrangement of
hierarchical structures.

The clue is that container is itself a
component.

Component

Container

Frame Panel

Label Button etc

9

The drawing/paint lesson
Each component must be able to paint
itself.

It is therefore necessary that it holds all
the information necessary to do so.

A component can be seen as consisting of
three different parts:

– The model: The data which should be
painted.

– The view: The thing you see and the
screen.

– The controller: How you interact with
the data.

From very early on (1978) these three
parts have been split into three different
objects.

The pattern is known as Model-View-
Controller (MVC).

In Java, the view and control is reunited
into one object, called a Delegate.

But MVC helps on other issues as well:

Sometimes the same information is shown
at the same time at different locations in
a user interface.

Sometimes the same information is shown
in different ways.

Having a single model keeps the data
consistent!

Sometimes the data shown is changed by
other means than the GUI.

Changing the model, and updating all
views does the trick!

10

A simple example
The MVCExample to the left has two
delegates which uses the same model.

The delegate is the swing JTextField

The model is a Document (from swing as
well).

– Any changes done in one delegate,
changes the model.

– Any change in the model updates all
delegates.

:Document

contents: String

See MVCExample
in the lecture code

11

Observer patten
Sometimes one need to know in object A if

there is a change in object B.

This can be done by having B call a
method in A.

However, this will make B depend on A,
which was not the idea.

Solution 1: Make a thread in A, which
every 1/10 second checks B to see if
there is a change.

Solution 2:

Realise that this situation is so common
that special design is necessary.

Solution 2 is the commonly chosen, and is
called the Observer pattern

A B
depends

Observer and Observable (A and B)

The observable knows it is observed, but
not by whom.

The observable is designed to be observ-
ed. It notifies those observing it about
changes.

1. A tells B that it want to observe.

2. B tells all observers that it has changed

3. A gets a message that B has changed

4. A inquires B for its new state

12

Model is observable
The Document is the Model, a Model is an
observable.

The JTextField is an observer.

In Java GUI framework, observers are
sometimes called listeners.

Here, the synchronization happens simply
because it is the same model. JTextField tf1 = new JTextField(10);

Document document = tf1.getDocument();

JTextField tf2 = new JTextField(document,null,10);

:Document

contents: String

13

Observables and Listeners
When an Observable notifies its observers,
it will assume that the observers/listeners
implement a specific ListenInterface.

The listen interface is different for
different observables.

There is a division of labor between the
programmer of A and B.

1) B knows when something interesting
is happening, but not what to do.

2) A knows what to do, but not when.

1. A tells B it is interested in what B is
doing, typically as:
myB.addBListener(myA);

2. The B object does something which
changes it state. It then calls a method
M from the BListener interface on all
objects which has been added as
listeners.

3. The M method on myA is called. What
happens here is up the the A
programmer.

A
implements
BListener

B
observes

14

A document listener
The code to the right is a label, which show
how long a document is.

Question: How do one write such a thing?

Problem: How did I find out I needed a
Document listener, and what must I
implement

1) JTextField’s superclass has massive
documentation in API – which
mention ’Document’

2) getDocument brings me to Document.

3) Document has addDocumentListener

4) DocumentListener has three methods
which must be implemented.

5) I find out that I do not need to know
about DocumentEvent

Try to follow the above steps yourself.

class DocumentSizeView
extends JLabel
implements DocumentListener {

Document d;
DocumentSizeView(Document d){

super("");
this.d = d;
setText("Size: " + d.getLength());
d.addDocumentListener(this);

}

public void changedUpdate(DocumentEvent e) {}
public void insertUpdate(DocumentEvent e) {

setText("Size: " + d.getLength());
 }

public void removeUpdate(DocumentEvent e){
setText("Size: " + d.getLength());

}
}

15

Changing the document
The class to the right inserts ’HaHa’ into a

document every 3 second.

Notice, that when the program is run, the
listeners are updated to reflect the
changes to the model.

class InsertHaHa implements Runnable {

Document d;

InsertHaHa(Document d){

this.d = d;

}

public void run(){

int start = d.getStartPosition().getOffset();

while(true){

try{

Thread.sleep(3000);

d.insertString(start, "HaHa", null);

}catch(Exception ignore){};

}

}

}

16

A much larger example
(for reading and study –

I do not expect you to write such a thing)

17

Selecting and editing a studen list
The GUI to the right has three main
components:

– A text field which serves as a filter

– A list from which one can select a
student

– An area in which the data of the
selected student is shown.

When the filter field is changed, the list
shrinks or expands (shrinks as characters
are written to the field, expands as they
are deleted)

Selecting a student brings up the data of
that student. If the filter reduces the list to
exactly one element, that element is
automatically selected.

Editing the data of the student name is
immediately reflected in the list.

We shall look at the list and its model, and
we will examine how changing a name
can update the list.

And we shall try to do this in a modular
way.

18

The top level window
class MyWindow extends JFrame {

MyWindow(){

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

setSize(700, 400);

setTitle("ListExample");

final SelectingList students =

new SelectingList(OOPStudent.students);

this.getContentPane().add(students, "West");

final OOPStudentDelegate sd =

new OOPStudentDelegate();

this.getContentPane().add(sd, "Center");

setVisible(true);

}

}

students.addListener(
new SelectingList.Listener(){

public void selectionChanged
(SelectingList.Listener.Event ev){

if (ev.getSelection() == null)
sd.setModel(null);

else
sd.setModel (
(OOPStudent)ev.getSelection());

}});

19

The seleting list
public class SelectingList extends JPanel{

private final JList jlist;
private final SelectingListModel listModel;
JTextField selText;

public SelectingList(Object[] elements){
listModel =

new SelectingListModel(elements);
jlist = new JList(listModel);
jlist.setSelectionMode(

ListSelectionModel.SINGLE_SELECTION);
…
selText.addCaretListener(new CaretListener(){

public void caretUpdate(CaretEvent e){
listModel.updateFilter(selText.getText());
if (listModel.getSize() == 1)

jlist.setSelectedIndex(0);
else

jlist.clearSelection();
}

});

jlist.addListSelectionListener(
new ListSelectionListener(){

public void valueChanged(ListSelectionEvent e){
if (! e.getValueIsAdjusting())

if (jlist.isSelectionEmpty())
notifyListeners(null);

else
notifyListeners(

listModel.getElementAt(
list.getMinSelectionIndex()));

}
});
}

20

Listen structure

selText:JTextField

jlist:JList
sd: OOPStudentDelegate

students: SelectingList

listens to

listens to

:SelectionModel

(1)

(3)

(4):ListModel

(2)

21

SelectingListModel
The SelectingListModel is the model we
make to be used by JList. It must satisfy
the ListModel interface:

Object getElementAt(int index)
int getSize()
void addListDataListener(ListDataListener l)
removeListDataListener(ListDataListener l)

The abstract class AbstractListModel
implements the listener aspects, and gives
us the method:

void fireContentsChanged
(Object source, int index0, int index1)

which we can use to tell our dependents
that we have changed.

private static class SelectingListModel extends
AbstractListModel {

private final Object[] rawData;
private java.util.List filteredData = new ArrayList();
private String filter;
SelectingListModel(Object[] raw){

rawData = raw;
updateFilter("");

}
private boolean checkAgainstFilter(Object o){

…
}
void updateFilter(String newFilter){

…
this.fireContentsChanged

(this, 0, filteredData.size());
}
public int getSize(){ …}
public Object getElementAt(int index){…}

}

22

update the filter
The list filteredData is cleared, and we
check all elements in rawData to find
those which match the filter.

void updateFilter(String newFilter){

filter = newFilter;

filteredData.clear();

for (int i = 0; i<rawData.length; i++)

if (checkAgainstFilter(rawData[i]))

filteredData.add(rawData[i]);

this.fireContentsChanged

(this, 0, filteredData.size());

}

23

The OOPStuden class
This class is build as a model. It is a
subclass of Observable:
void addObserver(Observer o)
protected void clearChanged()
int countObservers()
void deleteObserver(Observer o)
void deleteObservers()
boolean hasChanged()
void notifyObservers()
void notifyObservers(Object arg)
 If this object has changed, as
indicated by the hasChanged method,
then notify all of its observers and then
call the clearChanged method to indicate
that this object has no longer changed.
protected void setChanged()
 Marks this Observable object as
having been changed; the hasChanged
method will now return true.

public class OOPStudent extends Observable{

private String name, email,programme,start;

OOPStudent(String name, String email,

String programme, String start){

this.name = name; …

}

private void notify(String subject){

setChanged();

notifyObservers(subject);

}

public String getName(){ return name; }

…

public void setName(String s){

name = s; notify("name");}

…

public String toString(){return name;}

24

The OOPStudentDelegate
The Delegate is made up of four labels and
four text fields.

The starting semester is read only.

Internally, there is a caretlistener on each
text field which updates the model as we
are typing.

Remember, the Delegate depends on the
selection in the list.
students.addListener(new SelectingList.Listener(){

public void selectionChanged

(SelectingList.Listener.Event ev){

if (ev.getSelection() == null)

sd.setModel(null);

else

sd.setModel

((OOPStudent)ev.getSelection());

}});

public void setModel(OOPStudent s){
model = s;
if (s == null){

nameField.setText("");
nameField.setEditable(false);
…

}else{
nameField.setText(model.getName());
nameField.setEditable(true);
…

}
}

25

SelectingList Listener
The interface is an local interface of class
SelectingList. It has one method
selectionChanged.

Often the listener methods has an
argument which inform about the event
that took place.

Here I specify the event class as an local
class in the interface.

By convention, event classes must be
subclasses of EventObject.

interface Listener {

class Event extends EventObject{

private Object selection;

private Event(SelectingList sl, Object sel){

super(sl);

selection=sel;

}

public Object getSelection(){

return selection;

}

}

void selectionChanged(Event e);

}

26

Making the list listen to the students
void updateFilter(String newFilter){

filter = newFilter;

Iterator itr = filteredData.iterator();

while (itr.hasNext()){

Object o = itr.next();

if (o instanceof Observable)

((Observable) o).deleteObserver(this);

}

filteredData.clear();

for (int i = 0; i<rawData.length; i++)

if (checkAgainstFilter(rawData[i])){

filteredData.add(rawData[i]);

if (rawData[i] instanceof Observable)

((Observable)rawData[i])

.addObserver(this);

}

this.fireContentsChanged(this, 0, filteredData.size());

}

Changing the name of the selected student
is immediately reflected in the list.

This is done by making the list listen to all
its elements.

When the filter changes, we unsubscribe
to all the previous elements, clear the list,
and subscribe to all the new elements.

27

In summary

selText:JTextField

jlist:JList
sd:OOPStudentDelegate

students: SelectingList

listens to

listens to

:SelectionModel

(1)

(3)

(4):ListModel

(2)

:OOPStudentlistens to

modifies

28

What to make of all this
• Observable/Observer design pattern

• Listeners is one way of doing this.

• Model/View/Controller is in Java
Model/Delegate

• Often one will write the model class to
reuse the Delegate.

• GUI frameworks has matured over 25
year.

• Swing is designed to be very flexible, at
the cost of being highly complex.

• The essence is to figure out

– What is the model(s)

– What is the delegate(s)

– What listeners are available

• In the delegate

• In the model

29

Some alternatives
The listener idea is nearly universal in
GUI frameworks today.

However, the concrete design varies from
one programming language to the next:

In Java swing :

selText.addCaretListener(new CaretListener(){

public void caretUpdate(CaretEvent e){

… do stuff…

}

});

In non_swing Java (using reflection)

selText.addCaretListener(this, ”doStuff”);

…

public void doStuff(CaretEvent e){

…

}

In C# (not real syntax, but in principle)

selText.addCaretListener(

new Method(CaretEvent e){

do stuff

});

In some research languages, one do not
use the listener idea, but overides a
method in the delegate directly.

selText = new JTextField(…){

public void carretUpdate (CaretEvent e){

… do stuff…

}

};

30

Alternative layout
 Frame pm = new Frame("Person Manager") {
 @Vertical
 Panel listpanel = new Panel() {
 @Width(150)
 TextField searchtextfield = new TextField();
 @Width(150) @Height(300)
 List list = new List();
 };
 @Vertical @Padding(0)
 Panel infopanel = new Panel() {
 @Horizontal
 Panel namepanel = new Panel() {
 @Width(100)
 Label namelabel = new Label("Name:");
 @Width(200)
 TextField nametextfield = new TextField();
 };

 @ Horizontal Panel addresspanel = new Panel() {
 @Width(100)
 Label addresslabel = new Label("Address:");
 @Width(200)
 TextField addresstextfield = new TextField();
 };
 @ Horizontal @Hlock(false)
 Panel phonepanel = new Panel() {
 @Width(100)
 Label phonelabel = new Label("Phone:");
 @Width(200)
 TextField phonetextfield = new TextField();
 };
 @ Horizontal @Hlock(false)
 Panel addpanel = new Panel() {
 IButton removebutton = new Button("Remove");
 IButton addbutton = new Button("Add");
 };
 };
 };

