OOP Spring 2005
Lecture 12
Objects and Beyond

Kasper Osterbye
IT University Copenhagen

Today's show

o What is the difference between Java and C#
« What is the difference between Java and C++

 Aspect oriented programming

« The first two OOP languages
— Simula, 1968
— Smalltalk, 1972,74,76,80!

Some features in C# not in Java

Most of C# is immediately recognizable to a Java programmer. Some parts are new
relative to Java:

Virtual and non-virtual instance methods
Properties — field-style method calls

Indexers — array-style method calls

Operator overloading — as in C++

Delegates — method closures

Value types and structs — allocated on stack, inlined in objects, copied on assignment
Reference parameters (ref and out) — much like Pascal, Ada, C++

No inner classes, no throws clause on methods

Unsafe code with pointer arithmetic and so on — discouraged, but possible

C#: Virtual and non-virtual instance methods

In Java, a method that is not static or private is automatically virtual.
C# has fours kinds of method declarations (the three first are known from C++):

« Static: static void M()

A call C.M() is evaluated by finding the method M in class C or a superclass of C
« Non-virtual and non-static: void M()

Assume that the compile-time type of o is T.

A call 0.M() is evaluated by finding the method M in class T or a superclass of T.

« Virtual and non-static: virtual void M()
Assume that the runtime class of the object bound to o is R.
A call 0.M() is evaluated by finding the method M in class R or a superclass of R.

« Explicit interface member implementation: void I.M()
This declaration implements M from interface I, which must be a base interface of the
enclosing class.
Assume that the runtime class of the object bound to o is R and its compile-time type is 1.
A call 0.M() is evaluated by calling method I.M in class R or a superclass of R.

C# example

C#: Implicit boxing, properties, indexers, enumerators, user-defined operators,
and delegates
public class TestLinkedList {
static void Main(string[] args) {
LinkedList xs = new LinkedList();
for (int i=0; i<10; i++)

xs.Add(i); /I Implicit boxing of int
Console.WriteLine(xs.Count + " " + xs[2]); // Property and indexer
xs[2] = 102; Il Indexer’s set-accessor
int sum = 0;
foreach (int k in xs) /I Using an enumerator
sum += k; /I and implicit unboxing
Console.WriteLine(sum);
LinkedList twice = xs + xs; /I Using operator (+)
twice.apply(new Fun(print)); Il Create delegate

static void print(object x) { Console.Write(x + " "); }

}
public delegate void Fun(object x); // A delegate type
— Most of the new devices are not essential, but they make programs shorter and clearer.

— Delegates are intended for user-interface programming (ActionListener etc), but less general
than inner classes.

C++

A main difference between Java/C# and The standard solution is:
C++ is that C++ is not garbage collected.

X o~ ~ Person p = new Person(“Lars);
It is the programmers responsibility to

both allocate (new) and de-allocate .. myMethod(p.clone());
(dispose) objects. // we do not give away references, but
The ideal is: // copies

p.dispose(); // is now safe
Person p = new Person(“Lars);

... // use variable p only here Cost:
p.dispose();

17 the object no longer exist! creating a disposing of objects is

expensive.
But if you are very careful, it can be

But reality is: avoided, and the programmer has better
Person p = new Person(“Lars); control — and can do better than GC.
... myMethod(p);
// are there other references to
// the object?

p.dispose(); // is this safe?

Reference parameters

In Java there exist only one form of
parameter kind — known as value
parameters.

With a value parameter, it is the value
which is passed as argument.

In C# and C++ you have to option to use
what is known as a reference parameter.

Consider the method:
void foo(Integer x){
x.value = 77;
}
Used as

Integer a = new Integer(88);
foo(a);
System.out.printin(a);

Expected print is 88.

If foo were declared with a reference
parameter:
void foo(ref int x){
x=77;
}

x becomes an alias for a.

this allows a method:
void swap(ref int i, ref int j){
inttemp =1i;
i =] j=temp;
}
call as:
inta=77,b=288;
swap(a,b);
or
int[] ia = {1,2,3,4,5,6}
swap(ia[2], ia[5]);

Operator overloading

Both C# and C++ allow us to write our
own versions of operators

class TimeOfDay{

TimeOfDay operator+(int minutes){

TimeOfDay oopStart = new TimeOfDay(“14:30");
TimeOfDay break = oopStart+45;

Java and reusability

The notion of
— interfaces
— abstract classes
— generics
— exceptions
— reference parameters
— operator overloading
—inner classes
— enums
— iterators
— Wrappers

Reusability — experience.
The good news:
— There is often big return when

using good frameworks from Sun,
MS, or other good brand.

The bad news

— It is very hard to reuse code from
one project to the next. In effect, it
requires you to write a framework
yourself.

are all primarily invented to cater for reusability.

If you are an application programmer,

— you will typically use interfaces, not define them,

— you will catch exceptions, not define them,

— you will use iterators, not define them etc.

Aspect oriented programming

10

problems like... I
logging is not modularized

« where is logging in org.apache.tomcat
— red shows lines of code that handle logging
— not in just one place
— not even in a small number of places
11

problems like...
session expiration is not modularized

StandardSession

ApplicationSession

StandardManager StandardSessionManager

Sessionlnterceptor

ServerSessionManager

ServerSession

aspectj.org

the cost of tangled code

e redundant code

— same fragment of code in many places

o (difficult to reason about

— non-explicit structure

— the big picture of the tangling isn’t clear

 difficult to change
— have to find all the code involved

— and be sure to change it consistently

— and be sure not

to break it by accident

13

crosscutting concerns

getSession()

HTTPRequest -
Sessioninterceptor
getCookies()
getRequestURI()(doc) requestMap(request)

getRequestedSessionld() |

beforeBody(req, resp)

| setSessionld(id)

Session
HTTPResponse A getAttribute(name)
getRequest() ¢ | setAttribute(name, val)
setContentType(contentType) 7 | invalidate()
getOutptutStream()

|
~_

Servlet

14

the AOP ides

crosscutting is inherent in complex systems

crosscutting concerns
— have a clear purpose

— have a natural structure

+ defined set of methods, module boundary crossings, points of resource utilization,

lines of dataflow...

so, let’s capture the structure of crosscutting concerns explicitly...

— in a modular way

— with linguistic and tool support

aspects are

— well-modularized crosscutting concerns

15

An ultra brief overview

class Pip{

}

private intx =7;

class Pap{

}

private inty = §;
public int getY(){ return y; }

privileged aspect Misc {

Adds a pop method to class Pip

public String Pip.pop(){
return "Hello world";
public int Pip.getX(){ return x; }

Adds a getX method to class Pip.
Because the aspect is privileged,
we can access the private fields.

public static int sum(Pip pi, Pap pa){

return pi.getX() + pa.y; S

A static method in the aspect.
Can be used as Misc.sum(...)

—_—

pointcut getters():call(* *.get*());

before():getters(){System.out.print("*get™");}
¥

A pointcut specify a number of
places in the code. Here all
places where the is a call to a
method with a name that start
with "get”.

Before all getters, write
995 g et*”.

16

Using the aspect

class AspectTest{
public static void main(String[] a){
Pip pip = new Pip();
Pap pap = new Pap();

System.out.printin("Pip's pop answers " + pip.pop()); I/ we can use the pop method
System.out.printin("The sum is " + Misc.sum(pip, pap)); // The sum method is static
System.out.printin("pip.getX() is: " + pip.getX() + I we can use the getX method
" pap.getY()is: " + pap.getY()); }
}
The output is:

Pip's pop answers Hello world
*get*The sum is 15
*get**get*pip.getX() is: 7 pap.getY() is: 8

17

Aspects

The goal is to put those things which belong together, but are scattered across
multiple classes in one place.

Many experience that they are out of control, and can no longer find out what a
class does, because new methods are added and side effects are put on the
existing methods.

18

Simula-68

Class Rectangle (Width, Height); Real Width, Height; Rectangle Class LocRectangle (X, Y);

I Class with two parameters;
Begin
Real Area, Perimeter; ! Attributes;

Integer X, Y; | More parameters;
Begin
Boolean Tall; ! More attributes;

Procedure Update; ! Methods (Can be Virtual);

Begin
Area := Width * Height;
Perimeter := 2*(Width + Height)
End of Update;

Boolean Procedure IsSquare;
IsSquare := Width=Height;

I Life of rectangle started at creation;

Update;

Procedure Move (Dx, Dy); Integer Dx, Dy;
Begin
X:=X+Dx;Y: =Y +Dy
End of Move;
I Additional life rules;
Tall := Height > Width;

OutText("Located at: "); OutFix(X,2,6);
OutFix(Y,2,6); Outimage

End of LocRectangle;

OutText("Rectangle created: "); OutFix(Width,2,6);

OutFix(Height,2,6); Outimage
End of Rectangle;

19

Simula 68

« Classes

« Inheritance (called prefixing)
« Virtual methods

« Inner classes

 Inner methods

« Anonymous classes (prefixed blocks)

« Build in "concurrency” (quasi parallism)

« No interfaces, no big library

« Simula is no longer in use.

20

Smalltalk 80

Same model as all the other OOP languages — objects, classes, methods,
inheritance.

But!
 Everything is an object — also numbers and classes
 Everything is an object — also the code itself

 Everything is done by invoking methods on objects
—7 + 8 means to invoke the + method on the object 7, with the argument 8

— (x>7) ifTrue: [Transcript show: "That big!’] means to invoke the ifTrue method on
a boolean object, with a piece of code (in [...]) as parameter.

— Person subclass: ‘Student’ means to invoke the subclass method on the object
Person (which represents a class). The result is an other object which represents a
subclass of Person, the name of the subclass becomes ’Student’.

Smalltalk is still in use many places, it was never strong in Denmark.

21

Exam

« Exam date: Tuesday the 28th of June from 9-13
(room to be announced on web)
« Question and answer session:

— Thursday 23 june, from 16:00-18:00.
(room to be announced on web)

« Written exam, no computers, all books and slides and notes.

 There are old exam sets and solutions. Notice:
— Spring 2004 was too hard,
— Fall 2004 was right.
— Prior to 2004, it was a different teacher, different style of exam sets.

« Last chance for exercises:
— May 10th, noon.
— Check schema for errors.

22

