Object-oriented programming, spring 2004.
Exam questions, Thursday January 13, 2005, 9:00.

The exam is scheduled to last 4 hours. The exam set consists of 6 questions which each have a number of sub questions. The points for each question are written next to it. It is possible to obtain a total of 100 points.

The exam is an open book exam, you are allowed to use text books, copies of the lecture slides, and other written material. If your answers depend on classes or methods from the textbook or lecture notes, you do not need to copy them, but give a precise reference with page number, section number etc.

You are not allowed the use of computers at the exam.
The exam set is 6 pages, including this front page.

Sorting file names (15 %)

The compareTo method of strings (see Java Precisely page 8), compares strings using the lexicographical ordering. In this ordering, the string “log10.txt” is less than “log2.txt”, because ‘1’ is lexicographically before ‘2’. Often, however, it would be nice to have “log2.txt” come before “log10.txt”. We call this ordering FileNameOrder.

This exercise has two questions that can be solved independently.

a) (10%) Write a comparator class FileNameOrder that orders two File objects according the above-mentioned order. The class should implement the Comparator interface:

interface Comparator{

int
compare(Object o1, Object o2)

 // Compares its two arguments for order.

}
the integer returned by compare should be 0 if o1 is equal to o2, -1 if o1 is before o2, and 1 if o1 is after o2.

You may assume you can use a method: String[] split(String s), that takes a filename as parameter and splits it into three parts returned in a String[]. In a call

String[] result = split(“log2.txt”);
result[0] is the part which is not a number (“log” in the example). The result[1] is the number (“2” in the example”) or an empty string if there is no number. The result[2] is the “.txt” part.

b) (5%) Assume that the FileNameOrder comparator from above is working. Use it to implement the following method:

String[] sortFilesIn(File directory)
that takes as parameter a File directory, and returns a sorted array of the file names in the directory – the sorting order should be that defined by FileNameOrder. If the parameter is not a directory, the method should return null. You may assume as a precondition that the directory has no sub-directories. You may use the Arrays.sort method described on page 12 in Java Precisely.

Communicating threads (20%)

This question is about threads and input/output.

The following program consists of two classes that implement the Runnable interface. The main program creates an instance of each, and the two instances can communicate using a PipedWriter and PipedReader.

class PipedThreads {

public static void main(String[] args){

try{

PipedWriter pw = new PipedWriter();

PipedReader pr = new PipedReader(pw);

Consumer c1 = new Consumer("C1", pr);

Producer p1 = new Producer("P1", pw);

new Thread(c1).start();

new Thread(p1).start();

}catch(IOException e){

System.out.println(e);

}

}

}

class Producer implements Runnable{

PrintWriter pw;

String producerName;

Producer(String name, Writer pipe){

producerName = name;

pw = new PrintWriter(pipe);

}

public void run(){

for(int i=0; i<50;i++){

try{Thread.sleep((int)(Math.random()*50));}

catch(InterruptedException e){};

pw.println(producerName

+ " produced a " + i);

}

pw.println("STOP");

}

}
class Consumer implements Runnable{

BufferedReader br;

String consumerName;

Consumer(String name, Reader pr){

consumerName = name;

br = new BufferedReader(pr);

}

public void run(){

try{

String line= br.readLine();

while (!line.equals("STOP")){

System.out.println(consumerName

+ " got: " + line);

line = br.readLine();

}

System.out.println("Consumer "

+ consumerName + " stopped");

}catch(IOException e){}

}

}

a) (5%) What is printed to System.out when the program runs?

b) (8%) Change the main method so that two producers are created and run in parallel, instead of only one as in the current program. Remember to ensure all produced text should be consumed; you might have to change the Producer and/or Consumer to get this to work. Please hand in the parts of the code that have to be changed (not the entire program) as the answer to the question.

c) (7%) The present solution does not explicitly close the piped readers and writers. Change the program so that the pipes are explicitly closed before the program terminates. You need only hand in the pieces of code that have to be changed for this to work.

1 Reader – Iterator bridge (20%)

This question is about iterators and input.

Iterators are normally used to iterate through a collection. Iterators share the sequential access with Streams. This question is about making a bridge between a Reader and an Iterator.

Write an iterator MyReaderIterator, which receives a Reader, and returns the lines one by one. You have the option of implementing the OOPIterator (See lecture 4) – you can leave out cloneMe(), or the standard Java Iterator (the methods next() and hasNext()). When the Reader has reached its end, it should be closed. Make sure your implementation of MyReaderIterator will close the reader properly.

Notice, the class BufferedReader has a method String readLine() which returns a String which is the next line from the Reader, or null if end of file.

MyReaderOperator should be able to be used in the following program, which prints out all lines longer than 10 characters.

public static void main(String[] args) throws IOException{

Reader r = new FileReader("C:\\myfile.txt");

MyReaderIterator itr = new MyReaderIterator(r);

while (itr.hasNext()){

String s = (String) itr.next();

if (s.length() >= 10)

System.out.println(s);

}

}
Uncle and Aunts (15%)

This question involves the Collection library and drawings of call stacks. There are three sub-questions, the last two are dependent, but can be solved independently of the first one.

class Person {

String name;

int born; // year of birth

Person father,mother;

List children;

Person(String name, int born, Person father, Person mother){

this.name = name;

this.born = born;

this.father = father;

this.mother = mother;

children = new ArrayList();

}

}

The question will assume the above code, and the following questions expect you to elaborate it.

a) (10%) Add a method List uncleAndAunts() to the class Person, which returns a list of all the uncles and aunts of the person. An uncle or aunt is someone who is sibling to either the mother or father (we ignore marriages). You may assume that none of the parent (father or mother) references are null. It might be helpful to write an auxiliary method that returns the siblings of a Person.

b) (5%) Assume the Carl has father Joe, who has a sister named Margaret. Assume we call the uncleAndAunts method on Carl. Draw the situation where the uncleAndAunts method has been called, at the point where Margaret is being added to the result.

Reflection, method invocation (20%)

This question is on invoking methods through reflection. The code is not immediately useful as it is, but touches on some of the aspects of using reflection in Java.

Examine the following code.

public static void callAllMethods(Object obj){

try{

Class c = obj.getClass();

Method[] methods = c.getMethods();

for (int i = 0; i<methods.length; i++)

methods[i].invoke(obj, null);

}catch(Exception e){

e.printStackTrace();

}

}

It will call all public methods defined on the object obj passed as parameter. Perform the following changes to the code. The final version of the code is the answer to this problem.

a) (7%) The current version will invoke all methods without passing it any parameters. Change the code so that only methods declared not to have any parameters are invoked.

b) (6%) The current version will invoke both static and non-static methods. Change it so that only non-static methods are invoked.

c) (7%)The current version will invoke public methods from the instantiation class of obj, and its superclasses. Change it so that it will only invoke the public ones declared in the class obj is instantiated from.

2 Setting fields in an object using reflection (10%)

Write a method setField(Object o, String fieldname, Object value). A call of the form setField(myObject, “address”, “Storegade 12”), should set the address field in myObject to the value “Storegade 12”. The method should throw an exception if this is not possible.

You get 75% for the part that has to do with reflection, and 25% for the exception. The exception is supposed contain useful information as well as being subtype of an appropriate Exception class, Choose between Exception and Runtime Exception, and argue for your choice.

PAGE
5

