
2-Solutions.txt
Solutions to questions of lecture 2

version 1 - 18/02-04 KBG
version 2 - 23/09-04 KaØ

1a

First all fields are initialized to their default value (null, false or 0), then the
initialization of the

superclass' fields (in the order they appear in the code) and the execution of the
constructor, then the subclass

fields (in the order they appear) and then its constructor is executed.

forgetting the initial phase, the result is

AAA.a = "Hello"
AAA.b = null
AAA.x = 17
AAA.b = "G'day mate"
BBB.c = "Go'dag"
BBB.c = "davs"

1b
The conflicts arises since 'super(d)' is invoked before the initialization of 'd' is
performed (this is performed

after the initialization of the super class' fields and and execution the super class'
constructor).

2
class Car {

private Person owner;
private String type;

public Car(Person owner, String type){
this.type = type;
setOwner(owner);

}

public String toString(){
return type;

}
public void setOwner(Person newOwner){

if (newOwner.car != null)
throw new Exception("You can only own one car");

if (owner != null) // someone used to own this car
owner.setCar(null);

owner = newOwner;
newOwner.setCar(this);

}

public Person getOwner(){
return owner;

}

}

class Person implements Cloneable{
private Car car;
private String name;

public Person (String name){
this.name = name;

}

public String toString(){
Page 1

2-Solutions.txt
return name;

}

/* pre: car.owner = this
 */
public void setCar(Car car){

this.car = car;
}

public Car getCar(){
return car;

}
}

3
public Object clone(){

try{

Pen c = (Pen)super.clone();
// since private fields are accessible from within other instances of the

same class,
// we can alter the colour of the cloned pen
if(col == Coler.RED) c.col = Color.BLUE;
else if(col == Color.BLUE) c.col = Color.RED;
// do nothing if the pen is any other color
return c;

}catch(CloneNotSupportedException e) {
throw new RuntimeException("super class doesn’t implement cloneable");

}
}

4
/* Exercise 4
 * First remember to implement the interface Cloneable

A simple solution is to make the cloned person NOT own a car.
This is what is done below.
An other solution is to say one cannot clone persons who owns a car.
Also, we provide the clone with a clone of the car.

 */
public Object clone() {

try {
Person p = (Person) super.clone();
p.car = null;
return p;

}
catch(CloneNotSupportedException e) {

throw new Error(e);
}

}

// Clone test
public static void main(String[] args)
{

Person p1 = new Person("Lars");
Car c = new Car(p1,"Skoda");
Person p2 = (Person) p1.clone();
System.out.println(p1.getCar());
System.out.println(p2.getCar());
System.out.println("and owners");
System.out.println(p1.getCar().getOwner()); // Lars
System.out.println(p2.getCar()); // null

}

Page 2

