4-sol utions. txt
Sol utions to questions of lecture 5
by Kasper B. Graversen & Kasper @sterbye

version 1 - 8/03-04

ex 1.1
substring has the follow ng

precondi ti ons (conjugated):
- begi nindex >= 0 and

- endi ndex >= begi ni ndex

- endindex <= string length

post condi ti ons:
return is string begi nning at begi nindex, upto, but not including endi ndex
original string is unchanged

ex 1.2

Yes it is indeed a good idea. The focus of the paper is that not both the client and the
supplier should check, but only one of them Although there is no exact rule other than to
achieve the sinplest architecture (p. 5). personally |I find it advantegous to have the check
in the supplier, as it then is "reused" when other clients uses it. As noted on page 7
assertion violations are not special cases but are the result of bugs, which this exception
certainly is trying to prevent.

1.3

fromthe javadoc

true if the character sequence represented by the argunent is a prefix of the character
sequence represented by this string; false otherwise. Note also that true will be returned

if the argunent is an enpty string or is equal to this String object as determ ned by the
equal s(oj ect) net hod

public bool ean startsWth(String prefix) {

if(prefix == null) throw new Nul | Poi nterException();
if (prefix.length()>this.length()) return false;
for(int i = 0; i<prefix.length();i++)

if (this.charAt(i) != prefix.charAt(i))
return false;
return true;

}

preconditions:
- prefix string length >= 0

post condi ti ons
- true if prefix.equals(s.substring(0,prefix.length())

(The postcondition shows that the prefix nethod could be witten using the equals and
substring nethods.)

2.1

The foll owi ng nethod works |ike this:

First it skips any non-letters to make sure we are at the beginning of a letter

Then we | oop, at the beginning of the |oop we print out the word that starts there

at the end of the |Ioop, we nake sure to skip any | eading non-letters, so we are ready
for next round in the | oop.

static void towrds(String str){
int i =0;
final int N = str.length();
/1 skip leading non letters
while (i<N && !Character.isLetter(str.charAt(i)))
i ++;
while (i<N){
Page 1

4-sol utions. txt

/[l print the word

while (i<N && Character.islLetter(str.charAt(i))){
Systemout.print(str.charAt(i));
i ++;

} .

Systemout. println();

/1 skip non letters

while (i<N && ! Character.isLetter(str.charAt(i))){
i ++;

}

2.2
class Wirdlterator inplenments OOPIterator{
/'l Exercise 2.3
/Il inv: if nextWord.size() =0, the iterator is enpty
I el se nextWrd is the head.
/1 i is either Nor the first unprocessed letter in str
/1 Nis the length of str.
final String str;
final int N,
int i;
String nextWrd;

Wrdlterator(String str){
Fhis.str: str;

i =0;

N = str.length();

findNext ();
}
[* pre: i is first non-processed letter in str

post: if hasNext is true then nextWord is head.
i is first non-processed letter in str.

*/

private void findNext()({
/1 skip non letters
while(i<N && !Character.isLetter(str.charAt(i)))

i ++;

/1 find the word

int start = 1i;

while(i<N && Character.isLetter(str.charAt(i)))
i ++;

next Wrd = str.substring(start,i);

}

publ i c bool ean hasNext (){
return nextWord. | ength()>0;
}

public Object peek(){
return nextWrd;
}

public Object next(){
String ret = nextWrd,
findNext ();
return ret;

}
public OOPlterator cloneMe(){
try{
return (OOPIterator)super.clone();
}cat ch(Exception shoul dNot Happen) {
return null;
}
}
}
2.4
According to the invariant, i is either str.length or the first unprocessed letter in str.

Nis the Iength of the str, and nextWord is the head of the iterator.
Page 2

4-sol utions. txt
In the constructor, Nis set to str.length, which is according to the invariant.
i is set toto 0, which is the first unprocessed character in str.
Therefore the pre-condition for the private method findNext is fulfilled.
The post condition of findNext is that the invariant is fullfilled.

2.5

The argunent is pretty nmuch the sane, it depends on the correct functioning of findNext.
i is the first unprocessed elenent in str.

That is all which is needed in the pre condition for findNext.

The post condition for findNext is that the invariant is fullfilled.

Since returning froma nethod will not change the state of any fields,

the invariant is still true when we return from next.

2.6
The point is that the counter in odd filter is initialized to its default
val ue (0) when the object is created. The default value is given to ALL
fields before any initializers or constructor code is executed.
The initialization starts in the super class (Filterlterator). The constructor in
Filterlterator calls the private method findNext, which in turn calls the abstract
nmet hod condition, which is redefined in the subclass OQddFilter
The codition nethod in OddFilter increments count fromO to 1.
At sonme point we return fromthe initialization of the superclass part, and starts
toinitialize the subclass part. At this point count is already 1.
Therefore, if we initialize it to 0, we will do wong.
W can initialize it to 1, but that is kind of strange, as this is the val ue
it already has.
The invariant regarding count is:
/1 count indicates the nunber of tinmes
/1 condition has been called
Therefore the default value 0 is right.
Setting it explicitly to 1 will not break this invariant.

3.
See the code attached.

Page 3

