
- 1/7 -

Object-oriented programming, spring 2005.
Exam questions for Tuesday the 28th of June from 9-13.

The exam is scheduled to last 4 hours. The exam set consists of 5
questions which each have a number of sub questions. The points for
each question are written next to it. It is possible to obtain a total of 100
points.

The exam is an open book exam; you are allowed to use text books,
copies of the lecture slides, and other written material. If your answers
depend on classes or methods from the textbook or lecture notes, you do
not need to copy them, but give a precise reference with page number,
section number etc.

You are not allowed the use of computers at the exam.

The exam set is 7 pages, including this front page.

- 2/7 -

1 Initialization order (15%)
This question is about object initialization. First sub-question is about
initialization when there is no inheritance involved; second and third
question involves inheritance as well. The question revolves around
which values the field has during the different phases of object creation.

Consider the following class:

class A {
 int i = foo();
 A(int i){
 this.i = i + 10;
 }
 int foo(){ return 8; }
}

Question a) (6%). If we create an A-object as: A a = new A(15); – which values
will the field i have from the object is allocated until the constructor has
finished. In what order are the values assigned, and which rules in Java
dictates this (you can use your own wording, or point to relevant
paragraphs in the Java Precisely textbook).

Question b) (6%). Consider the following subclass of A (This class is legal
Java and can compile):

class B extends A {
 int i = 55;
 B(int i){
 super(i+4);
 this.i = super.i + 3;
 }
 int foo(){ return i; }
}

If we create a B-object as: B b = new B(15); – which values will the fields of b
have from the B object is allocated to when its constructor has finished,
in what order, and by which rules?.

Question c) (3%). Assume A and B are declared as above. Will the

following code print the same number twice, or different numbers? Why?

B b = new B(15);
A a = b;
System.out.println(a.i);
System.out.println(b.i);

- 3/7 -

2 Design by Contract and Iterator (15%)
In slide 5 for lecture 7 on design by contract and interfaces, a contract
for iterators is given. In this question we will use this contract to
implement our own iterator, which will merge the objects from two
iterators into one iterator. The contract given below does not include the
“remove” method. The remove method will not be part of this question.

The iterator contract is:

public interface Iterator {
 /* pre: none
 * post: return true if the iterator is not empty. */
 boolean hasNext();

 /* pre: hasNext()
 * post: return head of old.iterator & this is old.tail. */
 Object next();
}

The merging of two iterators a and b could be defined in many ways. Here
we will assume that a and b are merged into c the following way:

• The merged iterator c has elements as long as one of a and b has
more elements.

• The next element in c is

o either an element from a or b, chosen randomly if both a and
b has more elements

o an element from a if b has no more elements

o an element from b if a has no more elements

The class MergeIterators will be roughly like:

class MergeIterators implements Iterator{
 Iterator a,b;
 MergeIterators(Iterator a, Iterator b){
 …
 }
 boolean hasNext(){…}
 Object next(){...}
}

Question a). (5%). Give a class-invariant for MergeIterators. Use this
invariant in coding the MergeIterators class in question b. Notice, if you
cannot figure out an invariant, just code MergeIterators in question b.

Question b). (10%) Fill in the constructor, the hasNext and the next method.
Hint. To choose randomly between a and b, the static method “double
random()” defined in the class java.lang.Math will return a random
number larger than or equal to 0, and less than 1.

- 4/7 -

3 Collections and generic classes (25%)
This question is about designing a collection class with generic
parameters. If you cannot figure out how to use generic parameters,
there might still be about 10% for you in here, so keep on.

The idea is that first we will design a class Kindergarden, which for this
purpose in essence is a collection of Children. Next we will make a more
general institution which can house any kind of person. We will in this
question not look at the specific properties of Persons and Children. We
will assume the following inheritance hierarchy

Question a) (5%) Write a class Kindergarden which has to methods - void
enroll(Child c), which adds c to the set of children of the Kindergarden, and void
withdraw(Child c), which removes c from the set of children of the Kindergarden.

Question b) (5%) Add methods to the class Kindergarden to implement the
Iterable interface. This should allow us write code like:

Kindergarden k;
…
for(Child c: k) Santa.talkTo(c);

Question c) (8%) Rewrite class Kindergarden into class Institution, which takes
a generic parameter stating which kind of Person the Institution is for. You
can rewrite either the solution from a or b. Rewriting a) gives 5%
Rewriting b) gives 8%.

Question d) (7%) Sometimes all the people at one institution will have to
be moved to another institution – for instance when a small school is
closed, and all the pupils have to move to another school. The merge
method below is added to the Institution class, and does the necessary
work.

public <…1…> void merge(Institution<…2…> other){
 for(…3… person: other) {other.withdraw(person); this.enroll(person);}
}

There are three open spots regarding type parameters. What should be
written each place and why? If you do not think <...1…> is necessary, leave
it out.

- 5/7 -

4 Exception handling (20%)
This question is about exception handling. The fictious company
CoolRUs develops temperature sensors for intelligent buildings. They
have to develop a Java class which can be used for reading the
temperature from within Java programs. You have just been hired for
this company, and you are now to design part of this class, named
TemperatureSensor. The class is in principle quite simple. There exist already
a method prim_read(), which returns a double indicating the temperature in
Celsius, but sometimes it returns -300 to indicate that the connection to
the physical sensor is out of order. This normally happens rarely.

Question a) (5%) You must implement a method double readTemperature(). You
can use the prim_read() method. You can choose to either just return -300 to
indicate error, or you can throw an exception (checked or unchecked).
What are the arguments for and against each strategy?

Question b) (5%) Independently of what you wrote in a), it is now decided

that you should throw a checked exception. Write an outline of class
TemperatureSensor which declares an Exception class SensorError, and which
implements the readTemperature() method to throw this in case of failure.

Question c) (10%) Write a method monitorTemperature which monitors the
temperature. The method has two arguments, low and high. It should read
the temperature every second, and write out a warning (System.out.println) if
the temperature is below low, or above high. If there is no response from
the reader for one minute (it returns -300 every time it is queried within
one minute), the monitorTemperature method should write out a special
warning. Hint. The static method ‘void sleep(long millis) throws InterruptedException’ in
class Thread will pause for the number of milliseconds.
InterruptedException is a checked exception.

5 Observing behaviour (25%)
This question continues the story of the CoolRUs company and the class
TemperatureSensor. The question can be solved independently of specific
solutions to question 4. The question takes it’s outset in the observer
design pattern discussed in connection with the GUI lecture.

The monitorTemperature method from question 4.c printed warning messages
to the screen. Suppose we want to do something more meaningful. As
designers at CoolRUs, we cannot however, foresee all possible things to
do when the temperature becomes out of range. This question is about
designing a general temperature monitor. We will start out with the
following class:

class GeneralTemperatureMonitor
 public interface TemperatureObserver {
 void observed(double temperature);

- 6/7 -

 void noRead();
 }

 public List<TemperatureObserver> observers
 = new ArrayList<TemperatureObservers>();

 public void startMonitoring(final TemperatureReader tr, final long pause){
 Thread monitorThread = new Thread(){
 public void run(){
 while(true){
 try{ Thread.sleep(pause);}catch(InterruptedException ie){};
 try{
 double temp = tr.readTemperature();
 for(TemperatureObserver to:observers)
 to.observed(temp);
 }catch(TemperatureSensor.SensorError re){
 for(TemperatureObserver to:observers)
 to.noRead();
 }
 }
 }
 };
 monitorThread.start();
 }
}

The idea is that the user programs who are interested in temperature
readings implements the TemperatureObserver interface, and add themselves
to the observers list (Notice that observers list is public). The

startMonitoring(…) method starts a new thread, which at regular intervals
(the interval length is defined by the parameter pause) checks the
temperature and reports its readings to the observers.

Question a) (9%) Write a class MyMonitor which in its constructor gets a
reference to a GeneralTemperatureMonitor, and which adds itself as observer.
When the temperature becomes below 15, it should print a warning, and
when it becomes above 25 is should also print a warning. After 5
consecutive failures to read, it should print an error message. MyMonitor
should not call startMonitor – this is taken care of by somewhere else.

Question b) (8%) We at CoolRus realize that one of the things all users

write in their observed() method is a test to check the temperature reading.
Only in case it fulfills certain criteria do they actually do something. We
want to accommodate this usage pattern. Change the interface
TemperatureObserver to include a method boolean checkReading(double temp). The
idea is that the GeneralTemperatureMonitor should call this method with a
concrete reading, and only call observed() if the checkReading method returns
true. Change startMonitoring so that we only call observed under these new

- 7/7 -

circumstances. You need not hand in the entire startMonitoring method, just
state what needs to be changed (E.g. this text should be replaced by that
text).

Question c) (8%) Change solution a) so that it implements the new

TemperatureObserver interface.

