fix f : !a.!b.!c.(a+b)+c=a+(b+c). \a:#.\b:#.\c:#. case c of #0 -> transE (a+b)+0 a+b a+(b+0) { defP0 a+b , symmE a+(b+0) a+b (thmPE a b+0 b (defP0 b)) } | v' -> (transE5 (a+b)+v' ((a+b)+v)' (a+(b+v))' a+(b+v)' a+(b+v') { defPS a+b v , succE (a+b)+v a+(b+v) (f a b v) , symmE a+(b+v)' (a+(b+v))' (defPS a b+v) , thmPE a (b+v)' b+v' (symmE b+v' (b+v)' (defPS b v)) } )