
CPSC 201: Introduction to Computer Science
Carsten Schürmann

Date: February 4, 2002

Homework 1
Due: Wednesday, January 30, 2002.

Guidelines

While we acknowledge that beauty is in the eye of the beholder, you should nonetheless
strive for elegance in your code. Not every program which runs deserves full credit.
Make sure to state invariants in comments which are sometimes implicit in the informal
presentation of an exercise. If auxiliary functions are required, describe concisely what
they implement. Do not reinvent wheels, and try to make your functions small and easy
to understand. Use tasteful layout and avoid long winded and contorted code. None of
the problems requires more than a few lines of SML code.

Problem 1: Poker (25 points)

Recall the Poker example from class (see also the webpage). In this example, we have
seen three functions that determine if a given hand of cards contains a pair, three of a
kind, or four of a kind. For poker, however, we also need to be able to decide if a hand
contains

• a straight (five cards of arbitrary suit, but increasing rank),

• a flush (five cards of the same suit),

• a full house (a pair of one rank, and three of a kind of another),

• a straight flush (five card of the same suit and increasing rank).

Give the type for each of the functions, and program the function in ML, using the code
accessible through the webpage (Lecture 4).

Problem 2: Conversion of integers (25 points)

1. Write a function

int to roman : int -> RomanNumber

that converts integers between 1 and 999 to their Roman numeral equivalent. Ro-
man numbers should be elements of the following datatype



datatype RomanDigit
= I | V | X | D | L | C | M

datatype RomanNumber
= Empty
| Cons of RomanDigit * RomanNumber

The following chart summarizes how integer digits are written as Roman numerals
are written.

1 2 3 4 5 6 7 8 9
ones I II III IV V VI VII VIII IX
tens X XX XXX XL L LX LXX LXXX XC
hundreds C CC CCC CD D DC DCC DCCC CM

Let’s use the number 843 as an example of how the conversion takes place. First,
we look up the hundreds digits (8) in the hundreds row and find DCCC. Second
we look up the thens digits (4) and the ones digit (3) and find XL and III, respec-
tively. Finally, we concatenate the three together to form the final Roman numeral:
DCCCXLIII.

Hint: To create the function, break the problem into subproblems (simpler func-
tions). One particular way of partitioning this problem is given below. Since this
is not the only good partitioning, you are encouraged to come up with your own
solution.
hundreds : int -> RomanNumber
tens : int -> RomanNumber
ones : int -> RomanNumber
int to roman : int -> RomanNumber

2. Write a function that does the inverse of what int to roman does:

roman to int : RomanNumber -> int

3. Write a function

int to string : int -> string

that converts an integer to its representation as a string. For example,
int to string(27) should return the string "27". Make sure your function han-
dles all integers, not just the positives (though you may want to write a helper
function specifically for positive integers).

Though you are not to use SML/NJ’s built-in makestring function, you should
check that your function gives the same results.

Problem 3: Binomial numbers (50 points)

Binomial numbers play an important role in combinatorics because they answer the
question of how many subsets can be formed by picking r elements out of a set of n (n



choose r, or n over r). There are several ways to calculate binomials. One way is by
using factorials, the other one by reading them out of Pascal’s triangle (explained below).
One of the aims of this problem is to show the equivalence between both definitions.

First, the factorial function on natural numbers is defined mathematically as follows:

n! =
{

1 if n = 0
n(n− 1)! if n > 0

The factorial function is the basis for the first definition of binomial numbers. We write(
n
r

)
for binomial numbers that are defined as follows

(
n
r

)
=

n!
r!(n− r)!

for 0 ≤ r ≤ n.

A way to calculate binomial numbers which does not require factorials is to use
Pascal’s triangle. The triangle has a 1 at its top, every other number in the Pascal
triangle is defined as the sum of the numbers to the right and to the left above. If there
isn’t any number, it counts as 0.

1 n = 0
1 1 n = 1

1 2 1 n = 2
1 3 3 1 n = 3

1 4 6 4 1 n = 4

1. Write a function

pascal : int * int -> int

that computes numbers following Pascal’s triangle. Calculate the following values
of pascal if applied to (5,3) and (7,1).

2. Show by induction that your implementation of pascal computes binomial num-
bers. That is, you should prove that for any n, r ≥ 0 natural numbers

pascal (n, r) ⇓
(
n
r

)
Hint: Choose first the induction variable. Then prove the base case, and finally
the successor case. State carefully which additional assumptions you can use in the
induction step.

Hand-in Instructions

In the course directory /c/cs201/bin, there are five programs that support you in sub-
mitting your solution to the homework.



submit assignment-number file(s)
unsubmit assignment-number file(s)
check assignment-number
protect assignment-number file(s)
unprotect assignment-number file(s)

submit allows you to submit one of several files. For example

/c/cs201/bin/submit 1 hw1.sml hw1-examples.sml

submits your file hw1.sml and hw1-examples.sml. check can give you the peace of
mind that your solution has really been submitted, and if you would like to make last
minute changes to your solution, use unsubmit before submitting the updated version.
protect and unprotect give you the power to protect/unprotect submitted solutions
from deletion.


