
CPSC 201: Introduction to Computer Science
Carsten Schürmann

Date: February 21, 2002

Homework 4
Due: 11:30am

Wednesday, February 27, 2002.

Problem 1: Linear Search (50 points)

Linear search is the simplest algorithm to search for an element in an list. It makes no
assumptions regarding the organization of the list over which search is to be performed.
It simply traverses a list step by step and compares every element with the one we are
looking for.

Write an assembly language program for linear search for a microprocessor described
below. You don’t have to implement your program, but it should be “in working condi-
tion”. Note, that in machine programs we don’t have the convenient argument passing
machinery as in high level languages. Arguments are passed through registers, and so
should your implementation of the linear search routine. Our microprocessor has five
registers labeled R0, R1, R2, R3, R4 and understands the machine instructions given be-
low.

The input arguments to your program will be stored in registers as follows. The byte
we would like to find in memory is contained in register R1, the address where the search
is to start from in register R2, the address where to stop in register R3. Your machine
program is expected to traverse the memory in between addresses R2 and R3 print 1 on
the screen if the search was successful, 0 if it was not.

As example consider the contents of memory as follows:

2000 54
2001 92
2002 45
2003 40
2004 54
2005 *

and the registers set as follows R1 =40, R2 =2000, and R3 =2005. Your program should
print a 1 on the screen. Here is a summary of the commands you are allowed to use. We
use A for addresses.

LOAD A Ri: Load the contents of memory at address A into register Ri.

LOADI Ri Rj : Load the contents of memory at the address contained in register Ri into
register Rj .

MOVE Ri Rj : Move the contents of register Ri to register Rj .



STORE Ri A: Store the contents of register Ri into memory at address A.

ADD Ri Rj : Add contents of registers Ri and Rj and store the result in register R0.

MULT Ri Rj : Multiply contents of registers Ri and Rj and store the result in register
R0.

CONST C Ri: Moves constant C to register Ri.

JMP A: Jump to memory address A and continue program execution from that location.

CJMP A: Jump to memory address A iff register R0 is zero.

OUT Ri: Output contents of register Ri.

HALT: Halt the program.

Hints and Assumptions:

• Assume that memory has 1000 locations from address 0 to address 999. You might
want to divide the memory into two portions, one to store the program and other
to store the data.

• Each instructions requires just a single memory address.

Problem 2: Largest Element (10 points)

Write an SML function max to find the largest element in a list of real numbers.

1. What is the type of this function?

2. What is the invariant of this function?

3. Write the function itself.

Problem 3: Boolean Logic (40 Points)

A majority function Mn(x1, . . . , xn) is true if a majority of its inputs are true and false
otherwise (assume n odd). In this assignment we study majority functions with three
inputs.

1. Write the truth table for a majority function M3(x1, x2, x3) with just three inputs.

2. Write the Boolean expression for this majority function.

3. Construct the circuit for M3(x1, x2, x3) using only AND and OR gates.
Hint: A typical implementation uses three AND gates and three OR gates. Re-
formulate your answer from 2. using distributivity laws.

4. Does M3(x1, x2, x3) and NOT gate form a complete Boolean basis? Justify your
answer.
Hint: A NAND Gate alone, a NOR Gate alone, or the set of AND, OR and NOT
gate form a complete Boolean basis. Try to implement one of these (or possibly
other basis) using the M3(x1, x2, x3) and a NOT gate.


