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Lecture 11: Circuits for logical and arithmetic operations

This lecture describes circuits to compute some of the operations that are required in the arithmetic-logical
unit (ALU) of a computer.

Compare-for-equality

Suppose we have two 4-bit quantities and we want a circuit that outputs 1 if they are equal, 0 if they are
different. Pictorially:

x3 x2 x1 x0 y3 y2 y1 y0
| | | | | | | |
-------------------------------
| |
-------------------------------

|
z

Each input wire, xi or yi, is either a 0 or a 1, representing one bit of the input x or y, respectively. The
output wire z should have a 1 if the corresponding bits of x and y are all equal, that is, x0 = y0 and x1 = y1

and x2 = y2, and x3 = y3.

As an intermediate step, we’ll design a circuit that has two inputs, x and y, and gives an output of 1 if
the two input bits are equal, and 0 if they are not equal. This function we call 1-CE, for 1-bit compare-for-
equality. Its truth table is:

x y | 1-CE
--------------
0 0 | 1
0 1 | 0
1 0 | 0
1 1 | 1

If we directly apply the sum-of-products algorithm to this truth table, we get the boolean expression;

x′y′ + xy,

which translates into the combinational circuit:

x-*---|NOT>---|
| |AND>---|

y-|-*-|NOT>---| |-----|
| | |OR>-------- z = 1-CE(x,y)
|-|---------| |-----|
| |AND>---|
|---------|

Thus, with 5 gates we can implement the 1-bit compare-for-equality function, 1-CE. Now we abstract this
circuit as a box that we may use in other circuits. This is analogous to defining and using a procedure in a
program.
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If we compare each pair of bits xi and yi using a 1-CE circuit, then if all of them return 1, the 4-bit
compare-for-equality circuit should return 1. If any of them return 0, the 4-bit compare-for-equality circuit
should return 0. Thus, if we AND together the results of the four 1-bit comparisons, we’ll have the correct
overall answer:

--------
x0---| |

| 1-CE |----|
y0---| | |AND>---|

-------- |-| |AND>----|
| |-| |AND>---- z = 4-bit CE
| | |-|

-------- | | |
x1---| | | | |

| 1-CE |--| | |
y1---| | | |

-------- | |
| |
| |

-------- | |
x2---| | | |

| 1-CE |----------| |
y2---| | |

-------- |
|
|

-------- |
x3---| | |

| 1-CE |-------------------|
y3---| |

--------

Note that for clarity, I’ve rearranged the inputs so that the pairs to be compared are adjacent.

The AND gates could be combined in a different order, for example:

a --|
|AND>---|

b --| |---|
|AND>---

c --| |---|
|AND>---|

d --|

This corresponds to the expression ((a · b) · (c · d)) rather than (((a · b) · c) · d). The advantage of this form
is that it can compute its result faster. In a physical realization of a gate (as transistors or relays or optical
elements), there is some small time delay between the time that the input signals settle down and the time
the output signal settles down. An attempt to use the output signal before it has settled could lead to an
error. The time is a gate delay, and depends on the implementation of the gate and its type. When the
output of one gate is an input to another gate, then the output of the first gate must settle down, and only
after that can the output of the second gate begin to settle down. Thus, at least two gate delays are required
for a reliable output in this case.

The AND structure in the diagram for the 4-bit CE requires 3 gate delays, whereas the AND structure
above only requires 2 gate delays. In general, by arranging the AND’s in a binary tree, we can compute the
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AND of n inputs with dlog ne gate delays, as opposed to n − 1, an exponential improvement. Because the
output of an n-bit AND depends on all the inputs, and we assume we have only 2-input AND gates, there is
also a lower bound of dlog ne on the depth of a circuit to compute an n-bit AND. Thus, the tree-structured
AND-circuit is optimal under these assumptions.

A binary addition circuit

In this part, we consider the problem of building a circuit to add two 4-bit binary numbers. Here is an
example addition:

1 0 1 1
+ 0 1 1 1
----------

Starting from the rightmost bits, we add 1 and 1 to get 2, which is 10 in binary, so we put down the digit 0
and show the carry of a 1 into the next column:

1
1 0 1 1

+ 0 1 1 1
----------

0

Now we add up the three 1’s, getting 3, which is 11 in binary, so we put down the digit 1 and show the carry
of a 1 into the next column:

1 1
1 0 1 1

+ 0 1 1 1
----------

1 0

Continuing in this way, we finally get:

1 1 1 1
1 0 1 1

+ 0 1 1 1
----------
1 0 0 1 0

Converting back into decimal to check, we have 11 + 7 = 18.

To construct a circuit, we focus on one column at a time. The rightmost column has two inputs, say x
and y, and the rightmost result bit, say z is determined by the truth table:
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x y | z
--------------
0 0 | 0
0 1 | 1
1 0 | 1
1 1 | 0

We observe that this is just the exclusive-or function. We’ll assume we have gates available to compute
exclusive-or, abbreviated XOR. If XOR gates are not available, we can construct one by using the sum-of-
products method to construct a boolean expression:

xy′ + x′y,

which can be converted into a circuit with 2 NOT gates, 2 AND gates, and an OR gate.

The other thing we need to compute for the rightmost column is whether the carry into the next column
is 1 or 0. The carry is 1 exactly in the case that x and y are both 1. Letting c denote the carry output, we
have c = xy, implementable with just one AND gate. The final circuit for the rightmost column is:

-------
x-*----| |

| | XOR |-- z
y-|--*-| |

| | ------
| |
| -----|
| |AND>- c
|-------|

Abstracting this to a box with inputs x and y and outputs z and c, we get the half-adder:

x y
| |
----------
| |
| HA |
----------
| |
c z

What about the next column? In the next column, we have the possibility of a carry-in to the addition.
The function we consider has 3 inputs: x, y, and b The value of the sum bit is determined by the following
table:

x y b | z
--------------
0 0 0 | 0
0 0 1 | 1
0 1 0 | 1
0 1 1 | 0
1 0 0 | 1
1 0 1 | 0
1 1 0 | 0
1 1 1 | 1
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This function can be realized as a sum-of-products:

x′y′b+ x′yb′ + xy′b′ + xyb

and the corresponding circuit. Or, we can note that two XOR gates will give the correct output:

-------
x------| |

| XOR |--| -------
y------| | |--| |

------- | XOR |-- z
b------------------| |

-------

This works because combining three inputs with XOR returns the parity of the sum of the three inputs: 1
if the sum is odd (1 or 3) and 0 if the sum is even (0 or 2).

The other output that we have to generate for this column is whether there is a carry into the next
column. The truth-table for this function is:

x y b | c
--------------
0 0 0 | 0
0 0 1 | 0
0 1 0 | 0
0 1 1 | 1
1 0 0 | 0
1 0 1 | 1
1 1 0 | 1
1 1 1 | 1

Note that there is a carry out when two or more of the inputs are 1. The sum-of-products algorithm gives
the expression:

x′yb+ xy′b+ xyb′ + xyb.

A simpler expression for the same function is:

yb+ xb+ xy.

Implementing this as a circuit, we get:

x----*-|
| |AND>--|

y-*--|-| |
| | |---|
|--|-| |OR>---|

| |AND>------| |OR>--- c
b-*--|-| --|

| | |
| --| |
| |AND>-----------|
-----|

(Yes, we’ll all be happier when I don’t draw ASCII circuits!) Putting these last two circuits together into a
box with inputs x, y, and b, and outputs z and c, we get a full-adder, which we’ll symbolize thus:



Computer Science 201a, Prof. Dana Angluin, edited by Carsten Schürmann, Lecture 11 6

x y b
| | |
----------
| |
| FA |
----------
| |
c z

The full adder is what we need to compute the rest of the columns of the addition. So, our four-bit addition
can be computed by the following circuit connecting the carry-out from each addition to the carry-in of the
next addition:

x3 y3 ---- x2 y2 ---- x1 y1 ---- x0 y0
| | | | | | | | | | | | | |
---------- | ---------- | ---------- | ----------
| | | | | | | | | | |
| FA | | | FA | | | FA | | | HA |
---------- | ---------- | ---------- | ----------
| | ------| | ------| | -----| |
c3 z3 c2 z2 c1 z1 c0 z0

Referring back to the addition problem that we started with:

1 0 1 1
+ 0 1 1 1
----------

x0 and y0 are the two bits in the rightmost column, x1 and y1 are the two bits in the column to its left, and
so on. Thus, we have inputs:

1 0 ---- 0 1 ---- 1 1 ---- 1 1
| | | | | | | | | | | | | |
---------- | ---------- | ---------- | ----------
| | | | | | | | | | |
| FA | | | FA | | | FA | | | HA |
---------- | ---------- | ---------- | ----------
| | ------| | ------| | -----| |
c3 | c2 | c1 | c0 |

z3 z2 z1 z0

The outputs z0 = 0 and c0 = 1 are computed, and the value of c0 is an input to the next circuit to the
left, and so on, giving:
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1 1 1
1 0 ---- 0 1 ---- 1 1 ---- 1 1
| | | | | | | | | | | | | |
---------- | ---------- | ---------- | ----------
| | | | | | | | | | |
| FA | | | FA | | | FA | | | HA |
---------- | ---------- | ---------- | ----------
| | ------| | ------| | -----| |
1 | | | |

0 0 1 0

Including the carry out of the leftmost bit, the result bits are 10010, as desired.

This circuit could be generalized to handle any number of bits. This is a ripple-carry adder, named
for the way the carry “ripples” from the low-order to the high order bit. Note that for n bits, there will
be about 3n gate delays before all the output bits can be assumed to have properly settled down. There
are alternative designs for circuits to add two n-bit numbers that involve a gate delay proportional to logn
rather than n, which are used in actual machines.


