
CPSC 201: Introduction to Computer Science
Carsten Schürmann

Date: February 21, 2003

Homework 5
Due: Friday, February 28, 2003.

Guidelines

While we acknowledge that beauty is in the eye of the beholder, you should nonetheless
strive for elegance in your code. Not every program which runs deserves full credit.
Make sure to state invariants in comments which are sometimes implicit in the informal
presentation of an exercise. If auxiliary functions are required, describe concisely what
they implement. Do not reinvent wheels, and try to make your functions small and easy
to understand. Use tasteful layout and avoid long winded and contorted code. None of
the problems requires more than a few lines of SML code.

Exercise 1 An operation that is often used in computer programs is a function that
copies the content of a block of memory addresses starting at a given address to the
another block of memory addresses at a given destination address. It traverses the
original block address by address and copies the content to the destination, gradually
increasing the destination address.

Write an assembly language program for copy in the language described below. Im-
plement it on our simulator we have discussed in class. Note, that in machine programs
we don’t have the convenient argument passing machinery as in high level languages.
Arguments are passed through registers, and so should your implementation of the copy
function. Our microprocessor has five registers labeled R0, R1, R2, R3, R4.

The input arguments to your program will be stored in registers as follows. The start
and end address of the original memory block is given in register R1 and R2, respectively,
and register R3 contains the destination address.

As example consider the contents of memory as follows:

2000 54
2001 92
2002 45
2003 40
2004 54
2005 *
2006 *
2007 *
2008 *
2009 *

and the registers set as follows R1 =2001, R2 =2003, and R3 =2006. Upon termination,
your program should leave the memory in the following state



2000 54
2001 92
2002 45
2003 40
2004 54
2005 *
2006 92
2007 45
2008 40
2009 *

LOAD A Ri: Load the contents of memory at address A into register Ri.

LOADI Ri Rj : Load the contents of memory at the address contained in register Ri into
register Rj .

MOVE Ri Rj : Move the contents of register Ri to register Rj .

STORE Ri A: Store the contents of register Ri into memory at address A.

ADD Ri Rj : Add contents of registers Ri and Rj and store the result in register R0.

MULT Ri Rj : Multiply contents of registers Ri and Rj and store the result in register
R0.

CONST C Ri: Moves constant C to register Ri.

JMP A: Jump to memory address A and continue program execution from that location.

CJMP A: Jump to memory address A iff register R0 is zero.

OUT Ri: Output contents of register Ri.

HALT: Halt the program.

Hints and Assumptions:

• Your program should be stored at memory address 100.

• Each instructions requires just a single memory address.


