
CPSC 201: Introduction to Computer Science
Carsten Schürmann

Date: April 15, 2003

Homework 8
Due: Friday, April 27, 2003.

This is the last and only two week homework problem set. Start early. It is not an
assignment you can finish in a day or so.

Exercise 1 Recall the Torres game with which we started the class. This last assignment
asks you to implement an automatic player for the game using the search techniques we
have seen in class. Due to its complexity, we don’t present the game in full generality, but
restrict it to make it computationally feasible. Here are the rules.

Setup. The game consists of a 4× 4 game board, is being played by two players and each
player has three knights of one color. Furthermore, there is an almost infinite supply
of game tiles that can be stacked in form of towers. A castle is defined as a collection
of towers that touch each other at at least one edge.

Scoring. Each knight earns points according to height and surface area of the castle. The
net worth of a castle is computed as the product of the maximal height of any player
of one color on the board, and the surface of the castle. The surface of the castle is
defined as the number of all towers on the board that are connected by sharing one
edge. Two towers that only touch each other at a corner, need not be of the same
castle.

Actions. There are three actions a player can undertake. Each action has a cost associated
with it.

• Place a knight (next to an existing knight at the same or lower level). (2 credits)

• Move a knight from 1 square to another free square. During the move, the knight
may move up at most one level, but can drop arbitrary many. Knights cannot
move diagonally. (1 credit)

• Place a tile someplace on the board as an addition to an existing castle without
connecting two castles (1 credit) The current implementation does not check this
feature yet, the tournament version, however will. Just make sure that you do
not place the on an illegal position.

Game: The game is played in 15 moves. Whoever has the most points wins.

In each move, each player has 2 credits to spend, and can put at most one tile on the
board. The player does not have to use all of his or her credits. Leftover credits are
counted as additional scoring points. During his or her move, a player can exercise
any of the three actions described above.

Inital Board: Initially, the board is empty. The player who starts the game puts one of
his tiles onto the board, with one of his or her knights on top of the tile. Then the
opponent does the same thing.

The Torres game is described by the following signature. We use the standard board
representation we studied already in Assignment 2, a relative way of addressing individual
coordinates.

signature TORRES =
sig

datatype Color
= White
| Black

datatype Tower
= Empty
| Piece of Color
| Tile of Tower

type Board

datatype Address
= Here
| UpperLeft of Address
| UpperRight of Address
| LowerLeft of Address
| LowerRight of Address

datatype Direction
= Up
| Down
| Left
| Right

datatype Action
= Knight of Address
| Move of Address * Direction list
| Place of Address

exception Invalid of string

val displayBoard : Board -> unit
val emptyBoard : Board
val init : Color -> Board -> Address -> Board
val action : Color -> Board -> Action list -> Board
val inspect : Board -> Address -> Tower

end

The course directory /c/cs201/lib/ass8 contains many files, among them an imple-

mentation or the Torres game. Note, that you don’t need to know what a board is. You
are invited to look at the Torres structure in torres.fun.sml in the course directory, and
take advantage of this particular way of implementing it, but you don’t have to. You can
design your own configuaration data structure, it does not have to be a “board”. Your
implementation is local to your player, nobody else can see it. You might want to think
about extracting features from the board. For example, you might want to look for steps in
the other castle you may want to try to climb...

The overall goal of this assignment that you implement the structure that stands for a
player that satisfies the following signature.

signature PLAYER =
sig

val name : string
val init : Torres.Color -> Torres.Board -> Torres.Address
val move : Torres.Color -> Torres.Board -> Torres.Action list

end

name should just return your name, init is called at the beginning of the game, and asks
you where to put your initial tile an knight. Your opponent might have placed a tile and
knight first, be sure to check that you don’t jump on his head. If you do, you will be
disqualified. And finally move takes a board as input and generates a list of actions that are
to be executed. The “Color” that is passed in to init and move is the color you are playing.
From this you can deduce the color of your opponent.

The course directory also contains a file called sources.cfg which defines all files that
participate in this project. Copy all files int your personal working directory, and say
CM.make () which will load all the files in the right order — guaranteed.

The file human.fun.sml contains an interface to the Torres game for the human player.
To see how it works, simply type in Game.run () after you have loaded everything.

-----------+-----------+-----------+-----------
| | | | |
|-----------+-----------+-----------+-----------|
| |#B | | |
|-----------+-----------+-----------+-----------|
| | |#W | |
|-----------+-----------+-----------+-----------|
| | | | |
-----------+-----------+-----------+-----------
Alice>

There are two human players, Alice and Bob. First, Alice is asked to input something.
The grammar for this interface is held intentionally simple. We will not use it very much,
but it can give you a feeling for how to play this game. Type in “M13rr.” which means
“move knight at position 13 (which itself stands for UpperLeft (LowerRight Here)) two
times to the the right (indicated by r). A sequence of moves must be terminated with a
“.”.

The result is

-----------+-----------+-----------+-----------
| | | | |
|-----------+-----------+-----------+-----------|
| |# | |B |
|-----------+-----------+-----------+-----------|
| | |#W | |
|-----------+-----------+-----------+-----------|
| | | | |
-----------+-----------+-----------+-----------
Bob>

The addressing is funny, but logical. “1” corresponds to UpperLeft, “2” to UpperRight,
“3” to LowerRight and “4” to LowerLeft. For directions, “u” stands for Up, “r” for Right,
“d” for Down, and “l” for Left.

Other commands include P33, place a piece into the lower right order, and K34 for placing
a knight below the white knight W on the board above. Arbitrary many of those actions can
be written as one long string P11P12, the Torres game will make sure that you don’t spend
more points then allowed.

Now to the problems that you should work on. Recall, that all you have to do is to
implement the structure

structure Player <name> : PLAYER =
struct

...
end

Warning: Don’t just randomly create a list of actions as you are required to use min max
search discussed in class.

• Develop your personal representation of configurations, and operations.

• Implement a function that assesses the quality of a configuration. State clearly what
this function does. Your function should probably take into account the your current
score vs. that of the opponent. Therefore write a function that computes the score for
white and black.

• Implement

val name : string

just your name, for the protocol when we have the tournament.

• Implement

val init : Torres.Color -> Torres.Board -> Torres.Address

to give your initial choice for placing a tile and a knight. Look at the board. Pick a
spot. Include some randomness here. Do not place your inital choice on top of your
opponent.

• Implement

val move : Torres.Color -> Torres.Board -> Torres.Action list

Use a search algorithm based on min-max search with pruning, as discussed in class.
This is the meat of the assignment.

• Each player will participate in the tournament and play each other. The tournament
is organized as follows. The different players will be grouped into 8 groups. In each
group everybody will play everybody. For the last eight, we will use an elimination
scheme. The best three will receive a prize and extra credit points.

Do not edit the code from the course directory, because it is subject to change over the
next few days.

