
CPSC 201: Introduction to Computer Science
Carsten Schürmann

Date: April 29, 2003

Final Examination

Name: SAMPLE SOLUTION

Instructions
• This is a closed book, closed notes, closed computer examination.

• There are 20 pages including 5 worksheets.

• This examination consists of 6 questions worth 200 points. The point value of each
question is given with the question.

• Read each question completely before attempting to solve any part.

• Write your answers legibly in the space provided on the examination sheet. If you
use the back of a sheet or a worksheet, indicate clearly that you have done so on
the front.

• The worksheets attached to the end of this examination are for your own use; they
will not be used in grading unless stated otherwise.

Question 1 2 3 4 5 6 Total

Score 40 20 40 20 40 40 200

Maximum 40 20 40 20 40 40 200

1

Name: 2

1 Induction and Recursion [40 points]

We define binary trees by

datatype ’a tree = Empty | Node of ’a * ’a tree * ’a tree

We can uniquely identify a subtree of a binary tree by specifying a path from the root
to the subtree: At each step during the top-down traversal we are instructed that we
have arrived (H), that we have to go left (L), or that we have to go right (R). We thus
represent paths by

datatype path = H | L of path | R of path

We call a path p valid in a tree t if the path designates some subtree of t. For example,
the root of any tree has address H, the left subtree has address L(H), the right subtree
has address R(H). The addresses L(H), R(H) are not valid in the empty tree Empty.

1.1 [10 points]

Write an ML function

val subtree : path * ’a tree -> ’a tree

such that subtree (p, t) returns the subtree of t at address P or raises the exception
Path if the subtree does not exist.

1.2 [15 points]

Write an ML function

val paths : ’a tree -> path list

such that paths (t) returns a list containing precisely the valid paths in t.

Name: 3

1.3 [15 points]

We define

fun mirror H = H
| mirror (L p) = R (mirror p)
| mirror (R p) = L (mirror p)

fun reflect Empty = Empty
| reflect (Node (d, left, right)) =

Node (d, reflect (right), reflect (left))

Prove that reflect (subtree (p, t))≡ subtree (mirror (p), reflect (t)) for
any tree t, and path p valid in t. Here e1 ≡ e2 means that e1 and e2 evaluate to the same
value.

Name: 4

2 Hardware [20 points]

In this question you are asked to develop a hardware circuit to compute one parity bit
for 3 bit words. A parity bit is 1, if the three bit word contains an odd number of 1 bits
and it is 0 if the three bit word contains an even number of 1 bits. For example, the
parity bit for 000 would be 0.

Parity bits have played an important role in computer science because with their help
it is possible to determine if a 3 bit word read from memory has been corrupted or not.
Your solution should be directly implementable in hardware using only NAND gates.

2.1 [5 points]

Give a truthtable for the operation that computes a parity bit from a three bit word.

2.2 [10 points]

Give a Boolean expression to determine the parity bit using only NAND gates.

Name: 5

2.3 [5 points]

Give a circuit using gates that computes the parity bit.

Name: 6

3 Turing machines [40 points]

Write a Turing program that sorts a block of 0’s and 1’s into ascending order. The block
of 0’s and 1’s is represented on the Turing tape. One possible starting configuration is

. . . 1 0 0 0 1 1 0 0 . . .
⇑

Note that that the block of digits is delimited by two blank symbols. The read/write
head is positioned over the first field of the block, here the left most 1. The outcome of
a successful run of your Turing program is depicted below.

. . . 0 0 0 0 0 1 1 1 . . .
⇑

Note that there are as many 0’s and 1’s on the tape after the Turing program has
terminated as there were before. Your Turing machine should only use the three symbols
“0”, “1”, and “ ”. Do not introduce new symbols into the alphabet.

3.1 [10 points]

Describe each state of your Turing machine, informally, but carefully.

Answer:

• State 1: Scanning the leading block of 0’s.

• State 2: Scanning the second block of 1’s.

• State 3: 10 found. Exchange order. The 0 is to the right and already replaced by
a 1.

• State 4: Scroll to the left most character of the current block.

Name: 7

3.2 [20 points]

Write out your Turing program. You can do this either in form of a table, a set of rules,
or an automaton.

Answer:

val sort = Program
[Command ((State 1, Zero), SOME (Zero, State 1, Right)),
Command ((State 1, One), SOME (One, State 2, Right)),
Command ((State 1,Blank), NONE),
Command ((State 2, Zero), SOME (One, State 3, Left)),
Command ((State 2, One), SOME (One, State 2, Right)),
Command ((State 2,Blank), NONE),
Command ((State 3, One), SOME (Zero, State 4, Left)),
Command ((State 4, Zero), SOME (Zero, State 4, Left)),
Command ((State 4, One), SOME (One, State 4, Left)),
Command ((State 4,Blank), SOME (Blank, State 1, Right))]

Name: 8

3.3 [10 points]

Show an example run of your Turing machine using the following initial configuration.

. . . 1 1 0 . . .
1 ⇑

. . . 1 1 0 . . .
2 ⇑

. . . 1 1 0 . . .
2 ⇑

. . . 1 1 1 . . .
3 ⇑

. . . 1 0 1 . . .
4 ⇑

. . . 1 0 1 . . .
4 ⇑

. . . 1 0 1 . . .
1 ⇑

. . . 1 0 1 . . .
2 ⇑

. . . 1 0 1 . . .
⇑

.

.

.

.

.

.

Name: 9

4 Computability [20 points]

Consider the problem of defining a function find of type (int -> bool) -> bool which
for an ML function p of type int -> bool (i.e., a predicate) returns true if and only if
p n evaluates to true for some n ≥ 0. Show that it is not possible to define the function
find in ML in such a way that

1. find p always returns either true or false, and

2. find p evaluates to true if and only if there is some n ≥ 0 such that p n evaluates
to true.

Note, that the obvious sequential search testing p n for n = 0, 1, 2, ... doesn’t work as
an implementation of find because p may not terminate on m even though there is an
n > m such that p n evaluates to true.

Hint: Show that if one indeed could write find then one could write a function
halt : (unit -> unit) -> bool, which is a decision procedure for the halting prob-
lem. This means that halt f evaluates to true if f halts, and to false otherwise.

Name: 10

5 Interpreters [40 points]

In this question we consider the problem of parsing nested lists of integers, which are
separated through spaces. As examples consider (1 2 (5 6)), or (((1 2) (3 4)))
which should be accepted by the parser. (1 (2 4), on the other hand, should be rejected,
because the parentheses don’t match.

Assume that a lexer returns values of type token defined by

datatype Token = INT of int | LPAREN | RPAREN

The parser is supposed to map a list of tokens into a value of type Exp and the
remaining list of tokens.

datatype Exp
= Int of int
| List of Exp list

Consider two example runs of the parser on the examples from above.

1. parse [LPAREN, INT 1, INT 2, LPAREN, INT 5, INT 6, RPAREN, RPAREN]
⇓ (List [Int 1,Int 2,List [Int 5,Int 6]],[])

2. parse [LPAREN, LPAREN, LPAREN, INT 1, INT 2, RPAREN,
LPAREN, INT 3, INT 4, RPAREN, RPAREN, RPAREN]

⇓ (List [List [List [Int 1,Int 2],List [Int 3,Int 4]]],[])

The following is the beginning of an implementation.

exception Error of string
fun parseExp (LPAREN :: s) k = parseList s nil k

| parseExp (INT (n) :: s) k = k s (Int (n))
| parseExp nil k = raise Error "Incomplete expression"
| parseExp (RPAREN :: s) k = raise Error "Unexpected right paren"

and parseList (RPAREN :: s) stack k = k s (List (List.rev (stack)))
| parseList s stack k =

... gap1 ...

fun parse s = parseExp s (... gap2 ...)

Name: 11

5.1 [10 points]

Define a grammar for expressions.

Terminal symbols:

Non-terminal symbols:

Grammar rules:

Start symbol:

Name: 12

5.2 [5 points]

Give the type of parse.

5.3 [5 points]

Give the type of parseExp.

5.4 [5 points]

Give the type of parseList.

5.5 [10 points]

Fill in ... gap1

5.6 [5 points]

Fill in ... gap2

Name: 13

6 Artificial Intelligence [40 points]

In this problem, you are asked to give a solution to a puzzle that involves a set of square
playing cards. Four (not necessarily different) symbols are printed on each card, in such
a way that each of the symbols touches one edge of the card.

A solution to the puzzle is an arrangement of the cards into a 2 by 2 grid, in such a
way that any two symbol that share a common edge coincide. One possible solution of
the puzzle is therefore as follows.

Now you are asked to devise an algorithm that attempts to construct a solution to
this puzzle with 4 cards (which may of course be different from the example cards above).
If the puzzle cannot be solved your algorithm should report failure as well.

6.1 [10 points]

Not taking any symmetries into account, in how many different ways can you arrange
the cards on a 2 by 2 grid?

Answer:

4! ∗ 44 = 384

Name: 14

6.2 [20 points]

Sketch the algorithm that solves the puzzle with 4 cards in pseudo code. You may be
informal, but your description must be unambiguous. If you want to use ML code, that’s
fine, too.

Hint: Structure your solution into four parts: the representation of cards, the repre-
sentation of the 2 by 2 grid, an algorithm that determines if the puzzle is solved, and the
algorithm that tries to solve the puzzle.

Answer:

1. datatype Symbol = Circle | Square | Triangle | Wave
datatype Card = Card of Symbol * Symbol * Symbol * Symbol

2. datatype Board = Board of Card * Card * Card * Card

3. fun evaluate (Board (Card (A1, B1, C1, D1),
Card (A2, B2, C2, D2),
Card (A3, B3, C3, D3),
Card (A4, B4, C4, D4))) =

C1=B2 andalso D2=A4 andalso B4=C3 andalso A3=D1

4. fun generate [] [C1, C2, C3, C4] =
evaluate (Board (C1, C2, C3, C4))

| generate Cs A =
pick (Cs, []) A

and pick ([],) A = false
| pick (C :: Cs, Cs’) A =

pick (Cs, C :: Cs’) A
orelse rotate (Cs @ Cs’) (C, 4) A

and rotate Cs (C, 0) A = false
| rotate Cs (C, n) A =

generate Cs (C :: A)
orelse rotate Cs (turn C, n-1) A

Name: 15

6.3 [10 points]

How would the runtime of the algorithm behave if we were to generalize it in a straight-
forward way to n2 cards and not just 4? Express the runtime in big O notation. There
is no need to give the generalized algorithm here, just the runtime, please. Justify your
answer.

Answer:
In general, we have n!4n possible board configurations. If we generate and test each

one of them, our algorithm will have a running time of O(n!4n). We notice by an easy
mathematical argument.

Name: 16

Worksheet

Name: 17

Worksheet

Name: 18

Worksheet

Name: 19

Worksheet

Name: 20

Worksheet

