CPSC 201: Introduction to Computer Science Carsten Schürmann Date: February 26, 2002

Midterm Friday, March 1, 2002.

Name:	
Problem 1:	
Problem 2:	
Problem 3:	
Sum:	

Problem 1: Programming in ML

Assume	that	we	are	given	a	binary	search	tree.	А	binary	search	tree
		5										
2				8								
			0									
1	4		6	Ç)							

with the representation invariant that any tree of the form Node (left, x, right) satisfi It has the following form.

Question 1: Write

- 1. What is the type of this function?
- 2. What is the invariant of this function?
- 3. Write the function itself.

Problem 3: Boolean Logic (40 Points)

A majority function $M_n(x_1, \ldots, x_n)$ is *true* if a majority of its inputs are *true* and *false* otherwise (assume n odd). In this assignment we study majority functions with *three* inputs.

- 1. Write the truth table for a majority function $M_3(x_1, x_2, x_3)$ with just three inputs.
- 2. Write the Boolean expression for this majority function.
- 3. Construct the circuit for $M_3(x1, x2, x3)$ using only AND and OR gates. **Hint:** A typical implementation uses three AND gates and three OR gates. Reformulate your answer from 2. using distributivity laws.
- 4. Does $M_3(x_1, x_2, x_3)$ and *NOT* gate form a complete Boolean basis? Justify your answer.

Hint: A NAND Gate alone, a NOR Gate alone, or the set of AND, OR and NOT gate form a complete Boolean basis. Try to implement one of these (or possibly other basis) using the $M_3(x_1, x_2, x_3)$ and a *NOT* gate.

Problem 3: Programming Machine Code

- LOAD A R_i : Load the contents of memory at address A into register R_i .
- LOADI $R_i R_j$: Load the contents of memory at the address contained in register R_i into register R_j .
- MOVE $R_i R_j$: Move the contents of register R_i to register R_j .
- STORE R_i A: Store the contents of register R_i into memory at address A.
- ADD $R_i R_j$: Add contents of registers R_i and R_j and store the result in register R_0 .
- MULT $R_i R_j$: Multiply contents of registers R_i and R_j and store the result in register R_0 .
- CONST $C R_i$: Moves constant C to register R_i .
- JMP A: Jump to memory address A and continue program execution from that location.
- CJMP A: Jump to memory address A iff register R_0 is zero.
- OUT R_i : Output contents of register R_i .
- HALT: Halt the program.

Hints and Assumptions:

- Assume that memory has 1000 locations from address 0 to address 999. You might want to divide the memory into two portions, one to store the program and other to store the data.
- Each instructions requires just a single memory address.