Exercises for Lecture 4: Induction

Let \mathbb{N}^+ be the set of all integers excluding zero; $\{1, 2, 3, \ldots\}$.

Exercise 1

To prove by induction that some P(n) holds for every $n \in \mathbb{N}^+$, you need to prove two cases. What are these two cases and what do you need to prove in each of them?

Exercise 2

Let P(n) be the following predicate:

$$1^3 + 2^3 + 3^3 + \ldots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$

- 1. What are the statements P(1), P(2), P(3)? Are they true?
- 2. Prove by induction that $\forall n \in \mathbb{N}^+ . P(n)$.

Exercise 3

Let P(n) be the following predicate: $n^2 + n + 41$ is a prime number.

- 1. Verify that P(1), P(2), P(3) holds. (You can use this list of primes: http://en.wikipedia.org/wiki/List_of_prime_numbers)
- 2. Does your answer to (1) convince you that P(n) holds $\forall n \in \mathbb{N}^+$?
- 3. Prove or disprove the statement P(40). (Hint: Is 41^2 a prime number?)
- 4. Can you prove by induction that $\forall n \in \mathbb{N}^+ . P(n)$? If yes, do it! If not, explain which step you won't be able to prove.

Exercise 4

Let P(n) be the following predicate: 4 divides $5^n - 1$. That an integer q divides an integer r is defined by $\exists p \in \mathbb{N}.r = pq$.

- 1. Express P(n) according to the definition above.
- 2. Prove by induction that $\forall n \in \mathbb{N}^+ . P(n)$.