SGDM E2011: Discrete Mathematics Carsten Schürmann

Date: December 20, 2011

FINAL MOCK EXAMINATION

Instructions

- This is a open book examination.
- There are 4 pages.
- This examination consists of 6 questions worth 100 points. The point value of each question is given with the question.
- Read each question completely before attempting to solve any part.
- Write your answers legibly.

Question	1	2	3	4	5	6	Total
Score							
Maximum	15	15	20	20	10	20	100

Name: 2

1 Logic [15 points]

A zookeeper is in charge for feeding the animals. In the zoo there are bears, giraffes, lions, monkeys and zebras. Here is his rule book:

- 1. The giraffes were fed before the zebras but after the monkeys.
- 2. The bears were fed after the monkeys.
- 3. The lions were fed after the zebras.

Your job is to determine the order in which the animals get fed in. We declare the following propositions: bears(n), giraffes(n), lions(n), monkeys(n), and zebras(n).

For the position in order, we simply use 1, 2, 3, 4, 5, and you can compare two positions by $\langle \cdot, \cdot \rangle$, and $\langle \cdot, \cdot \rangle$.

Questions 1.1 [5 points] Using first-order logic translate the three rules from above into logic.

Questions 1.2 [10 points] Are the giraffes being fed before the lions? Prove it formally, using the axioms, you have determined in 1.1.

2 Induction [15 points]

Question 2.1 [5 points] State the induction principle for induction over the natural numbers (starting at 1)?

Question 2.2 [10 points] Prove the following statement by induction on n

For all n > 1, it holds that $n^2 > 2n$.

3 Complexity [20 points]

Consider the set of 7 functions:

$$n^{-3}$$
 (1)
 n^3 (2)
 $\log n$ (3)
 3 (4)
 3^n (5)
 10^{6n} (6)
 $n \log n$ (7)

Question 3.1 [5 points] Recall the definition of big-O notation.

Name:

Question 3.2 [10 points] Order these functions, such that if f(n) < g(n) if and only if and only if f(n) = O(g(n)). Prove that the order is correct. *Hint*: Give the c and k constants that you might have used in the definition of 3.1

Question 3.3 [5 points] Classify the following 3 functions according to their complexity class (in big O-notation).

- 1. $f(n) = 15n^3 + 12n^2 9n + 1$.
- 2. g(n+1) = g(n) + n, where g(0) = 0
- 3. h(n+1) = h(n) + h(n) where h(0) = 1

4 Regular Expressions [20 points]

Recall from class the definition of regular expressions: $R := 1 \mid 0 \mid c \mid R_1 + R_2 \mid R_1 \times R_2 \mid R^*$. Consider the language \mathcal{L} of binary strings over $\{a,b\}$ that contains multiples of 3 b's. For example $\{abbab, abbbaaababab, bbab\} \subset \mathcal{L}$.

Question 4.1 [5 points] Write out at least three different regular expressions $R \neq 1$ whose language only contains the empty string.

Question 4.2 [5 points] Give a regular expression that generates the language \mathcal{L} .

Question 4.3 [5 points] Define a deterministic finite automaton that accepts \mathcal{L} . Define clearly the states. You may draw a diagram.

Questions 4.4 [5 points] Sketch a proof of why the automaton accepts \mathcal{L} . Hint: Think of the property that remains invariant during for each of the states an automaton may be in.

5 Models of computation [10 points]

In class we discussed the λ -calculus. Consider the following λ -terms

$$((\lambda x. \lambda y. x(y-21))(\lambda z. 4 \cdot z))6$$

that can be thought of as a delegate in Java.

Question 5.1 [5 points] How many redexes can you find. Highlight them.

Question 5.2 [5 points] Give a reduction of this λ -expression to normal form.

6 Graphs [20 points]

Recall from class the definition of directed graphs and strongly connected components.

Name:	4
· · · · · · ·	±

Question 6.1 [5 points] Give the definition of when a directed graph is strongly connected.

Question 6.2 [5 points] Give the definition of a strongly connected component of a graph.

Question 6.2 [10 points] Given a graph. Select a strongly connected component within the graph. Pick two vertices and a directed path in between the two vertices. Show that any vertex on that path is also a vertex in the same strongly connected component.