Lecture 1: Introduction

Welcome to the class on discrete math. Why do we offer such a course in our
curriculum? The answer is easy. Many of the problems in software engineer-
ing, computer science, and information technology, are mathematical, and they
need mathematical solutions. The trick of problem solving in these fields often
requires us to take a step back, determine different ways of tackling a problem,
and try one after the other until the problem is solved. The more we understand
about the computational, mathematical and logical nature of those problems the
better ideas we come up with to solve a problem and consequently the better
our solutions are.

I suspect that this way of problem solving is not limited to problems in
information technology. Biologists, astronomers, and economists actually need
to tackle problems in very similar ways. Astronomers, for example, base lots of
research on discovering information that is contained in databases. In order to
retrieve information that must be able to describe their queries logically.

My personal goal for this class is that you don’t only learn to understand and
internalize the different mathematical definitions, such as injectivitiy, universal
quantifiers or Abelian group. It is much more that you discover the excitement
of solving problems, learn to apply some tools that I will show you in this class,
how to learn more about your problem by experimenting with it.

Therefore let’s get started. Here is a very small problem that we will study
today to illustrate what you will learn in this class. Don’t worry, I don’t expect
you to be able to provide all answers to the questions that I am going to ask,
but it is a good start. Let’s look at a little pebble game (that I found on Klaus
Suttner’s webpage). You have a certain number of pebbles, some white, some
blue. Imagine that all pebbles form a line. You will traverse this line from left
to right according to the two following rules:

1. If the current pebble is white, exchange it for a blue one, and skip the
next two.

2. If the current pebble is blue, exchange it for a white one, and skip the
next.

You apply the rules iteratively, until you hit the end of the line of pebbles.
This defines one computational step.

Example 1 (One step)

So far so good. Let us reflect. I have given you a little puzzle, without asking
you how to solve it. What do we know about it? This example, is limited in
size, so, we can play with the number of pebbles. We can only play with the
number of times we traverse the row of pebbles. We can also vary the coloring
of the initial set of pebbles.

Example 2 (6 white pebbles, 30 steps)

Now we notice repetition. We note that every 9th line we encounter a se-
quence of 6 white pebbles. Interesting, there is some periodicy in here. But this
was expected, right, we only have 6 pebbles. How many different configurations
of 6 pebbles are there? There are 2° = 64. One cycle is 8 steps long. And this
is 23. And we will see that depending on the starting configuration, there are
another “different” 8 cycles.

Example 3 (6 white pebbles, 8steps)

Do you notice anything about this pattern? Let’s separate the columns into
the odd columns and even columns.

Example 4 (6 white pebbles, 8steps, parity)
If we push these two columns together then we get the one from the previous
example.

Odds Evens

Now we notice, that the odds represent 3-bit binary numbers. Interesting.
This means that every loop has a counter build in, completely automatically.
All we have to do is project the even positions, and interpret the bits the right
way to determine the running counter.

A quick reminder about binary numbers. Usually, we compute base 10. But
in computer science, we tend to compute base 2, the reason being that in a
physical processor, we can represent the two digits 0 and 1 as low and high
voltage. We can convert any number from one number system to another. Here
is a table with the first 2* numbers.

2322121 29| in decimal
0/0|0]O 0
0]0|0]|1 1
0j]0|1]0 2
0j]0 |11 3
0]110]0 4
O] 1071 5
0| 111]0 6
0Oj1]1]1 7
110101]0 8
11001 9
1/10]1]0 10
1101 1 11
11 1101]0 12
1 1 0 1 13
1 1 110 14
11111 15

Can you see the similarity between the odd columns and the binary numbers?
Back to the example. We notice that the evens repeat themselves. The first four
lines are like the second four lines. We don’t know what that means, or where
it comes from, but so be it. Is anyone ready for a conjecture at this point?

Let’s start slow. Assume that we have n pebbles. How many different con-
figurations of pebbles can we actually encounter? Every pebble can be either
white or blue. There are only two possibilities. Two pebbles have four possible
colorings. And then n pebbles have 2™ different colorings. Each coloring corre-
sponds to a bit sequence of zeros and ones. Those things are also called binary
words.

Furthermore, what does the flipping operation actually do? It takes a binary
n bit word and maps it to the next n bit word.

In addition, the length of the line pebbles remain invariant under the flipping
operation. A line with n pebbles in, a line with n pebbles out. We say that the
flipping operation is length preserving. How do we see that? To see this easily,
we can write out the algorithm as an automaton.

White/White

White/Blue

Blue/Blue

The nodes of this automaton, named A, B, and C' are also called states. How
can we possibly run that thing? Let’s take as an example, the configuration of
the pebbles eeeese, (line 3 in our example) above, and step trough. The labels
at the edges of the automaton should be read as consume/produce. White/Blue
means, consume a white pebble, produce a blue pebble. Initially, we are in step

White/White
White/Blue
le/Blue
‘Blue/White
White/White

Blue/Blue

Let’s look at the first three steps of the automaton when consuming the
pebbles. The first three pebbles to consume are eee, white, white, and blue.

Blue/Blue Blue/Blue Blue/Blue

The first step consumes a white pebble and produces a blue, the second step
consumes a white pebble and produces a white, and the third step consumes a
blue pebble, and produces a white. We have already produced eee and we still
need to consume eee. Let’s consider the next two steps.

White/Whit

White/Blue

e
White/Blue
fe/Blue

Blue/White

WhiteWhite

S

Blue/Blue Blue/Blue

Next, we consume e produce e and consume e produce o. Altogether, we
have produced already eseee, and we still ned to consume the last pebble e,
and produce a o. The automaton comes to a stand still at state C.

White/Blue

Blue/Blue

All is consumed, and eeesse is produced.

Intuitively, it is clear that flipping preserves the length of our pebble con-
figurations. Every step consumes a pebble and produces one. There is no way
that extra pebbles are created during execution, and it is also clear that none
are eaten up and destroyed. This argument is right and good, however, not
formal enough yet to serve as a proof. A conjecture is a statement that we feel
is true, but we haven’t found a proof for it yet.

Conjecture 5 The flipping operation is length preserving.

Another interesting observation. The flipping operation is invertible. We
understand what how the flipping operation is on concrete examples, which we
could write as equations of the form

flip(eceece) = ececce
flip(eeeese) = eoccese
flip(escecs) = occeece

If we abstract over it, it seems there is a mapping flip that maps any configu-
ration of pebbles to some other configuration of pebbles. Do you think there is
an inverse of flip? Let’s write (as it is commonly done ﬂip_l) for that inverse,
which on the three individual instances looks like:

ﬁip_l(oooooo) = oeoceeoe
flip~!(eesess) = eoccee
flip~!(sesese) = eccece

Yes, it is, we could actually write out an automaton that computes that
inverse. Just defining the automaton is unfortunately not enough. We need to

show that it is indeed the inverse. We could for example do this by considering
the combination of flip and flip ™!, for example, is it true that flip~* (flip(C)) = C
is true for any configuration C? We don’t have the tools definitions yet to argue
for this in the first lecture. For now, let’s just state it as a conjecture.

Conjecture 6 flip is invertible.

And an even more complicated to prove conjecture that all cycles have the
same length, that we know what it is depending on the number of pebbles we
are considering, and that we can therefore compute the numbers of cycles.

Conjecture 7 There are 2L5/2) cycles on pebble configurations of length k. The
length of each cycle is 21F/21,

We are not going to prove this conjecture here. Some conjectures are open for
a long term, just like the four coloring theorem, Kepler’s’ conjecture, or Fermat’s
last theorem. All of these conjectures have an by other mathematicians accepted
proof, which makes them theorems. Sometimes, we also use words like lemma,
which is simply a theorem of lesser importance, or corollary, which usually is
an easy to see consequence of a theorem or a lemma.

For our example, we can easily verify this. & = 6, means that k/2=3, and
thus |k/2| = [k/2] = 3. Thus we have 23 = 8 cycles, each of which is of length
23 = 8 as well. Let’s put it into a table, where we display word size on the
vertical axis and cycle length on the horizontal.

wfe|12|4|8|16]32
0 |1

1 1

2 2

3 2

4 4

5 4

6 8

7 8

8 16

9 16
10 32

This table is rather interesting. We observe, for example, that for any cycle
length there are only two rows that exhibit cycles of that length. Second, the
numbers of powers of 2. On the other hand, this is not surprising. The conjec-
ture above already tells us that the cycle lengths are powers of 2. Now, we can
organize all this knowledge in form of a tree, which we call the cycle tree. We
write € for a the empty list of pebbles.

/\ /\

Also this tree has some interesting aspects to it that we may want to look
into deeper. For example, its structure. Note that depending on the level a
node is on, it either has one child node (below the original node, with one line
attached to it) or two. A tree whose nodes have only one child are also called
lists and those where all nodes have two children nodes are called binary trees.
We will learn more about them in the lectures that follow.

