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Lecture 2: Logic

In today’s lecture, we will give a little introduction the philosophy and history
of mathematical logic. Mathematical logic is not as old one one might think.
While the first attempts to logical reasoning go back to Aristotle, it was only
in the second half of the 19th century that mathematicians started thinking of
logic as a field of scientific study. Until then logic was simply seen as the rules
of the game that is called mathematics. There was no discussion about di↵erent
logics and nobody really entertained the possibility that logical systems have
properties and exhibit behaviors that are worth studying.

Nowadays mathematical logic as more important then ever. This is mostly
because of computer science. Computers are very logical machines, we all might
have heard about references to Boolean algebra and the like. During your stay
at the IT University, you will hear a lot about good programming hygiene
and contracts, a way to communicate important implicit information between
a program/method that calls and the program/method that is being called.
The language in which these contracts are expressed is logic. You will see that
programming systems reason logically, which means that there is a syntactic
side to logic that makes it more computer sciency, then its semantic side in the
sense of classical mathematics.

The tradition called syntactic for want of a nobler title never
reached the level of its rival. In recent years, during which the
algebraic tradition has flourished, the syntactic tradition was not
of note and would without doubt have disappeared in one or two
more decades, for want of any issue or methodology. The disaster
was averted because of computer science that great manipulator of
syntax which posed it some very important theoretical problems.
Jean-Yves Girard, Yves Lafont and Paul Taylor, 1990

Because of this, we slightly deviate from the standard way of treating logic
in a discrete mathematics class, and start with a, in my opinion particularly
elegant way to combine logic, mathematics, and computing. We will use this
logical system for everything throughout this discrete math class: Reasoning,
programming, specifying, and even discovering flaws.

The central concept of our view of logic is that of a judgment. Judgments are
for example that A is a formula and perhaps most importantly the formula A

is true, which we shall abbreviate as A true. In this judgment A stands for any
mathematical formula. Theses formulas define the language of mathematics
that we will be using extensively in this course. We say that A is true if it
A true can be derived with a systems of inference rules. Both, the languages of
formulas, and the rules of inference are going to be described in the remainder
of this section. The overall goal of this lecture is therefore to introduce the
common language and to start internalizing by many examples.

Let’s start for real. We must now introduce each one of the connectives defin-
ing the logic that we will be using throughout this entire class. First, I would
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like to remark, that our logical presentation is completely void of any domain:
Instead, we stipulate a family of propositional formulas, called P , that could
stand for things like state(white,white,white), from last weeks lecture, even(n),
odd(n), or even prime(n). Yes, we will need to fill logic with mathematical
life, but not today. Today we will work on understanding what mathematical
reasoning is all about, according to which rules are we allowed to reason and
how do we actually do it.

Conjunction The first connective, we tackle is conjunction. The usual “and”.
If A and B are two formulas, then A ^ B is a formula. Next we define the
respective inference rules that allow us to reason with a formula. i.e. a rule that
introduces the conjunction A ^B true, and two rules that eliminate A ^B true
again. Don’t be scared, just bare with me.

A true B true
^I

A ^B true

A ^B true ^E1
A true

A ^B true ^E2
B true

Let p be a proposition stating that the ball is red. and q be a proposition
stating that the grass is green. Then we can infer that using the ^I rule, that
the ball is red and the grass is green from the facts fact1 that the ball is really
red and fact2 that the grass is green:

fact1
p true

fact2
q true

^I
p ^ q true

Very often, we find this way of writing proofs annoyingly cumbersome, and
describe the individual proof steps as a list. We also omit the true from the
judgment, to make things more readable.

Lemma 8 Let fact1 and fact2 as above. Then we can prove p ^ q.

Proof:

p by fact1
q by fact2
p ^ q by ^I

⇤

This is our first formal proof. When a proof is done, we usually mark its
end with a little box ⇤, or we write q.e.d., which stands for quod erat demon-
strandum. With conjunction alone, however, we cannot prove many interesting
things. We need to add a bit more power to get things o↵ the ground.
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Implication Let’s do it and introduce implication, which is a way to reason
hypothetically. If I want to study the question if p implies q, then we may assume
that we have a proof of p to proof q. Therefore, the meaning of implication is
best described by the following two rules.

u

A true
...

B true
) Iu

A ) B true

A ) B true A true
) E

B true

The
... stands for a derivation, that may use the additional assumption that

A true. Let’s do a small example. Can you prove that if p ) (q ) p)? Let’s do
it together.

u

p true
) Iv

(q ) p) true
) Iu

p ) (q ) p) true

Success. Let’s formulate this fact as a mathematical lemma and give a
linearized version of the proof. A proof that a mathematician would write out.

Lemma 9 Let p and q be arbitrary predicates (even formulas, if one wants):
Then we can prove that p ) (q ) p).

Assume p (called u above)
Assume q (called v above)
p by assumption
q ) p by ) I discharging assumption v

p ) (q ) p) by ) I discharging assumption u

⇤

For the second example, I would like to return to last weeks lecture, and
the example of the flipping pebble game. Let’s limit our attention to 3 pebble
games only.

Recall the specification:

• If the current pebble is white, color it blue and skip the next two.

• If the current pebble is blue, color it white and skip the next.

Let state(x, y, z) be a predicate (indexed by three arguments that correspond
to pebble 1, 2, and 3). The specification can be expressed by the following eight
rules.

1. state(white,white,white) ) state(blue,white,white).
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2. state(white,white, blue) ) state(blue,white, blue).

3. state(white, blue,white) ) state(blue, blue,white).

4. state(white, blue, blue) ) state(blue, blue, blue).

5. state(blue,white,white) ) state(white,white, blue)

6. state(blue, blue,white) ) state(white, blue, blue)

7. state(blue,white, blue) ) state(white,white,white)

8. state(blue, blue, blue) ) state(white, blue,white).

Theorem 10 We can find a non-trivial derivation of state(white,white,white) )
state(white,white,white), i.e. a derivation that doesn’t just use the assumption
but requires some reasoning with rules.

Proof:

Assume state(white,white,white) (called u)
state(blue,white,white) by ) E using (1).
state(white,white, blue) by ) E using (5).
state(blue,white, blue) by ) E using (2).
state(white,white,white) by ) E using (7).
state(white,white,white) ) state(white,white,white) by ) I discharging u.

⇤

Truth and falsehood No logic is complete with truth and falsehood. From
your high school math class, you might remember that we put true and false,
1 and 0 into the center of mathematics. A theorem is either true or false. My
main message for this lecture is that in order to do discrete math for computer
science and information technology, we should not be only interested if we can
write a certain program or not, we actually must be write the program and it
better runs well according to specification.

The meaning of truth and falsehood is specified by the following two rules.
We can always derive true, and if we can derive false then we can derive whatever
we want (C true).

>I
> true

? true
>E

C true
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Negation Closely related to falsehood is negation. Here is how the two are
related. We write ¬A for the negation of A, and define it as follows. If A true
then C true for an arbitrary C. This immediately justifies the introduction rule
for negation:

u

A true
...

p true
¬Iu,p

¬A true

p is a parameter that ranges over formulas. The elimination rule is as follows.

¬A true A true
¬E

C true

These are the reasoning rule that underlying every single proof that we will
be discussing in this course. We will have to gain some experience from them,
and internalize them.

Theorem 11 (Modus Tollens) If A ) B true and ¬B true then ¬A true.

Proof:

Assume A true (called u)
Assume p arbitrary formula
A ) B true by assumption
B true by ) E
¬B true by assumption
p true by ¬E
¬A true by ¬I discharging u and p

⇤

Disjunction Let’s look at one other connective, disjunction, for which we
write A _B. Its meaning is defined by two introduction rules

A _I1
A _B

B _I2
A _B

and one eliminiation rule.

A _B

u

A

...
C

v

B

...
C

_Eu,v

C

This is the base system. It’s simple, beautiful and clean. But not all of
mathematics can be done in it. Mathematicians tend to add axioms to logic.
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The rule of the excluded middle is such an axiom. When we do this, we have
classical logic, but it is di�cult to attribute a computational meaning to the
law of the excluded middle.

exm

A _ ¬A true

This axiom is not derivable in intuitionistic logic. We can try:

Attempt 1:

A ????
A _ ¬A by _I1

Attempt 2:

Assume A true
Assume p, an arbitrary formula
p true ????
¬A by ¬I
A _ ¬A by _I2

Our logic (also called constructive logic, or intuitionistic logic), together with
this axiom gives us classical logic, a logic that mathematicians usually work in.
In classical logic we can prove theorems that we cannot proof in intuitionistic
logic (simply because we assume more by the law of the excluded middle). If
you are interested in this, you need to take a logic class.

The law of double negation introduction is derivable only in classical logic,

¬¬A
dnE

A

double negation elimination is derivable in classical logic, and constructive
logic as well.

A

dnI

¬¬A

Theorem 12 If A true then ¬¬A true.

Proof:

Assume ¬A true
Assume p an arbitrary formula
A true by assumption
p true by rule ¬E
¬¬A true by rule ¬I
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⇤

Theorem 13 If we assume the law of the excluded middle then it holds that if
¬¬A true then A true.

Proof:

¬¬A true by assumption
A _ ¬A true by rule exm

Assume A true
A true by assumption

Assume ¬A true
A true by ¬E

A true by _E.

⇤

Theorem 14 If we assume that double negation introduction holdes, then A _
¬A is derivable for all formulas A.

Proof:

Assume ¬(A _ ¬A) true
Assume p an arbitrary formula

Assume A true
Assume q an arbitrary formula
A _ ¬A by _I1
q true by ¬E

¬A by ¬I
A _ ¬A by _I2
p true by ¬E
¬¬(A _ ¬A) true by ¬I
A _ ¬A true by DN.

⇤

In constructive logic, a formula is not just true or false, it either has a con-
structive proof or not. In classical logic, provability is not the central concern,
it is validity, and therefore the meaning of a formulas is aways true or false. Ev-
erything that you have learned in a high school or undergraduate mathematics
is usually all classical. We are constructive. The good news is that many of the
theorems that are classically valid also have proofs in intuitionistic logic. One
just has to work a bit harder.

This concludes our second lecture. We have encountered all the usual con-
nectives, and have explained their meaning in form of inference rules. We have
discussed truth and falsehood, conjunction, negation, disjunction, implication,
and we have encountered the rules for the excluded middle, and double negation
introduction and elimination.
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