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Lecture 3: Natural Numbers and Induction

In the previous lecture, we talked about inference rules, and we used schematic
variables A,B,C to serve as placeholders for real formulas. The rules we pre-
sented were actually not rules, they were rule schemas with holes, that must
be plugged with mathematical formulas before they can be used. We also men-
tioned, that there are formulas, that are not composed from other formulas
using connectives. We call these formulas atomic. An atomic formula is usually
of the form p(a1...an). We call p a predicate symbol, and the ai are arguments,
that range over numbers. Examples of such atomic formulas include even(10),
or prime(15) (which should not be derivable).

Let’s start working with the natural numbers IN and the the whole numbers
ZZ that may be negative, zero, or positive. The positive numbers are those
defined to be greater than 0, for example 1, 2, 3, 4, . . .. More formally, we write
pos(1), pos(2), pos(3), . . . for the property that 1, 2, 3 are positive numbers. Neg-
ative numbers are not positive ¬pos(�1),¬pos(�2),¬pos(�3), . . .. Similarly,
we can define the property when a number is negative. neg(�2) true and is
¬neg(2) true. neg and pos are predicate symbols.

Recall from last lecture, that in classical mathematics, we are allowed to
use an axiom, the law of the excluded middle A _ ¬A. By this law, we know
that for every number n, we either have pos(n) _ ¬pos(n). Notice what we
have just done. Instead of writing a concrete number, we wrote n, a variable
that ranges over numbers. This is something we often (always) do when we
do mathematics, we abstract from the specific to the general case. It is –
so to speak – our daily bread. We will be introducing two new connectives
to our logic one for expressing that something is true for all numbers, and
the other that there exists at least a number that makes a statement true.
The former, we call univeral quantifier 8, the later and existential quantifier 9.
Examples of fromulas that include quantifier include 8n 2 ZZ.pos(n) _ ¬pos(n)
or 9n 2 ZZ.¬pos(n) ^ ¬neg(n).

Quantifiers are logical connectives, but what makes the special is first that
the talk about something else but logical truth, namely numbers, lists, and
trees (as we will see later) and the like. We call these things terms. Second,
they talk about infinite sets. There are infinitely many numbers, there are
even uncountably many reals, but only countably many rational numbers, and
countably many lists about natural numbers. etc.

This is why quantification is a very powerful construct. We will discuss two
ways of using them in proofs. The first way allows us to prove properties about
terms, without analyzing their structure. We give four rules, an introuction and
elimination rule for the universal quantifier, and an introduction and elimination
rule for the existential quanifier, just as we have done last week for all the
propositional connectives.

A(u) true
8Iu

8x 2 IN.A(x) true

8x 2 IN.A(x) true
8E

A(n) true

We could also generalize this scheme further. Since we never analyze the
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structure of our terms by the virtue of these rules, we can let the quantifier
range over variables of di↵erent sorts of variables. For example, instead of IN
we could use the domain of whole numbers ZZ, rational numbers IQ, lists, or
trees. We will do this a little later, and when we do it, a bit more informally.
The idea remains the same. Next up the rules for the existential quantifier.

A(n) true
9I

9x 2 IN.A(x) true

9x 2 IN.A(x) true

u

A(e) true
...

C true
9Ee,u

C true

Before we start doing real mathematics now, I would like to tell you a little
bit about arithmetic. True, we have learned and internalized lots of the mathe-
matical facts over the years, during school and university life, but now we must
make more precise what we actually do know. We add these facts as axioms.
Mathematics is precise science. The following set of axioms is neither complete
nor does it try to be complete. There are very well-known and well-studied
axiomatizations, for example Heyting arithmetic, but we don’t care about them
here.

Following the definition of natural numbers, the next most important def-
inition is that of the equality between two numbers. Equality is a predicate
symbol, if one likes, that takes two arguments = (x, y) for which we usually
write x = y. The first axiom states that all numbers are equal to themselves.
We also say that equality is reflexive.

refl
8x 2 IN.x = x

The second one states that the equality between numbers is also transitive.

trans
8x 2 IN.8y 2 IN.8z 2 IN.x = y ^ y = z ! x = z

The third axiom says that that the equality relation is also symmetric.

sym
8x 2 IN.8y 2 N.x = y ! y = x

There are a few more axioms that we need, for example,1

eq1
8x 2 IN.¬(x = x+ 1)

Similarly to equality, there are di↵ernent axioms defining inequality, strictly less
then, for example <.

lt1
8x 2 N.¬(x+ 1 < x)

1[more probably be added later ..]
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It might be good to point out at this point that there is no best way to specifiy
those axioms.2.

Let’s try to define the even numbers. Recall from high school that a number
is even if it is divisble by 2. When we define even(n), we basically stipulate the
existence of an axiom that is

def-even
even(n) $ 9n0 2 IN.n = 2n0 true

Mathematically, we would simply write,

Definition 15 (Even numbers) even(n) if and only if 9n0 2 IN.n = 2n0
.

and similarly, we define the odd numbers as

def-odd
odd(n) $ 9n0 2 IN.n = 2n0 + 1 true

Definition 16 (Odd numbers) odd(n) if and only if 9n0 2 IN.n = 2n0 + 1.

Time for a little theorem? The sum of two odd numbers is even:

Theorem 17 Let x be odd and y be odd, then x+ y is even.

Proof:

odd(x) by assumption
9x0 2 IN.x = 2x0 + 1 by axiom def-odd
odd(y) by assumption
9y0 2 IN.y = 2y0 + 1 by axiom def-odd
Choose z

0 = x

0 + y

0 + 1
x+ y = 2x0 + 1 + 2y0 + 1 = 2(x0 + y

0 + 1) = 2z0 by equational reasoning
9z0 2 IN.x+ y = 2z0 by 9I
even(x+ y) by axiom def-even

⇤

Exercise 1 Write out the proof as a formal derivation in our logic using only the
rules that we have discussed so far. Recall that A $ B is just an abbreviation
for A ! B ^B ! A.

The next theorem states that the square of an odd number is odd again.
The proof is again a little bit more informal, but perhaps more readable.

Theorem 18 If x is odd then x

2
is odd.

Proof:

2[could bring an exmaple here, if really necessary]
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x is odd by assumption
there exists a k, s.t. x = 2k + 1 by definition
x

2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1 by equation reasoning
Choose z

0 = (2k2 + 2k)
9z0.x2 = 2z0 + 1 by 9I
x

2 is odd by definition of def-odd

⇤

Theorem 19 (Euclid) There is no largest number. ¬(9m 2 IN.8x 2 IN.x <

m).

Proof:

Assume 9m 2 IN.8x 2 IN.x < m called u

Let p be an arbitrary but fixed formula
8x 2 IN.x < m by 9Em

m+ 1 < m by 8E choosing m+ 1 for x
¬(m+ 1 < m) by axiom lt1
p by ¬E
¬(9m 2 IN.8x 2 IN.x < m) by ¬I discharing p and q

⇤

Since Kindergarten, we all know the natural numbers and how to generate
them. We start with 0 as a natural number, if n is a natural number then n+1 is
also a natural number. It is pretty easy to see, that any number can we written
as a large sum:

n = 0 + 1 + . . .+ 1| {z }
n times

We say that the numbers are inductively defined, by two constructors, 0 and
+1.

The induction principle di↵ers significantly from the introduction rule above.
It is designed to analyze the structure of a term.

Let’s consider the situation that we need to show something for all numbers:
8n 2 IN.P (n). Since the rule for universal quantification introduction does not
allow us to inspect the structure of a general n, theorems of that kind are not
always directly provable. Very often the proof only goes through when we look
at the structure of n.

Since we know that all numbers are constructed from these two constructors,
we could try to prove P for every concreate instantiation of n such as

P (0), P (1), P (2), P (3), . . .

It is pretty clear that this would take forever, and therefore not result in a proof.
This is not ideal. Here is another idea. We should try to justify P (n+1) based
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on the knowledge that P (n) holds. This means we have to prove two cases, first
the base case,

P (0)

and secondly the step case

8n 2 IN.P (n) ! P (n+ 1)

If we provide a proof of these two cases, then we have conducted a proof by
induction on the structure of that natural number n. In the case that we cannot
prove the second case directly (using our rules from last lecture + the standard
unification introduction and elimination rules), we might have to do a second
nested induction on n again.

Once these two cases are proved, we can apply the theorems and convince
ourselves that, if we only had infinite amounts of time, we could convince our-
selves that P (n) is true for any n 2 IN .

P (0) from the first case
P (0) ! P (1) form the second case with n = 0
P (1) by ! E
P (1) ! P (2) form the second case with n = 1
P (2) by ! E
. . .

All we have to believe is that this argument scales to the infinite. What could
go wrong? Nothing, but we have to admit, this proof constructions is somewhat
less intuitive then the other. We must believe that everything works out ok
in the infinite. It is not justified/justifiable in any other way then what I just
showed you. Note, that very few mathematicans distrust this prinicple.

This completes the technical part of this lecture. The cool thing is that using
the principle of induction, we can actually prove quite intersting things, about
numbers. Here is one, a theorem that is named after Carl Friedrich Gauss “the
little Gauss”. When he was eight years old, Gauss’s class was asked to add all
numbers between 1 and 100. Gauss answered immediately 5050. The teacher
asked him how he did it: Add the first number and the last, 1+100 = 101. Then
you add 2+ 99 = 101, then 3 + 98 = 101, etc. until you come to 50 + 51 = 101.
Hence you have 50⇥ 101 = 550.

Let’s generalize it a little bit. What happenes if we do not only want to add
up the first 100 numbers, but the first n numbers? We introduce some notation,
which will make it much easier for us to formulate the theorem. We write

nX

i=0

i

as an abbreviation for 0 + 1 + 2 . . . n.

Theorem 20

8n 2 IN.

nX

i=0

i =
n(n+ 1)

2
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Proof: How do we prove it? Of course by induction over n. We must consider
two case.

Case 1

P0
i=0 i = 0 = 0(0+1)

2 by equational reasoning

Case 2

Let n be arbitray but fixed

Assume
Pn

i=0 i =
n(n+1)

2 called uPn+1
i=0 i

=
Pn

i=0 i+ (n+ 1) by the definition of
P

= n(n+1)
2 + (n+ 1) be replacing equals for equals

= (n2 + 1)(n+ 1) by pulling out the (n+ 1)
= (n+2

2 )(n+ 1)

= ( (n+1)+1
2 )(n+ 1)

= ((n+1)+1)(n+1)
2

= (n+1)((n+1)+1)
2

Pn
i=0 i =

n(n+1)
2 !

P(n+1)
i=0 i = (n+1)((n+1)+1)

2 by ! I discharging u

8n 2 IN.

Pn
i=0 i =

n(n+1)
2 !

P(n+1)
i=0 i = (n+1)((n+1)+1)

2
by 8I discharging n

8n 2 IN.

Pn
i=0 i =

n(n+1)
2 by the principle of induction

⇤
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