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Lecture 4: Induction

Since Kindergarten, we all know the natural numbers and how to generate them.
We start with 0 as a natural number, if n is a natural number then n+1 is also
a natural number. It is pretty easy to see, that any number can we written as
a large sum:

n = 0 + 1 + . . .+ 1| {z }
n times

We say that the numbers are inductively defined, by two constructors, 0 and
+1.

The induction principle di↵ers significantly from the introduction rule above.
It is designed to analyze the structure of a term.

Let’s consider the situation that we need to show something for all numbers:
8n 2 IN.P (n). Since the rule for universal quantification introduction does not
allow us to inspect the structure of a general n, theorems of that kind are not
always directly provable. Very often the proof only goes through when we look
at the structure of n.

Since we know that all numbers are constructed from these two constructors,
we could try to prove P for every concreate instantiation of n such as

P (0), P (1), P (2), P (3), . . .

It is pretty clear that this would take forever, and therefore not result in a proof.
This is not ideal. Here is another idea. We should try to justify P (n+1) based
on the knowledge that P (n) holds. This means we have to prove two cases, first
the base case,

P (0)

and secondly the step case

8n 2 IN.P (n) ! P (n+ 1)

If we provide a proof of these two cases, then we have conducted a proof by
induction on the structure of that natural number n. In the case that we cannot
prove the second case directly (using our rules from last lecture + the standard
unification introduction and elimination rules), we might have to do a second
nested induction on n again.

Once these two cases are proved, we can apply the theorems and convince
ourselves that, if we only had infinite amounts of time, we could convince our-
selves that P (n) is true for any n 2 IN .

P (0) from the first case
P (0) ! P (1) form the second case with n = 0
P (1) by ! E
P (1) ! P (2) form the second case with n = 1
P (2) by ! E
. . .
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All we have to believe is that this argument scales to the infinite. What could
go wrong? Nothing, but we have to admit, this proof constructions is somewhat
less intuitive then the other. We must believe that everything works out ok
in the infinite. It is not justified/justifiable in any other way then what I just
showed you. Note, that very few mathematicans distrust this prinicple.

This completes the technical part of this lecture. The cool thing is that using
the principle of induction, we can actually prove quite intersting things, about
numbers. Here is one, a theorem that is named after Carl Friedrich Gauss “the
little Gauss”. When he was eight years old, Gauss’s class was asked to add all
numbers between 1 and 100. Gauss answered immediately 5050. The teacher
asked him how he did it: Add the first number and the last, 1+100 = 101. Then
you add 2+ 99 = 101, then 3 + 98 = 101, etc. until you come to 50 + 51 = 101.
Hence you have 50⇥ 101 = 550.

Let’s generalize it a little bit. What happenes if we do not only want to add
up the first 100 numbers, but the first n numbers? We introduce some notation,
which will make it much easier for us to formulate the theorem. We write

nX

i=0

i

as an abbreviation for 0 + 1 + 2 . . . n.

Theorem 20

8n 2 IN.

nX

i=0

i =
n(n+ 1)

2

Proof: How do we prove it? Of course by induction over n. We must consider
two case.

Case 1

P0
i=0 i = 0 = 0(0+1)

2 by equational reasoning

Case 2

Let n be arbitray but fixed

Assume
Pn

i=0 i =
n(n+1)

2 called uPn+1
i=0 i

=
Pn

i=0 i+ (n+ 1) by the definition of
P

= n(n+1)
2 + (n+ 1) be replacing equals for equals

= (n2 + 1)(n+ 1) by pulling out the (n+ 1)
= (n+2

2 )(n+ 1)

= ( (n+1)+1
2 )(n+ 1)

= ((n+1)+1)(n+1)
2
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Figure 1: Pascal’s triangle

= (n+1)((n+1)+1)
2

Pn
i=0 i =

n(n+1)
2 !

P(n+1)
i=0 i = (n+1)((n+1)+1)

2 by ! I discharging u

8n 2 IN.
Pn

i=0 i =
n(n+1)

2 !
P(n+1)

i=0 i = (n+1)((n+1)+1)
2

by 8I discharging n

8n 2 IN.
Pn

i=0 i =
n(n+1)

2 by the principle of induction

⇤

The second object that we will study today is Pascal’s triangle. Consider
a board with a rows of nail. The top row has one nail, the second row two,
the third three and so forth. What happens if you drop a ball on the top nail.
It can go either left or right. If it goes left it hits the first nail of the second
column, and again, it can go either left or right, etc. You can actually run
these experiments in the physical world, there are plenty of clips on youtube
demonstrating this.

When you let a ball fall through the nails, where is going to end up? If we
run the experiment more than once, we recognize a pattern. That a ball ends
up in the center is much more likely than it ending up close to the sides. But
why? How can we understand it.

For every point right under a nail, let us count how many paths there are.
If we do this carefully, we obtain the triangle whose first 14 rows are depicted
in Figure 1.
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Pascal’s triangle is very famous. It exhibts a lot of interesting patterns with
respect to its numbers. For example, every row seems to add up to 2n, where
n is the row number. There are many ways to compute an entry in Pascal’s
triangle. One is

P (n, k) =

8
<

:

1 if n = 0 ^ k = 0
P (n� 1, k � 1) + P (n� 1, k) if n � 0 ^ k � 0 ^ n � k
0 otherwise

Let’s check, if this is right:

P (3, 2) = P (2, 1) + P (2, 2)

= P (1, 0) + P (1, 1) + P (1, 1) + (1, 2)

= P (0,�1) + P (0, 0) + P (0, 0) + P (0, 1) + P (0, 0) + P (0, 1) + P (0, 1) + P (0, 2)

= 0 + 1 + 1 + 0 + 1 + 0 + 0 + 0

= 3

If we have the definition of the factorial function.

n! =

⇢
1 if n < 0
n⇥ (n� 1)! otherwise

We can try to prove that

Theorem 21 Let 0  k  n

P (n, k) =
n!

k!(n� k)!

Proof: by induction on n

Case: n = 0. Thus k = 0. 1 = P (0, 0) = 0!
0!⇤0! = 1

Case: Let n0 be arbitrary but fixed. Let n = n0 + 1. Assume that for an
arbitrary k0 the following holds

P (n0, k0) =
n0!

k0!(n0 � k0)!

Subcase: k0 = 0:

P (n0 + 1, 0) = P (n0,�1) + P (n0, 0) = P (n0, 0) =
n0!

n0!
= 1

=
(n0 + 1)!

0!(n0 + 1� 0)!

Subcase: k0 = n0 + 1:

P (n0 + 1, n0 + 1) = P (n0, k0) + P (n0, n0 + 1) = P (n0, n0) =
n0!

n0!
= 1

=
(n0 + 1)!

(n0 + 1)!(n0 + 1� (n0 + 1))!
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Subcase: 0 < k0 < n0 + 1:

P (n0 + 1, k0) = P (n0, k0 � 1) + P (n0, k0)

=
n0!

(k0 � 1)!(n0 � k0 + 1)!
+

n0!

k0!(n0 � k0)!

=
n0!k0!(n0 � k0)! + n0!(k0 � 1)!(n0 � k0 + 1)!

(k0 � 1)!(n0 � k0 + 1)!k0!(n0 � k0)!

=
n0!k0!(n0 � k0)! + n0!(k0 � 1)!(n0 � k0)!(n� k0 + 1)

(k0 � 1)!(n0 � k0 + 1)!k0!(n0 � k0)!

=
n0!k0! + n0!(k0 � 1)!(n0 � k0 + 1)

(k0 � 1)!(n0 � k0 + 1)!k0!

=
n0!(k0 � 1)!k0 + n0!(k0 � 1)!(n0 � k0 + 1)

(k0 � 1)!(n0 � k0 + 1)!k0!

=
n0!k0 + n0!(n0 � k0 + 1)

(n0 � k0 + 1)!k0!

=
n0!(k0 + (n0 � k0 + 1))

(n0 � k0 + 1)!k0!

=
n0!(n0 + 1)

(n0 � k0 + 1)!k0!

=
(n0 + 1)!

(n0 � k0 + 1)!k0!

=
(n0 + 1)!

k0!((n0 + 1)� k0)!

⇤
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