
Draft, September 24, 2012

Lecture 5: Abstraction and Computation

In the beginning of the class, we have learned a lot about logics and derivations.
Some of the the students might have wondered, what is this all about. Why do
we need to worry about logic in a discrete math class? In this lecture, I hope to
show you the answer: Logic and computation are very closely related, so close
in fact, that one could almost say that they are the same thing. Logic is the
foundation for everything that has to do with computation. My goal for this
lecture is to show you a little bit more about what the two have in common: You
can actually think of proofs as programs! To see this, let us revisit abstractions
from last time. The last time, we abstracted the individual numbers in Pascal’s
triangle, by replacing concrete numbers by variables. For example, we wrote for
the second row ✓

2

0

◆ ✓
2

1

◆ ✓
2

2

◆

and from there we started talking about

✓
n

k

◆

for all 0  n and 0  k  n. The technique of abstraction is prevalent. For
example, the term 1 ⇥ 3 ⇥ 9 we be abstracted into di↵erent terms, such as
(x⇥ 3⇥ 9)[1/x] or (x⇥ y⇥ z)[1/x, 3/y, 9/z], where we write what is enclosed in
the square brackets as substitutes 1 for x, 3 for y and 9 for z. Consequently,
in our example above

�2
1

�
is the same as

�n
k

�
[2/n, 1/k].

Interestingly, we can also abstract other things, and not just numbers. For
example, in the example, above, we could abstract the function ⇥: 1⇥3⇥9 can
be written as (f 1 (f 3 9))[⇥/f]. Why not?

If this is really possible, that would mean, that functions are values, just
as numbers are values. Can we really write functions that take functions as
arguments? Yes, mathematically, there is absolutely no problem with that. ⇥
is a predefined function. If we talk about user defined functions, we would write,
for example �x.�y. x⇥ (2⇥ y).

Exercise 2 What is (f 1 (f 3 9))[�x.�y. x⇥ (2⇥ y)/x]?

Finally, one last way to abstract over things, is to abstract about di↵erent
values simultaneously. For example, take the example from above: 1 ⇥ 3 ⇥ 9.
If we want to abstract simultaneously about 1 and 3, we just introduce a new
variable that ranges over the pair of both, and then we use the left and right
projection functions fst and snd. 1⇥3⇥9 is the same as (fstx⇥3⇥sndx)[(1, 9)/x].

Using the power of abstractions, we have developed a little programming
language. The language of expressions is given as follows

Expressions: e ::= x | �x. e | e1(e2) | (e1, e2) | fst(e) | snd(e)
[(Natural numbers) | n | e1 + e2 | e1 ⇥ e2]

25

Draft, September 24, 2012

This definition defines the syntax trees of expressions. x is shorthand for
any variable. Altogether a small generalization of the language of mathematics
that we have grown to appreciate during the previous lectures, but very pow-
erful one: It gives us access to compute with numbers, express algorithms, etc.
The notation that we use to define the syntax, by the way, is called Extended
Backus Naur Form or EBNF in short. Whenever you write a compiler, look at
a language specification that is usually expressed in EBNF.

Relation to Logic

Recall from lecture 2, the three rules defining conjunction:

A B
^I

A ^B

A ^B ^E1
A

A ^B ^E2
B

Let’s look at the introduction rule ^I first. It says, that if we have two
proofs, one for A and another for B, then we can construct (using the rule) a
proof that A ^B, as well. What we augment those rules with expressions?

e1 : A e2 : B
^I

(e1, e2) : A ^B

e : A ^B ^E1
fst e : A

e : A ^B ^E2
snd e : B

Let’s make A and B concrete, that A and B refer to “is a natural number”.
Using the rule above, we can deduce that 3 and 5 are both natural numbers or
more explicitly, that

(3, 5) is a natural number ^ a natural number

Derivations are extremely unwieldy constructs. They are big, take a long
time to write, and seem to have nothing to do with programming, unless ... If
we only had a more concise way to talk about these derivations, even if it is at
the expense of precision, we could use them to program as we will see. In short,
programs are shortened and compactified proofs.

Let’s address the elimination rules: ^E1 and ^E2. Those rules allow us to
take a conjunction apart. Let’s denote the proof for A ^B withe e. In the one
case, we want to write out the program that correspond to the proof of A, in
the other the program that corresponds to the proof of B. This can be easily
done, we either need to take the first or second argument, for which we write
“fst e” or “snd e”.

This means, that if we write fst (3, 5) we actually refer to the proof that
fst (3, 5) stands for a derivation that 3 is a natural number.

Intuitively, it should be clear that “fst (3, 5)” should be considered equivalent
to 3 itself, fst (3, 5)” is a program that can still be evaluated, or simplified, and
the result of taking such a computation step is 3. This gives rise to the definition
of a redex. Whenever “fst” is followed by a pair, then we call it a redex, and
we can always take a computation step and replace the the program by its first
argument.

26

Draft, September 24, 2012

These steps of computation are extremely important, because we will have
to count them to talk about the complexity of a function.

It is easy to see that it is always possible to reduce a redex:

e1 : A e2 : B
^I

(e1, e2) : A ^B
^E1

e1 : A

can always reduce to
e1 : A

because this proof is simply contained as a subproof in the proof above. A
similar observation holds for ^E2 of course.

Therefore, conjunction gives us a very natural way of pairing and comput-
ing first and second projection. And this is very close related to the way we
package up arguments in lists that are then passed into a method, let’s say in
programming language like Java or C#.

This brings us two the next big question. Is there some corresponding sim-
ilarity between methods and functions and proofs? Yes, there is, all we have
to do is to look at our understanding of implication and interpret the rules as
programs. Recall the two rules from the second lecture.

u
A
...
B

) Iu
A) B

A) B A
) E

B

What if we just augment them with proof terms?

u
x : A

...
e : B

) Iu
�x. e : A) B

e1 : A) B e2 : A
) E

e1 e2 : B

Let’s take) E first. We can think of this rule as passing an argument to a
function. Let’s say that f represents the the proof of A) B and e the proof
of A, then we could read it as “send argument e to method f”, written as a
juxtaposition: f e (in words f space e).

The last rule that we need to discuss is that of) I. For students that
is perhaps the most di�cult rule in the bunch, because it introduces a fresh
hypothesis A (only visible in the premiss) named u. The rule says, in plain
English, that if under the assumption u that A holds, we can infer that B
holds, then the implication A) B also holds. Perhaps you can already see the
connection, the program representing the proof of B, let’s call it e0 for the lack

27

Draft, September 24, 2012

of a better name, is actually the body of a function/method. The assumption u
plays the role of the parameter that may occur free in the body of the program.
For example, a method that adds the value of a quarter (25) to some other
amount u is written in Java as

int addQuarterToAmount (int u) {

return (u+25);

}

is such a function. As for) E, we need some kind of a program constructor that
corresponds to) I. If e0 witnesses the derivation of B under the assumption A
(which we called u), then �u. e0 is a the witness for the whole derivation. Using
�, we write addQuarterToAmount as

�u. u+ 25

Here is one more example:
�u.�v. u

is a witness of the proof that a A) B) A. The � symbols is pronounced
lambda, it a Greek letter, and the only Greek letter that we will be using in this
class. Because of the choice of letter, this calculus is also called the �-calculus.

What is one step computation in this setting? It is just executing the appli-
cation of a function to an argument. Consider the program

addQuarterToAmount (10)

What you do is replace all occurrences of u in the definition of the method by
10 and continue. The next step will be to compute return(10+25);. This
replacement operation is also called substitution, because we substitute the
number 10 for u anywhere in the body of the method.

Analogously, when we find a redex (�u. u+25)(10), we need to replace 10 for
all occurrences u, for which we also write [10/u](u+ 25) = 10 + 25. We always
think of substitutions to take place instantaneously. This is justified because
it can be implemented this way. And mathematical operations such as 10 + 25
count also as one step. Let’s check that this actually makes sense.

u
x : A

...
e0 : B

) Iu
�x. e0 : A) B e : A

) E
(�x. e0) e : B

can always reduce to
e0[e/u] : B

In summary, we have defined three useful computation (or better reduction)
steps, that define the operational behavior of programs.

28

Draft, September 24, 2012

fst(e1, e2) ! e1
snd(e1, e2) ! e2
(�u. e0) e ! e0[e/u]

If we are interested about the running time of an algorithm or a program,
we simply need to count these steps . But enough of the theory already, let’s
look at some examples.

Examples

Example 24 (Delegates in C#) Consider the following code in the C# lan-
guage. If you don’t know C#, just ignore this example.

1 public delegate int SimpleDelegate(int x);

2

3 class TestDelegate

4 {

5 public static int MyFunc(int x)

6 {

7 Console.WriteLine("I was called by delegate ...");

8 return x;

10 }

11

12 public static void Main()

13 {

14 // Instantiation

15 SimpleDelegate simpleDelegate = new SimpleDelegate(MyFunc);

16

17 // Invocation

18 Console.WriteLine(simpleDelegate(5));

19 }

20 }

Line 1. declares a new argument “type” for methods that may be used to pass
other methods around. In our more logical formalism we woud say that we
define the type SimpleDelegate to stand for nat) nat. Next, in lines 5-10, we
define a method that takes x as an argument and returns x, and this method
is called MyFunc. In our notation, MyFunc = �x. x ignoring the content of line
7. In the Main method, line 15, we turn then MyFunc into an o�cial method,
which we then call simpleDelegate, which for us is just a di↵erent name for
MyFunc. In line 18, we then apply simpleDelegate to the number 5, which, is
similar to calling simpleDelegate(5) = (�x. x)(5) = 5. In summary, �-terms
are just delegates!

The next examples illustrates that functions are just values, that can be
passed to other functions as arguments. This is an important observation.

29

Draft, September 24, 2012

Modern programming languages take advantages of this fact more and more
frequently, for example C# and F#. In the beginning this fact usually feels a
bit funny, but it is normal. It will pass over time.

Example 25 (Program that corresponds to an earlier proof) Do you re-
call the proof of (A) B) C)) (A) B)) A) C? We can write this
easily as program as follows:

�u.�v.�w. u w (v w)

Example 26 (Reduction sequence) Let’s consider the term from above ap-
plied to two arguments.

(�u.�v.�w. u w (v w)) (�x.�y. x+ y) (�z. z + 25) 42

. When we apply the reduction rules from above in a particular order, we obtain.

(�u.�v.�w. u w (v w)) (�x.�y. x+ y) (�z. z + 25) 42

= (�v.�w. (�x.�y. x+ y) w (v w)) (�z. z + 25) 42

= (�w. (�x.�y. x+ y) w ((�z. z + 25) w)) 42

= (�x.�y. x+ y) 42 ((�z. z + 25) 42)

= (�x.�y. x+ y) 42 (42 + 25)

= (�x.�y. x+ y) 42 67

= (�y. 42 + y) 67

= 42 + 67

= 109

No matter, in which order we apply reduction steps, we will always end up with
the same result. This theorem can be proven, of course by induction, but it
would go to far to cover this in class. Turning our interest to complexity, we
can count that this computation took 9 steps. In certain situations we need to
make a choice of where to apply a reduction rule. More precisely, we had only
1 way to reduce the first step, two ways to reduce the second, three ways, to
reduce the third, etc. Can you find which ones?

The programs that we have introduced in this lecture are of mathematical
nature. At the beginning of the lecture, we took the freedom and abstracted “3
is a natural number” to “nat”. We can further abstract, drop any distinction
between all types, and arrive this way a calculus that seems to be able to express
any function, that we can write out on paper and compute with. This conjecture
is also known as the Church Turing thesis. It has not and probably never will
be formally proven.

Lastly, we direct our interest back to the induction principles that also seem
to provide a form of computation. Recall the induction principle for natural
numbers. Recall that if we have proven the base case

P (0)

30

Draft, September 24, 2012

and the step case
8n 2 IN.P (n) ! P (n+ 1)

then we e↵ectively can compute P (n) for any n, by starting with the base case
and iterating the step case n times:

P (0), P (1), P (2) . . . P (n)

Let e0 be a proof of P (0) and e1 the proof that for 8n 2 IN.P (n) ! P (n+1).
As above, let’s forget about the little n in the index, which allows us to simplify
the use universal quantification to implication. This is completely fine, because
the “type systems” of modern general purpose programming languages are not
expressive enough to capture the indices any way. If P (n) stands for n!, then a
good approximation of P (n) is nat, since n is a natural number. Consequently
e0 = 1 represents nat and e1 = (�n.�x. n⇥ x) represents nat) nat) nat.

!5 = e1 5 (e1 4; (e1 3 (e1 2 (e1 1 e0))))

= e1 5 (e1 4; (e1 3 (e1 2 (e1 1 1))))

= e1 5 (e1 4; (e1 3 (e1 2 1)))

= e1 5 (e1 4; (e1 3 2))

= e1 5 (e1 4; 6)

= e1 5 24

= 120

Altogether, this took about 15 steps. It seems that the two program e0 and
e1 can define the result of !n for any n. All we have to do is iterate the e1
n times. These kind of programs should look familiar as they define basically
exactly the recursive functions that we have encountered earlier in this class.
They scale to any other induction principle, even those that range over more
complex data structures, such as lists and trees. As an example, we look the
definition of the factorial numbers.

n! =

⇢
e0 if n = 0
e1 n (n� 1)! otherwise

31

