
Draft, October 11, 2011

Lecture 7: Trees and Structural Induction

Natural numbers, positive numbers, rational numbers, pairs, tuples etc. are
the objects that we usually study in discrete math. But when we consider
discrete math in terms of information technology, we find many more structure
in information then just numbers. For example, we can find information that
is captured in lists. Or trees, for this matter. In an object oriented language,
classes are organized in form of inheritance trees, there are decisions trees, or
game trees. HTML, XML, and the like are trees that describe documents. Trees
are therefore interesting and important. We will need to learn more about them.

Let’s spend some time understanding lists. Lists are di↵erent form sets.
They are ordered. Elements can appear several times in a list, but they only
appear one time in a list. We use the :: notation for lists. For example
2::3::5::7::11::nil is a list. We can think of a list as being constructed from a head
2, and the rest of the list 5::7::11::nil. Sometimes, I will just write [2, 3, 5, 7, 11]
as an abbreviation. Recall that we introduced the principle of induction for
natural number: During a previous lecture, we convinced ourselves that if

P (0)

and
8n 2 IN.P (n) ! P (n+ 1)

then we may conclude that
8n 2 N.P (n)

Lists are constructed just like natural numbers. Natural numbers are con-
structed by 0 and the successor operation, lists are constructed by nil and the ::
(over elements from some set S). By analogy we can come up with an induction
principle for lists.

If
P (nil)

and
8x 2 S.8l 2 IL.P (l) ! P (x :: l)

then we may conclude that
8l 2 IL.P (l)

Let’s demonstrate how to use this by the means of an example. From last
lecture, we had some examples already, lists of coins, like nickels, dimes, and
quarters. Or bits, such as 0s and 1s.

Definition 34 Let IB be the set of all finite binary strings, which are lists of

the set 0, 1.

For example 0 :: 0 :: 1 :: 0 :: 1 :: 0 :: nil 2 IB, 1 :: 1 :: 0 :: 1 :: 0 :: nil 2 IB, and
1 :: 0 :: 0 :: 1 :: nil 2 IB. Of course, we prefer the less verbose form 001010 2 IB,
11010 2 IB, and 1001 2 IB, which we will use hence force.

35



Draft, October 11, 2011

We can define a simple functions on lists, for example:

l1@l2 =

⇢
l2 if l1 = nil
x::(l01@l2) if l1 = x::l01

And we may now apply the induction principle to show properties about
lists.

Lemma 35 (Appending an empty list from the right) For all list l 2 IL,
the following holds: l@nil = l

Proof: by induction on the structure of l.

Case: l = nil. The claim follows directly from the definition of @.

Case: l = x::l0.

Let l0 be arbitrary and fixed.
Assume l0@nil = l0 the induction hypothesis
(x::l0)@nil
= x::(l0@nil) by definition of @
= x::l0 by induction hypothesis

⇤

Theorem 36 (Append is associative) l1@(l2@l3) = (l1@l2)@l3

Proof: l1 = nil.

nil@l2 = l2 by definition of append
nil@(l2@l3) = l2@l3 by definition of append
nil@(l2@l3) = l2@l3 = (nil@l2)@l3 by equality reasoning

Case

Let l01 be arbitrary but fixed
Assume l1 = X :: l01
Assume l01@(l2@l3) = (l01@l2)@l3
(X :: l01)@(l2@l3)
= X :: (l01@(l2@l3))
= X :: ((l01@l2)@l3)
= (X :: (l01@l2))@l3
= ((X :: l01)@l2)@l3

⇤

36



Draft, October 11, 2011

Here is another common operation on lists: list reversal.

rev(l) = rev’(l, nil)

where

rev’(l1, l2) =

⇢
l2 if l1 = nil
rev’(l01, x::l2))) if l1 = x::l01

Can we prove mathematically, that the reverse of the reverse of a list is the
list itself?

Conjecture 37 For all l 2 IL, it holds that rev(rev(l)) = l.

This however, we cannot prove directly. We need to first develop a lemma,
stating a useful property about rev’, which is on the one hand true, and on the
other necessary to prove the conjecture above.

Lemma 38 For all l1, l2, l3 2 IL, it holds that rev’(rev’(l1, l2), l3) = rev’(l2, l1@l3).

Proof: by structure induction on l1

Case: l1 = nil.

rev’(rev’(nil, l2), l3)
= rev’(l2, l3) by definition of rev’
= rev’(l2, nil@l3) by definition of @

Case: l1 = x::l01.

Assume forall l2 2 IL it holds that rev’(rev’(l01, l2), l3) = rev’(l2, l01@l3)
by induction hypothesis

rev’(rev’(x::l01, l2), l3)
rev’(rev’(l01, x::l2), l3) by definition of rev’
rev’(x::l2, l01@l3) by induction hypothesis
rev’(l2, x::(l01@l3)) by definition of rev’
rev’(l2, (x::l01)@l3)) by definition of @

⇤

Now we can finish the proof the conjecture:

Proof:

rev(rev(l))
= rev(rev’(l, nil)) by definition of rev
= rev’(rev’(l, nil), nil) by definition of rev
= rev’(nil, l@nil) by the above lemma
= l@nil by definition of rev’
= l by Lemma 35

37



Draft, October 11, 2011

No information TT 0

Information on in the leaves TT 1

Information on in the nodes TT 2

Information on in the leaves and nodes TT 3

Figure 2: Sets of trees

⇤

Let’s look at another example of structures, which are a little bit more
complicated than lists: Trees. Trees are constructed very similar to lists, except
that the :: symbol plays now the role of an internal node that can have one or
more children. If all nodes in a tree have the same number of children, let’s say
m, then we call the tree an m-ary tree.

In this sense, a list is simply a unary tree, where each node has only one
child, namely the tail of the list. The leaf of a tree corresponds to the nil. A
tree is a binary tree, if every node has exactly two children. For the purpose of
this lecture, we consider only binary trees, but all results generalize directly to
more general trees.

Trees exhibit more structure than lists which allows us to represent and
store information in various places in a tree. For example, considering a tree of
natural numbers, we can choose to store numbers as part of the nodes, within
the leaves, or both, or none. We introduce the abbreviations for the sets of trees
depicted in Figure 2.

Trees also give raise to induction principles. Here is the induction principle
for trees in TT 3: If

8x 2 S.P (leaf(x))

and
8x 2 S.8t1 2 TT 3.8t2 2 TT 3.P (t1) ^ P (t2) ! P (node(x, t1, t2))

then we may conclude that
8t 2 TT 3.P (t)

If we consider only trees with information at the leaves, we obtain the fol-
lowing principles for TT 1. If

8x 2 S.P (leaf(x))

and
8t1 2 TT 1.8t2 2 TT 1.P (t1) ^ P (t2) ! P (node(t1, t2))

then we may conclude that
8t 2 TT 1.P (t)

Exercise 3 Write out the induction principles for TT 0 and TT 2.

38



Draft, October 11, 2011

With these induction principles, we can prove many interesting things. Ac-
tually, the induction principles on trees will For example, consider the mirror
operation:

mirror(t) =

⇢
leaf(x) if t = leaf(x)
node(mirror(t1),mirror(t2)) if t = node(t1, t2)

Now we can prove

Theorem 39 For all trees t 2 TT 1: mirror(mirror(t)) = t.

Proof: by induction on t, which means it is a TT 1 induction.

Case: t = leaf(x)

mirror(mirror(leaf(x))) = leaf(x) by definition of mirror, apply twice.

Case: t = node(t1, t2)

Assume t1, t2 arbitrary but fixed trees
Assume mirror(mirror(t1)) = t1 as induction hypothesis
Assume mirror(mirror(t2)) = t2 as induction hypothesis
mirror(mirror(node(t1, t2)))
= mirror(node(mirror(t2),mirror(t1)))
= node(mirror(mirror(t1)),mirror(mirror(t2)))
= node(t1, t2) by equality reasoning

⇤

Besides mirroring, there are some other very useful operations on trees for
example, converting a tree into a list by traversing the tree in preorder, i.e.
depth first left to right manner. Let’s consider TT 3 trees for this:

preorder(t) =

⇢
x::nil if t = leaf(x)
x::(preorder(t1)@preorder(t2)) if t = node(t1, t2)

inorder(t) =

⇢
x::nil if t = leaf(x)
inorder(t1)@(x::inorder(t2)) if t = node(t1, t2)

postorder(t) =

⇢
x::nil if t = leaf(x)
postorder(t1)@(postorder(t2)) if t = node(t1, t2)@(x::nil)

Exercise 4 Show, using the definition or list reversal that preorder(t) = rev(postorder(t)).

39


