
Draft, October 25, 2011

Lecture 8: Regular Languages

During the previous lectures, we have encountered many examples of sets. Most
of these sets are infinite. How can we talk about sets like, valid US telephone
numbers? A phone number in the US is always written as (412)421-8558. This
means a telephone number starts always a prefix in parenthesis the so called
area code. A telephone number is then 7 digits. and there is a - symbol after
the third digit.

How can we convince a machine to tell us some given telephone number is
a US phone number or not. Consider for example 33.12.43.23, which clearly is
not a US number. For starters, it doesn’t even start with a parenthesis.

Let’s tackle to problem form a di↵erent angle. Sets. How do we define the
set of all US telephone numbers? First of all, we need to figure what a phone
number really is: it is not a number, because it contains funny characters like
parentheses and even a minus sign. A phone number is nothing else but a list
of symbols.

The set of all symbols that may occur in a telephone number is easily enu-
merated, it forms a set. {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, (,), -} This set is also called
the alphabet. The set of all lists over our alphabet contains a lot of lists (let’s
just call them strings.) We will write “(800)555-1212” for strings, please note
the quotes. Many more then we are interested in. To restrict the set, we will
use something that is also called a regular expression. A regular expression is
nothing but a description for a set of certain elements. For example the regular
expression “8” simply represents the set of all strings of the form “8”, of which
there is only one.

Let’s make this representation relationship a bit more precise and start in-
troducing regular expressions: “8” is an example of a regular expression. With
every regular expression R we associate a set of strings, called the language of
R written as L(R). For example, L(”8”) = {”8”} and more general L(c) = c
for every symbol in the alphabet c.

A digit is a one character string, such as “0”, “1”, ... “9”. Wouldn’t it be
nice if we could talk about the set of digits in terms of a regular expression?
We would need to define a Digit, such that

L(Digit) = {”0”, ”1”, . . . , ”9”} = L(”0”) [L(”1”) [. . . [L(”9”)

and there is: L(Digit) = L(”0” + ”1” + . . .+ ”9”). Where + is a connective
defining regular expressions. This connective is also called alternative: Digit =
”0” + ”1” + . . .+ ”9”.

An area code is always three digits in parenthesis. So far, the language sets
that we have defined only contain one character strings. We need to be able to
talk about sets of appended strings. For example, we need to define a regular
expression TwoDigits, such that

L(TwoDigits) = {x@y | x 2 L(Digit) ^ y 2 L(Digit)}

We define the regular expression TwoDigits = Digit⇥Digit, just call the operator
concatenation.

40

Draft, October 25, 2011

Now it is easy to write down an expression for US phone numbers:

AreaCode = Digit⇥Digit⇥Digit
Exchange = Digit⇥Digit⇥Digit
Subscriber = Digit⇥Digit⇥Digit⇥Digit
PhoneNumber = ”(”⇥AreaCode⇥ ”)”⇥ Exchange⇥ ”� ”⇥ Subscriber

+ and ⇥ almost look like arithemetic connectives, right? In mathematics
we have seen that 0 is the neutral element for addition and 1 for multiplcation
(meaning, that 0 + x = x and 1 ⇥ x = x). Does it make sense to consider 0
and 1 also as regular expressions, and if yes how? If 0 ought to be the neutral
element for alternative, then how shall we define the language of 0 such that
L(0 +R) = L(R)? The answer can be easily derived:

L(0 +R) = L(0) [L(R) = L(R)

and thus L(0) = ;. Something very similar holds for 1: If 1 ought to be the
neutral element for concatentation, then how shall we define the language of 1,
such that L(1⇥R) = L(R)? Also here, the answer can be easily derived:

L(1⇥R) = {x@y | x 2 L(1) ^ y 2 L(R)} = L(R)

and thus L(1) = {✏}, the set that only contains the empty string.
The final connective, we must meet is that of repetition, also called the

Kleene star. In the example above, we have seen that digit is used three and
four times in sequence. Could we also express arbitrarily long sequences of
strings of digits using regular expressions? Yes we can, but we need to define it
using the star:

ArbitraySequenceOfDigits = Digit⇤

where R⇤ = 1+R+R⇥R+R⇥R⇥R . . . The following definition will be useful
for the subsequent definitions:

Definition 40 (Pointwise string concatenation) Let S ⇢ IL and T ⇢ IL
then the set of all pairwise string concatentations S · T is defined as follows:

s 2 S · T if and only if 9s1 2 S.9s2 2 T.s = s1s2.

In summary, we define a regular expression by the following grammar: R ::=
c | 0 | 1 | R1⇥R2 | R1+R2 | R⇤ for the trees describing regular expressions. c is
a symbol from the alphabet. Let’s us define the language of regular expressions.

L(c) = {c}
L(0) = ;
L(1) = {✏}
L(R1 ⇥R2) = L(R1) · L(R2)
L(R1 +R2) = L(R1) [L(R2)
L(R⇤) = L(1 +R⇥R⇤)

With regular expression, we can express many sets very succinctly. In partic-
ular, sometimes we encounter two regular expressions whose languages coincide,
we define:

41

Draft, October 25, 2011

Definition 41 (Equivalence of regular expression) Let R1, R2 be regular

expressions. We say that R1 = R2 if and only if L(R1) = L(R2).

Lemma 42 (Distributivity)

(R [S) · T = (R · T) [(S · T)

Proof: Direct, but we must show two directions. First direction: let s 2 (R[S)·
T . By definition above, there exists s1, s2, such that s = s1@s2 and s 1 2 R[S
and s2 2 T . Case 1: s 1 2 R then s = s 1@s 2 2 R · T ⇢ (R · T)[(S · T). Case
2: s 1 2 S then s = s 1@s 2 2 S · T ⇢ (R · T) [(S · T). Second direction: let
s 2 (R·T)[(S ·T). Case 1: s 2 (R·T). By definition above, there exists a s1, s2,
such that s = s1 · s2, such that s1 2 R and s2 2 T . Therefore s1 2 R ⇢ R [S
and hence s = s1@s2 2 (R [S) · T . Case 2: Analogous. ⇤

42

