
IJCAR 2004
Second International Joint Conference on Automated Reasoning

University College Cork, Cork, Ireland

Workshop Programme

Fourth International Workshop on
Logical Frameworks and

Meta-Languages
(LFM’04)

Carsten Schürmann (Chair)

WS 4 – July 5

Preface

These are the Proceedings of the Fourth International Workshop on Logical
Frameworks and Meta-Languages (LFM 2004). The workshop was held in Cork,
Ireland on July 5, 2004 in conjunction with IJCAR 2004.

Logical frameworks and meta-languages form a common substrate for repre-
senting, implementing, and reasoning about a wide variety of deductive systems
of interest in logic and computer science. Their design and implementation
has been the focus of considerable research over the last two decades, using
competing and sometimes incompatible basic principles. This workshop brings
together designers, implementors, and practitioners to discuss all aspects of
logical frameworks.

The papers in this workshop proceedings were selected but not formally refereed
by the following program committee.

Thierry Coquand Chalmers University
Amy Felty University of Ottawa
Christoph Kreitz University of Potsdam
Jose Meseguer University of Illinois
Dale Miller INRIA
Frank Pfenning Carnegie Mellon University
Randy Pollack Edinburgh University
Carsten Schürmann (Chair) Yale University

A formally referreed selection of the presented papers will be published in Else-
vier’s ENTCS Series (Electronic Notes in Theoretical Computer Science).

Carsten Schürmann
New Haven, June 2004

i

ii

Table of Contents

Weak Normalization for the Simply-Typed Lambda-Calculus in Twelf 1
Andreas Abel

Redundancy Elimination for LF . 13
Jason Reed

A Logical Framework with Explicit Conversions . 32
Herman Geuvers and Freek Wiedijk

Specifying Properties of Concurrent Computations in CLF 46
Kevin Watkins et al.

A Coq Library for Verification of Concurrent Programs . 66
Reynald Affeld and Naoki Kobayashi

Ensuring Correctness of Lightweight Tactics for JavaCard Dynamic Logic . .84
Richard Bubel et al.

Meta-Programming with Built-in Type Equality .106
Tim Sheard and Emir Pasalic

Imperative LF Meta-Programming . 125
Aaron Stump

A Meta-Linear Logical Framework . 137
Andrew McCreight and Carsten Schürmann

iii

iv

LFM 2004 Preliminary Version

Weak Normalization for the Simply-Typed
Lambda-Calculus in Twelf

Andreas Abel 1

Department of Computer Science, Chalmers University of Technology
Rännvägen 6, SWE-41296 Göteborg, Sweden

Abstract

Weak normalization for the simply-typed λ-calculus is proven in Twelf, an imple-
mentation of the Edinburgh Logical Framework. Since due to proof-theoretical
restrictions Twelf Tait’s computability method does not seem to be directly usable,
a combinatorical proof is adapted and formalized instead.

Key words: Edinburgh Logical Framework, HOAS, Mechanized
Proof, Normalization, Twelf

1 Introduction

Twelf is an implementation of the Edinburgh Logical Framework which sup-
ports reasoning in full higher-order abstract syntax (HOAS); therefore it is an
ideal candidate for reasoning comfortably about properties of prototypical pro-
gramming languages with binding. Previous work has focused on properties
like subject reduction, confluence, compiler correctness. Even cut elimination
for various sequent calculi has been proven successfully. But until recently,
there were no formalized proofs of normalization 2 in Twelf. The reason might
be that normalization is typically proven by Tait’s method, which cannot be
applied directly in Twelf. This work explains why Tait’s method is at least not
directly applicable and provides a combinatorical proof for the simply-typed
lambda-calculus.

1 Research supported by the Graduiertenkolleg Logik in der Informatik of the Deutsche
Forschungsgemeinschaft, the thematic networks TYPES (IST-1999-29001) and Applied Se-
mantics II (IST-2001-38957) of the European Union and the project CoVer of the Swedish
Foundation of Strategic Research.
2 There have been normalization proofs in logical frameworks with inductive definitions, for
instance, Altenkirch’s proof of strong normalization for System F in LEGO [2]. Since HOAS
is not available in a framework like LEGO, he represents terms using de Bruijn indices.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

1

K ::= type kind of types
| {X :A}K dependent function kind

A ::= F M1 . . . Mn base type
| {X :A}A dependent function type
| A → A non-dependent function type

M ::= C term constant
| X term variable
| [X :A]M term abstraction
| M M term application

Fig. 1. Syntactic classes of LF.

2 Twelf

The Edinburgh Logical Framework (LF 3) [6,7] is a dependently-typed lambda-
calculus with type families and βη-equality, but neither polymorphism, induc-
tive data types nor recursion. Expressions are divided into three syntactic
classes: kinds, types and terms, generated by the grammar in Fig. 1. Herein,
the meta variable X ranges over a countably infinte set of variable identi-
fiers, while F resp. C range over type-family resp. term constants provided in
a signature Σ. Note that neither a type nor a kind can depend on a type;
consequently, abstraction is missing on the type level [10, p. 1124].

Syntax.
r, s, t, u ::= x | λx.t | r s untyped terms
A, B, C ::= ∗ | A → B simple types
Γ ::= � | Γ, x :A contexts

Type assignment Γ ` t : A. (x :A) ∈ Γ

Γ ` x : A
of var

Γ, x :A ` t : B

Γ ` λx.t : A → B
of lam

Γ ` r : A → B Γ ` s : A

Γ ` r s : B
of app

Weak head reduction t −→w t′.

(λx.t) s −→w [s/x]t
beta

r −→w r′

r s −→w r′ s
appl

Fig. 2. Simply-typed λ-calculus and weak head reduction.

The framework comes with judgements for typing, M : A, kinding, A : K,

3 This is not to be confused with Martin-Löf’s framework for dependent type theory, which
is also abbreviated by LF.

2

and wellformedness of kinds, K kind , plus βη-equality on for terms, types, and
kinds [7]. An object theory can be described in the framework by providing a
suitable signature Σ which adds kinded type family constants F : K and typed
term constants C : A.

Twelf [11] is an implementation of LF whose most fundamental task is to
check typing (and kinding) of a user given signature Σ, usually provided as a
set of ASCII files. Symbols reserved for the framework are the following.

: . () [] { } -> type

All others can be used to denote entities in the object theories. In the remain-
der of this section, we show how to represent the simply-typed λ-calculus with
weak head reduction, as specified in Fig. 2, in Twelf.

2.1 Representation of Syntactic Objects

Untyped lambda terms t can be represented by one type family constant tm

and two term constants:

tm : type.

lam : (tm -> tm) -> tm.

app : tm -> tm -> tm.

The lack of a construct for variables is due to the use of HOAS: object variables
are represented by variables of the framework, e. g., in the code for the twice
function:

twice = lam [f:tm] lam [x:tm] app f (app f x).

A more detailed explanation of higher-order encodings has been given by
Schürmann [14, p. 20ff]. Simple types A can be generated from a nullary
constant * for some base type and a binary constant =>, used infix, for func-
tion type formation.

ty : type.

* : ty.

=> : ty -> ty -> ty.

2.2 Representation of Judgements and Relations

Type assignment for untyped terms, Γ ` t : A, can be represented by two
constants as well: one for function introduction and one for function elimina-
tion. Note that in Twelf syntax, the types of new constants may contain free
variables (captial letters), which are regarded as universally quantified on the
outside.

of : tm -> ty -> type.

of_lam : ({x:tm} x of A -> (T x) of B)

-> (lam [x:tm] T x) of (A => B).

of_app : R of (A => B) -> S of A -> (app R S) of B.

3

Again, there is no separate rule for the typing of variables, instead it is part
of the rule for abstraction. The premise of rule of_lam is to be read as:

Consider a temporary extension of the signature by a fresh constant x:tm

and assume x of A. Then (T x) of B holds.

This adds a dynamical typing rule x of A for each new variable x instead of
inserting a typing hypothesis x : A into the typing context Γ. Hence, we do
not explicitely encode Γ, but let the framework handle the typing hypotheses.

Similar to the typing relation, we can represent weak head reduction t −→w

t′, which eliminates the head (resp. key) redex in term t but does not step
under a binding.

-->w : tm -> tm -> type.

beta : app (lam T) S -->w T S.

appl : R -->w R’ -> app R S -->w app R’ S.

One advantage of HOAS is that substitution does not have to be defined, but
can be inherited from the framework. Since in rule beta, term T : tm -> tm

is λ-function, substitution [u/y]t is simply expressed as application T U.

Lemma 2.1 If t −→w t′ then [u/y]t −→w [u/y]t′.

Proof. By induction on the derivation of t −→w t′.

• Case (λx.t) s −→w [s/x]t. W.l.o.g. x 6= y and x not free in u. Then,

[u/y]((λx.t) s) = (λx.[u/y]t) [u/y]s

−→w [[u/y]s/x][u/y]t = [u/y][s/x]t.

• Case r s −→w r′ s with r −→w r′. By ind. hyp., [u/y]r −→w [u/y]r′. Hence,

[u/y](r s) = ([u/y]r) ([u/y]s)

−→w ([u/y]r′) ([u/y]s) = [u/y](r′ s)

2

Fig. 3. Weak head reduction is closed under substitution.

2.3 Representation of Theorems and Proofs

Fig. 3 shows the first lemma of our object theory. How do we represent it?
Twelf’s internal logic is constructive, therefore the lemma must be interpreted
constructively: Given a derivation P of t −→w t′ and a term u, we can con-
struct a derivation P ′ of [u/y]t −→w [u/y]t′. In type theories with inductive
types and recursion, like Agda, Coq [8] and LEGO [13], the lemma would be

4

represented as a recursive function of the dependent type

Πt : tm. Πt′ : tm. ΠP : t −→w t′. Πu : tm. Πy :var . [u/y]t −→w [u/y]t′.

In Twelf, however, with no recursive functions at hand, the lemma is repre-
sented as a relation between input and output derivations, and, thus, via the
propositions-as-types paradigm, as just another type family.

subst_red : {U:tm} ({y:tm} T y -->w T’ y)

-> T U -->w T’ U -> type.

%mode subst_red +U +P -P’.

The %mode statement marks the first two arguments of type family subst_red

as inputs (+) and the third as output (−). Thus, the lemma is a functional
relation, and its proof is a logic program with two clauses, one for each case
in the proof.

subst_red_beta: subst_red U ([y] beta) beta.

subst_red_appl: subst_red U ([y] appl (P y)) (appl P’)

<- subst_red U P P’.

%terminates P (subst_red _ P _).

The base case of the induction is given by the constant subst_red_beta, and
the step case, which appeals to the induction hypothesis, by subst_red_appl.
The types of these constants are the actual program and correspond to PRO-
LOG clauses. Note that in the second type a reversed arrow “<-”, which
resembles PROLOG’s “:-”, has been used to encourage an operational read-
ing:

Substitution in a derivation whose last rule is appl, and the remainder, P,
may mention y, results in a derivation P’ extended by an application of rule
appl. Herein, P’ is constructed from P recursively.

Since it is a logic program, we can even “execute” the lemma. Execution in
Twelf is search: Given a type with free variables, find an inhabitant of the
type and solutions for the free variables. For example:

P : {y} app (app (lam [x] x) y) y -->w app y y

= [y] appl beta.

%define P’ = X

%solve K : subst_red (lam [z] z) P X.

This defines a 2-rule derivation P which witnesses that (λx.x) y y −→w y y.
The %solve statement asks Twelf for a derivation P’ which arises from P by
substituting λz.z for y, according to the lemma. The answer is:

P’ : app (app (lam [x] x) (lam [z] z)) (lam [z] z)

-->w app (lam [z] z) (lam [z] z)

= appl beta.

K : subst_red (lam [z] z) P (appl beta)

= subst_red_appl subst_red_beta.

5

Since the value of P’ equals P, the shape of the derivation has not changed,
only its result: the type of P’. The value of K gives an execution trace of
logic program subst_red: First, clause subst_red_appl has fired, then clause
subst_red_beta has concluded the search.

2.4 External Properties: Termination and Coverage

A logic program in Twelf corresponds to a partial function from inputs to
outputs as specified by the mode declaration. Since only total functions cor-
respond to valid inductive proofs we must ensure that the defined function
terminates on all inputs and covers all possible cases. Both properties cannot
be shown within the framework, e. g., we cannot give a proof that subst_red
is terminating. Instead, totality of a function needs external reasoning and
can be ensured by built-in tactics.

Brigitte Pientka [12] contributed a termination checker which is invoked
by the %terminates pragma. In our case, the second argument P decreases
structurally in each recursive call. Case coverage is ensured by an algorithm
by Pfenning and Schürmann [15]. Both termination and coverage checking
are necessarily undecidable. For the proof developed in the remainder of this
article, we found the implemented termination checker powerful enough to
pass our code, whereas the coverage checker could not “see” that indeed all
cases are handled. Thus, coverage had to be established manually, but for
lack of space we will not detail on it.

3 A Formalized Proof of Weak Normalization

In this section, we present a combinatorial proof of weak normalization for the
simply-typed lambda-calculus. It is similar to the textbook proof in Girard,
Lafont and Taylor [4, Ch. 4], but we avoid reasoning with numbers altogether.
In fact, we follow closely the very syntactical presentation of Joachimski and
Matthes [9], which has also been implemented in Isabelle/Isar by Nipkow and
Berghofer [3]. The main obstacle to a direct formalization in Twelf is the
use of a vector notation for terms by Joachimski and Matthes, which allows
them to reason on a high level in some cases. In this section, we will see a
“de-vectorized” version of their proof which can be outlined as follows:

(i) Define an inductive relation t ⇓ A.

(ii) Prove that for every term t : A the relation t ⇓ A holds.

(iii) Show that every term in the relation is weakly normalizing.

3.1 Inductive Characterization of Weak Normalization

Inductive characterizations of normalization go back to Goguen [5] and van
Raamsdonk and Severi [16,17]. We introduce a relation Γ ` t ⇓ A which
stipulates that t is weakly normalizing of type A, and an auxiliary relation

6

Γ ` t ↓x A which additionally claims that t = x s for some sequence of terms
s, i.e., t is neutral and head-redex free.

(x :A) ∈ Γ

Γ ` x ↓x A

Γ ` r ↓x A → B Γ ` s ⇓ A

Γ ` r s ↓x B
wne app

Γ ` r ↓x A

Γ ` r ⇓ A
wn ne

Γ, x :A ` t ⇓ B

Γ ` λx.t ⇓ A → B
wn lam

r −→w r′ Γ ` r′ ⇓ A

Γ ` r ⇓ A
wn exp

The Twelf representation is similar to the typing relation: Again, Γ and the
hypothesis rule are indirectly represented in rule wn_lam.

wne : tm -> ty -> tm -> type.

wn : tm -> ty -> type.

wne_app : wne R (A => B) X -> wn S A -> wne (app R S) B X.

wn_ne : {X:tm} wne R A X -> wn R A.

wn_lam : ({x:tm} wne x A x -> wn (T x) B)

-> wn (lam T) (A => B).

wn_exp : R -->w R’ -> wn R’ A -> wn R A.

3.2 Closure under Application and Substitution

To show that each typed term t : A is in the relation t ⇓ A, we will proceed by
induction on the typing derivation. Difficult is the case for an application of
the form (λx.r) s. It can only be shown to be in the relation by rule wn_exp,
which requires us to prove that [s/x]r is in the relation. If x is head variable
of r, substitution might create new redexes. In this case, however, we can
argue that the type of r is a smaller type than the one of s. These preliminary
thoughts lead to the following lemma.

Lemma 3.1 (Application and Substitution) Let D :: Γ ` s ⇓ A.

(i) If E :: Γ ` r ⇓ A → C then Γ ` r s ⇓ C.

(ii) If E :: Γ, x :A ` t ⇓ C, then Γ ` [s/x]t ⇓ C.

(iii) If E :: Γ, x :A ` t ↓x C, then Γ ` [s/x]t ⇓ C and C is a part of A.

(iv) If E :: Γ, x :A ` t ↓y C with x 6= y, then Γ ` [s/x]t ↓y C.

In Twelf, the lemma is represented by four type families. The invariant
that C is a subexpression of A will be expressed via a %reduces statement
later, which makes is necessary to make type C an explicit argument to type
family subst_x.

app_wn : {A:ty} wn S A ->

wn R (A => C) -> wn (app R S) C -> type.

subst_wn: {A:ty} wn S A ->

({x:tm} wne x A x -> wn (T x) C) -> wn (T S) C -> type.

7

subst_x : {A:ty} wn S A -> {C:ty}

({x:tm} wne x A x -> wne (T x) C x) -> wn (T S) C -> type.

subst_y : {A:ty} wn S A ->

({x:tm} wne x A x -> wne (T x) C Y) -> wne (T S) C Y -> type.

%mode app_wn +A +D +E -F.

%mode subst_wn +A +D +E -F.

%mode subst_x +A +D +C +E -F.

%mode subst_y +A +D +E -F.

Proof of Lemma 3.1 Simultaneously by main induction on type A and side
induction on the derivation E .

(i) Show Γ ` r s ⇓ C. If the last rule of E was wn_ne, hence, r is neutral,
then r s is also neutral by rule wne_app, thus, it is in the relation. If the
last rule was wn_exp, we can apply the side ind. hyp. The interesting case
is r = λx.t and

Γ, x :A ` t ⇓ C

Γ ` λx.t ⇓ A → C
wn lam.

Here, we proceed by side ind. hyp. ii.

app_wn_ne : app_wn A D (wn_ne X E) (wn_ne X (wne_app E D)).

app_wn_exp : app_wn A D (wn_exp P E) (wn_exp (appl P) F)

<- app_wn A D E F.

app_wn_lam : app_wn A D (wn_lam E) (wn_exp beta F)

<- subst_wn A D E F.

(ii) Show Γ ` [s/x]t ⇓ C for Γ, x :A ` t ⇓ C. If t is not neutral, we conclude
by ind. hyp. and possibly Lemma 2.1. Otherwise, we distinguish on the
head variable of t: is it x, then we proceed by side ind. hyp. iii, otherwise
by side ind. hyp. iv.

subst_wn_lam: subst_wn A D

([x][dx] wn_lam ([y][dy] E y dy x dx)) (wn_lam F)

<- {y}{dy} subst_wn A D (E y dy) (F y dy).

subst_wn_exp: subst_wn A (D : wn S A)

([x][dx] wn_exp (P x) (E x dx)) (wn_exp P’ E’)

<- subst_wn A D E E’

<- subst_red S P P’.

subst_wn_x : subst_wn A D

([x][dx] (wn_ne x (E x dx) : wn (T x) C)) F

<- subst_x A D C E F.

subst_wn_y : subst_wn A D

8

([x][dx] wn_ne Y (E x dx)) (wn_ne Y F)

<- subst_y A D E F.

(iii) Show Γ ` [s/x]t ⇓ C for Γ′ ` t ↓x C with Γ′ := Γ, x : A. In case t = x,
the type C is trivially a part of A = C and we conclude by assumption
Γ ` s ⇓ C. Otherwise, t = r u and the last rule in E was

Γ′ ` r ↓x B → C Γ′ ` u ⇓ B

Γ′ ` r u ↓x C
wne app.

By side ind. hyp. iii we know that B → C is a part of A and Γ ` r′ ⇓
B → C where r′ := [s/x]r. Similarly Γ ` u′ ⇓ B for u′ := [s/x]u by
side ind. hyp. ii. Since B is a strict part of A, we can apply the main
ind. hyp. i and obtain Γ ` r′ u′ ⇓ C.

subst_x_x : subst_x A D A ([x][dx]dx) D.

subst_x_app : subst_x A D C ([x][dx] wne_app

(E x dx)

(F x dx : wn (U x) B)) EF

<- subst_x A D (B => C) E E’

<- subst_wn A D F F’

<- app_wn B F’ E’ EF.

%reduces C <= A (subst_x A D C E F).

The %reduces declaration states that the type expression C is a subex-
pression of A. Twelf checks that this invariant is preserved in all pos-
sibilities of introducing subst_x A D C E F. In case subst_x_x it holds
because C is instantiated to A. In case subst_x_app it follows from the
ind. hyp. which states that already B => C is a subexpression of A.

(iv) Show Γ ` [s/x]t ↓y C for Γ, x : A ` t ↓y C. There a two cases. t = y,
which holds immediately, and t = r u, which follows from side ind. hyp.s
ii and iv. In our Twelf representation, we cannot distinguish variable y
from any other term, so we widen the first case to cover all t such that x
is not free in t. This is expressed by letting E not refer to x or dx.

subst_y_y : subst_y A D ([x][dx] E) E.

subst_y_app : subst_y A D ([x][dx] wne_app (E x dx) (F x dx))

(wne_app E’ F’)

<- subst_y A D E E’

<- subst_wn A D F F’.

2

To justify the appeals to the ind. hyp.s we invoke the Twelf termination checker
with the following termination order.

%terminates {(Ax Ay As Aa) (Ex Ey Es Ea)}

(subst_x Ax _ _ Ex _)

(subst_y Ay _ Ey _)

(subst_wn As _ Es _)

9

(app_wn Aa _ Ea _).

It expresses that the four type families are mutually recursive and terminate
w. r. t. the lexicographic order on pairs (A, E) of types A and typing derivations
E . This corresponds on a main induction on A and a side induction on E . To
verify termination, Twelf makes use of the %reduces declaration.

3.3 Soundness of Inductive Characterization

To complete our proof of weak normalization, we need to show that for each
term t in the relation t ⇓ A or t ↓x A there exists a normal form v such
that t −→∗ v. After formulating full reduction −→ with the usual closure
properties, the proof is a simple induction on the derivation E :: t ⇓ A resp.
E :: t ↓x A. For lack of space we exclude the details, an implementation of the
proof is available online [1].

4 On Proof-Theoretical Limitations of Twelf

Having successfully completed the proof of weak normalization we are in-
terested whether it could be extended to strong normalization and stronger
object theories, like Gödel’s T. In this section, we touch these questions, but
our answers are speculative and preliminary.

Joachimski and Matthes [9] extend their proof to Gödel’s T, using the
infinitary ω-rule to state when a recursive function over natural numbers is
weakly normalizing. Their proof is not directly transferable since only finitary
rules can be represented in Twelf.

For the same reason, Tait’s proof cannot be formalized in Twelf. Its key
part is the definition

∀s. s ⇓ A ⇒ r s ⇓ B

r ⇓ A → B

with an infinitary premise. Its literal translation into Twelf

wn_arr : ({S:tm} wn S A -> wn (app R S) B) -> wn R (A => B)

means something else, namely “if for a fresh term S for which we assume
wn S A it holds that wn (app R S) B, then wn R (A => B)”. Translating this
back into mathematical language, we obtain the rule

x ⇓ A ⇒ r x ⇓ B

r ⇓ A → B
for a fresh variable x.

Since variables x are weakly normalizing anyway, we can simplify the premise
further to r x ⇓ B, obtaining clearly something we did not want in the first
place.

Due to the interpretation of quantification in Twelf, infinitary rules cannot
be represented, which also obstructs the definition of the predicate strongly

10

normalizing sn by the inductive rule

∀t′. t −→ t′ ⇒ sn t′

sn t
,

expressing that the set of strongly normalizing terms is the accessible part of
the reduction relation.

Concluding, one might say that normalization of Gödel’s T and proofs of
strong normalization are at least difficult to express in Twelf. To see whether
they are feasible at all, a detailed proof-theoretic analysis of Twelf would be
required.

5 Conclusion and Related Work

We have presented a formalization of Joachimski and Matthes’ version of
an elementary proof of weak normalization of the simply-typed λ-calculus in
Twelf. We further have outlined some problems with direct proofs of strong
normalization and Tait style proofs.

In the 1990s, Filinski has investigated feasibility of logical relation proofs
in the Edinburgh LF, but his findings remained unpublished. According to
Pfenning, a possible way is to first define a logic in LF, and then within this
logic investigate normalization of λ-calculi. This path is taken in the Isabelle
system whose framework is similar to LF but only simply-typed instead of
dependently typed. On top of core Isabelle, higher-order logic (HOL) is im-
plemented which serves as the meta language in which, in turn, object theories
are considered. Rich tactics for HOL make up for the loss of framework mech-
anism due to the extra indirection level. In Twelf, one could follow this path
as well, with the drawback that the built-in facilities like termination checker
and automated prover [14] would be rendered inapplicable.

Independently of the author, Watkins and Crary have formalized a normal-
ization algorithm and proof in Twelf, namely for Watkins’ concurrent logical
framework. It is said to follow the principle of our Lemma 3.1, namely showing
that canonical forms (=normal forms) are closed under eliminations.

Acknowledgments.

The author likes to thank Ralph Matthes, Frank Pfenning, Brigitte Pien-
tka, Carsten Schürmann and Kevin Watkins for discussions on the topic in
the years 2000–2004. He is indebted to Thierry Coquand for comments on the
draft of this paper.

References

[1] Abel, A., A Twelf proof of weak normalization for the simply-typed λ-calculus,
Twelf code, available on the author’s homepage (2004).

11

[2] Altenkirch, T., A formalization of the strong normalization proof for System F
in LEGO, in: M. Bezem and J. F. Groote, editors, Typed Lambda Calculi and
Applications, TLCA’93, Lecture Notes in Computer Science 664 (1993), pp.
13–28.

[3] Berghofer, S., “Proofs, Programs and Executable Specifications in Higher-Order
Logic,” Ph.D. thesis, Technische Universität München (2003).

[4] Girard, J.-Y., Y. Lafont and P. Taylor, “Proofs and Types,” Cambridge Tracts
in Theoretical Computer Science 7, Cambridge University Press, 1989.

[5] Goguen, H., Typed operational semantics, in: M. Deziani-Ciancaglini and
G. D. Plotkin, editors, Typed Lambda Calculi and Applications (TLCA 1995),
Proceedings, Lecture Notes in Computer Science 902 (1995), pp. 186–200.

[6] Harper, R., F. Honsell and G. Plotkin, A Framework for Defining Logics,
Journal of the Association of Computing Machinery 40 (1993), pp. 143–184.

[7] Harper, R. and F. Pfenning, On equivalence and canonical forms in the LF type
theory, ACM Transactions on Computational Logic (2004), (To appear).

[8] INRIA, “The Coq Proof Assistant Reference Manual,” Version 8.0 edition
(2004), http://coq.inria.fr/doc/main.html.

[9] Joachimski, F. and R. Matthes, Short proofs of normalization, Archive of
Mathematical Logic 42 (2003), pp. 59–87.

[10] Pfenning, F., Logical frameworks, , 2 (2001), pp. 1063–1147.

[11] Pfenning, F. and C. Schürmann, System description: Twelf - a meta-logical
framework for deductive systems, in: H. Ganzinger, editor, Proceedings of the
16th International Conference on Automated Deduction (CADE-16), Lecture
Notes in Artificial Intelligence 1632 (1999), pp. 202–206.

[12] Pientka, B., Termination and reduction checking for higher-order logic
programs, in: R. Goré, A. Leitsch and T. Nipkow, editors, Automated Reasoning,
First International Joint Conference, IJCAR 2001, Lecture Notes in Artificial
Intelligence 2083 (2001), pp. 401–415.

[13] Pollack, R., “The Theory of LEGO,” Ph.D. thesis, University of Edinburgh
(1994).

[14] Schürmann, C., “Automating the Meta-Theory of Deductive Systems,” Ph.D.
thesis, Carnegie-Mellon University (2000).

[15] Schürmann, C. and F. Pfenning, A coverage checking algorithm for LF, in:
D. Basin and B. Wolff, editors, Proceedings of the 16th International Conference
on Theorem Proving in Higher Order Logics (TPHOLs 2003), Lecture Notes in
Computer Science 2758 (2003), pp. 120–135.

[16] van Raamsdonk, F. and P. Severi, On normalisation, Technical Report CS-
R9545, CWI (1995).

[17] van Raamsdonk, F., P. Severi, M. H. Sørensen and H. Xi, Perpetual reductions
in lambda calculus, Information and Computation 149 (1999), pp. 173–225.

12

LFM 2004 Preliminary Version

Redundancy Elimination for LF

Jason Reed 1

Carnegie Mellon University
Pittsburgh, Pennsylvania

jcreed@cs.cmu.edu

Abstract

We present a type system extending the dependent type theory LF, whose terms
are more amenable to compact representation. This is achieved by carefully omit-
ting certain subterms which are redundant in the sense that they can be recovered
from the types of other subterms. This system is capable of omitting more re-
dundant information than previous work in the same vein, because of its uniform
treatment of higher-order and first-order terms. Moreover the ‘recipe’ for recon-
struction of omitted information is encoded directly into annotations on the types
in a signature. This brings to light connections between bidirectional (synthesis
vs. checking) typing algorithms of the object language on the one hand, and the
bidirectional flow of information in the ambient encoding language. The resulting
system is a compromise seeking to retain both the effectiveness of full unification-
based term reconstruction such as is found in implementation practice, and the
logical simplicity of pure LF.

Key words: Proof Compression, Dependent Type Theory,
Bidirectional Type Checking

1 Introduction

The use of logical frameworks in domains such as proof-carrying code [Nec97]
makes the efficiency of proof representation and manipulation a nontrivial
issue. Proofs of safety for realistic programs can be, if näıvely represented,
unfeasibly large. Necula and Lee [NL98] developed one technique which ad-
dressed this issue. They give a way of representing proof terms in the logical
framework LF [HHP93] in a more efficient way, by rewriting them with whole
subtrees of the proofs erased. They then describe an algorithm which recov-
ers these omitted parts, using typing information found in other parts of the
proof.

1 This work was supported by NSF Grant CCR 0306313 “Efficient Logical Frameworks”.
This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

13

Their experimental results are good: proofs so represented tend to have
size roughly O(

√
n) of the originals, with similar improvements in checking

time.

To get a flavor of how omission works, consider the following example of
encoding a natural deduction proof theory in LF . We have a signature

o : type pf : o → type

⊃: o → o → o ∧ : o → o → o

where o is declared as the type of propositions, pf is the type family of proofs,
indexed by proposition, and ⊃ and ∧ are the familiar logical connectives. Take
one of the two natural deduction elimination rules for ∧:

A ∧B
∧E1

A

In LF it becomes

ande1 : Πa:o.Πb:o.pf (∧ a b) → pf a

Consider a use of this proof rule, ande1 a b d. Here d must be a derivation of a∧
b, and this larger proof ande1 a b d is a proof of a. This is excessively verbose,
in a sense: knowing what type d is supposed to have (that is, pf(∧ a b))
reveals what a and b must be. We would like to just write ande1 d. It is not
at all obvious, however, that the object d itself uniquely determines its type.
This is a central issue, and we return to it below.

Another sort of apparent redundancy appears if we examine the introduc-
tion rule for implication. The natural deduction rule is

A···
B

⊃I
A ⊃ B

The hypothetical derivation of B under the hypothesis A is represented by
higher-order abstract syntax [PE98] as a function from pf a to pf b, and the
rule is encoded as

impi : Πa:o.Πb:o.(pf a → pf b) → pf (⊃ a b)

Here we may notice that if we have a term impi a b f , and if we know it, as a
whole, is being checked against a certain type, pf (⊃ a b) then we can read
off what a and b have been. If we knew that the type is going to be provided
‘by the environment’ somehow, then we can simply write impi f instead.

It is this sort of omission of arguments that LFi obtains its savings from.
However, the technique uses a notion of ‘reconstruction recipes’ external to the

14

type system to control which arguments are omitted. This work aims to put
the basic idea of Necula and Lee on firmer type-theoretical footing, explaining
the mechanism of omission in the types themselves. We describe an extension
of the LF language, called LF∗, such that the same sort of arguments to type
families and constants can be omitted. Our priorities are, in order, (1) making
sure that the extension is conservative, (2) making the theory logically well-
motivated, (3) making sure that an eventual implementation is simple and
easy to trust, and only finally (4) maximizing the number of subterms that
can be omitted omitted.

It should be noted that this general idea of ‘implicit’ syntax is not new: It
can be found in the earlier work of Hagiya and Toda [HT94] with LEGO, and
Miquel [Miq01] and Luther [Lut01] with the Calculus of Constructions.

However, some approaches (such as [Miq01]) do not treat implicit terms
as anything more than a user-interface convenience. Though the front-end
reconstructs arguments omitted by the user, and erases them once again when
terms are printed, the core of the implementation works with fully explicit
terms. The meaning of the implicit calculus is in any event defined in terms
of the explicit calculus: an implicit term is well-typed if it can be elaborated
uniquely into an explicit term. Both [Lut01] and [HT94] agree that it seems
“difficult to directly give a foundation to the implicit calculus.” That is exactly
the aim of this work.

The remainder of the paper is structured as follows. We first present the
type theory of LF∗, followed by a description of a decision procedure for the
judgments therein. The proof of correctness of this algorithm is sketched. We
give a description of a translation from LF to LF∗ and argue that it preserves
typing and is bijective on terms, so that it witnesses the equivalence of the
new language and the old.

2 Type Theory

The two critical questions left unanswered in the introductory example are
when does an object uniquely determine its type? and when do we already
know, from the surrounding context, what type an object must have? These
are answered by organizing the language and type-checking algorithms of a
system so as to support bidirectional type-checking.

The terms are divided into normal terms, which can be type-checked if a
type is provided as input, atomic terms, which can be type-checked in such
a way that uniquely determines (one says it synthesizes) a type as output if
type-checking succeeds. Ordinarily in λ-calculi, we know that functions are
normal, and application of a constant or variable to a list (or spine) S of
arguments is atomic. That is, our grammar of terms looks something like

terms M ::= N | R
normal N ::= λx.M

15

atomic R ::= x · S | c · S
spines S ::= () | (M ; S)

Our reasoning about the example, however, suggests that we may want
some constants c — such as impi from the example — to require that c · S
receive a type as input before type-checking proceeds, so that some omitted
arguments in S can be recovered. We divide, therefore, the constants into
two halves, the synthesizable constants c+ and the checkable constants c−.
Therefore we write ande1+ instead of ande1, and impi− instead of impi, for
the latter will depend on the ‘inherited’ type information for reconstruction,
where the former does not. In general a spine headed by a c− constant is a
normal term, rather than atomic.

Now we have a further problem, however. The fate of constants such
as ande1 is in doubt, because they require certain of their arguments to be
synthesizing. What if the proof we have in mind of A ∧ B uses impi− as its
last step? There are two conflicting requirements: ande1+ wants to get type
information from impi− to proceed with reconstruction, and vice versa.

We fill this gap by allowing type ascriptions to appear inside spines, so
that when an argument does not provide its type, and the constant which it is
an argument of requires it, the type can be simply written down in the term.
We make a production rule for spine elements

E ::= M | M+ | ∗

which says that an argument may either be an ordinary term, a term which
is adequate when a synthesizing term is required, (see immediately below) or
else a placeholder for an omitted argument. Spines are then given by

S ::= () | (E; S)

Terms are now
M ::= N | R

N ::= λx.M | c− · S
R ::= x · S | c+ · S

and the M+ used above has the production

M+ ::= (N : A) | (R :)

The new syntax (R :) here seems peculiar: it would seem more natural to
put simply R. For an atomic term is adequate when a synthesizing term is
required, and so is a normal term with a type ascription. However, when we
define substitution, it is necessary to know syntactically when we come across
an atomic argument in a spine, whether it is in a position that actually requires
a synthesizing term or not. The (R :) signals that if substitution produces a
normal term, then a type ascription must be introduced.

16

Now we turn to the language of types in LF∗. They are given by the
grammar

basic types A, B ::= a · S | Π−x:A.B

general types Z ::= a · S | Πρx:A.Z

omission modes µ ::= s | i
polarities σ ::= + | −

Π-annotations ρ ::= σ | [µ]

Expanding out the grammar, there are four dependent function types, each
of which determines how its argument functions with regard to omission and
reconstruction. The Π− functions are just the ordinary dependent functions
from LF . They receive a − superscript to make them stand in contrast with
Π+, which require their argument to be synthesizing. When there are Π+

arguments, earlier arguments may be omitted via making their functional de-
pendency Π[s], which marks a function whose argument is omitted by synthesis.
Finally, Π[i] indicates a function whose argument is omitted by inheriting it
from the result type the function application is checked against. In this lan-
guage, the types of the proof rules in the example are (writing A → B for
Π−x:A.B when x doesn’t appear in B)

ande1 : Π[s]a:o.Π[s]b:o.Π+pf (∧ a b).pf a

impi : Π[i]a:o.Π[i]b:o.(pf a → pf b) → pf (⊃ a b)

Note that there is a distinction between the A, B are ‘basic’ types, which
variables in a context may have, and Z which are the more general types that
c− constants can have. It would be more felicitously uniform if we could have
simply one notion of type which constants and variables shared, but so far
we have not been able to overcome the technical difficulties that arise when
function variables are allowed to omit some of their arguments.

We elide for space reasons the grammar for kinds, and often refrain from
mentioning the cases for kinds in the results below. Extending the definitions
and results to that level is easy and uninteresting. Sometimes it is useful to
write W, V as a ‘wildcard’ standing for a term or type or kind, for a briefer
treatment of judgments and statements that are relevant for all three levels.

2.1 Substitutions

We elect a style of presentation which follows that of the concurrent logical
framework CLF [WCPW03], in that we keep all terms in canonical form,
that is, β-normal η-long form. This saves us from the complexity of dealing
directly with βη-convertibility and the ensuing complex logical relations proofs
of decidability of equality (for an example, see [HP01]) This complexity doesn’t
wholly disappear, though it reappears in a more tractable form: it is delegated
to the definition of substitution. Substitution of a normal term in for a variable
may create a redex, and the definition of substitution must carry out the

17

reduction to ensure that the result is still canonical. To show that this process
terminates we must pay attention to the decrease in the size of types of redices,
logically parallel to the induction in structural cut elimination [Pfe00]. For
this reason, CLF indexes the substitution operators with the type at which
they operate. In fact, to show just termination of the substitution algorithm,
only the skeleton of the type is required, but for our purposes, we need the
full type for an independent reason.

Namely, it is possible that a variable-headed term, say, x · () appears in
a spine in a position which needs to be synthesizing. As the matter stands,
this is perfectly acceptable, for variables applied to spines are synthesizing.
However, we may substitute a term for x, say c− · (), that produces a result
which no longer synthesizes. Therefore, before we set out on the substitution,
we must specify what type the substituted object has, so that we can create
a type ascription to ensure that the result synthesizes.

We define, therefore, partial operations [M/x]AM ′, [M/x]AA′, [M/x]AS,
substitution of M for x in M ′, A′, S, respectively, at the type A. Since sub-
stituting for a variable in a synthesizing term may require wrapping it in a
type, we have have a σ-indexed partial operations [M/x]Aσ R. When σ is plus
it outputs an M+, and when it’s −, an M . The operation [M ·S]Aσ resolves the
redex M · S, for M at type A, and similarly produces an M+ or M according
to σ.

To see that this definition is well-founded, one can analyze the simple type
of the type in the superscript, that is, the result of erasing all dependencies
and changing every Π to a mere →.

The term subj(M+) is defined by subj(R :) = R and subj(N : A) = N .
We write [M+/x]A to mean [subj(M+)/x]A.

[M · ()]a·S− = M

[R · ()]a·S+ = (R :)

[N · ()]a·S+ = (N : a · S)

[λx.M · (M ′; S)]Π
−x:A.B

σ = [[M ′/x]AM · S][M/x]AB
σ

[M/x]Aσ x · S = [M · [M/x]AS]Aσ

[M/x]Aσ y · S = y · [M/x]AS

[M/x]Aσ c+ · S = c+ · [M/x]AS

[M/x]Ac− · S = c− · [M/x]AS

[M/x]Aλy.M = λy.[M/x]AM

[M/x]AR = [M/x]A−R

[M/x]Atype = type

18

[M/x]Aa · S = a · [M/x]AS

[M/x]A(Πρy:B.Z) = Πρy:[M/x]AB.[M/x]AZ

[M/x]A() = ()

[M/x]A(E; S) = ([M/x]AE; [M/x]AS)

[M/x]A(R :) = [M/x]A+R

[M/x]A(N : B) = ([M/x]AN : [M/x]AB)

[M/x]A∗ = ∗

2.2 Strictness

We have still so far neglected to pin down formally what it means for, say,
one argument to have a sufficiently good occurrence in another argument to
allow the former to be omitted. We can see that clearly a has an occurrence
in pf (∧ a b) in such a way that we can ‘read it off,’ but the general higher-
order case can be more complicated. The variable simply appearing in the
syntax tree of the type is not enough, for the process of substituting in other
arguments may cause β-reductions which make that appearance vanish. We
therefore need to define strict occurrences, so that an argument which strictly
occurs in the type of a synthesizing argument, or in the result type of a c−

constant, may be safely omitted.

The definition of strict occurrences that follows closely follows the def-
inition of Pfenning and Schürmann [PS98] used to describe the theory of
notational definitions. The notion of pattern spine at the heart of it is origi-
nally due to Miller [Mil91]. The guiding idea is that a strict position cannot
be eliminated by other substitutions, and that, as a result, the operation of
substituting [M/x]N is injective in the argument M when x is strict in N .
This injectivity means that we can uniquely recover M from [M/x]N . That
is, the important consequence is that the corresponding matching problem is
decidable and has a unique closed solution.

A key limitation of the way strictness is defined here, from the standpoint
that more strict occurrences means more opportunities to omit redundant
information, is that x cannot generally have a strict occurrence in (∗, S), even
if it does have a strict occurrence in S. This is because we actually need more
than just the term being uniquely determined when it is substituted for a
strictly occurring variable: for technical reasons in the unification algorithm,
we need its type to be uniquely determined as well.

The strictness judgments are Γ
s x ∈ Z, (x has a strict occurrence in
some argument of the type Z) Γ
i x ∈ Z, (x has a strict occurrence in the
output of the type Z) Γ; ∆
 x ∈ W , (x has a strict occurrence in W in the
presence of local bound variables ∆) and ∆ ` S pat. (S is a pattern spine,
that is, a sequence of distinct bound variables)

19

2.2.1 Top-level

Γ; ·
 x ∈ S

Γ
i x ∈ a · S

Γ; ·
 x ∈ A

Γ
s x ∈ Π+y:A.B

Γ, y : A
µ x ∈ B

Γ
µ x ∈ Πρy:A.B

2.2.2 Types
Γ; ∆
 x ∈ S

Γ; ∆
 x ∈ a · S

Γ; ∆, y
 x ∈ B

Γ; ∆
 x ∈ Πρy:A.B

Γ; ∆
 x ∈ A

Γ; ∆
 x ∈ Πρy:A.B

2.2.3 Spines
Γ; ∆
 x ∈ M

Γ; ∆
 x ∈ (M ; S)

Γ; ∆
 x ∈ S

Γ; ∆
 x ∈ (M ; S)

Γ; ∆
 x ∈ S

Γ; ∆
 x ∈ (M+; S)

Γ; ∆
 x ∈ R

Γ; ∆
 x ∈ ((R :); S)

Γ; ∆
 x ∈ N

Γ; ∆
 x ∈ ((N : A); S)

Γ; ∆
 x ∈ A

Γ; ∆
 x ∈ ((N : A); S)

2.2.4 Pattern Spines

Since all terms are in η-long form, define x →∗
η̄ H (“H is an η-expansion of

the variable x”) by

y1 →∗
η̄ H1 · · · yn →∗

η̄ Hn

x →∗
η̄ λy1 . . . λyn.x · (H1; · · · ; Hn)

Then the definition of pattern spine is

∆ ` () pat

x →∗
η̄ H ∆1, ∆2 ` S pat

∆1, x, ∆2 ` (H; S) pat

2.2.5 Terms
Γ; ∆, y
 x ∈ M

Γ; ∆
 x ∈ λy.M

∆ ` S pat

Γ; ∆
 x ∈ x · S

y ∈ ∆ Γ; ∆
 x ∈ S

Γ; ∆
 x ∈ y · S

Γ; ∆
 x ∈ S

Γ; ∆
 x ∈ cσ · S

20

2.3 Type Checking

We define over the language of LF∗ two typing judgments Γ d̀ef M : A and
Γ àlg M : A, with analogous judgments at the type and kind levels. The
former is definitionally simpler, and consequently far easier to reason about,
but nonalgorithmic. The latter, however, is transparently decidable, and can
be implemented directly.

Establishing correctness of the system as a whole now has two parts. The
first part is to show that the algorithm embodied by Γ àlg M : A is sound
and complete relative to Γ d̀ef M : A. After that we must still connect
Γ d̀ef M : A over LF∗ to the same typing judgment over the original language
of LF , which we construe as a syntactic subset of LF∗.

In a diagram, the task ahead looks like

LF/ d̀ef

(—)∗
- LF∗/ d̀ef == LF∗/ àlg

Where (—)∗ is a bijective translation from LF to LF∗.

We first give the rules that Γ d̀ef M : A, Γ àlg M : A have in common.
This consists of all of the objects in the theory except for spines. Think of
each rule with ` as implicitly quantified by ‘for all ` ∈ { d̀ef , àlg}, . . .’.

When we come to assigning types to spines there are two directions which
a spine can be checked. The more familiar one is Γ ` S : Z > C, where the
type Z and the spine S are given, and the type C is output. This is read as
meaning that if a head (i.e. variable or constant) of type Z is applied S, the
result will be of type C. However, we have introduced constants that require
the output type to be known, so we also require a judgment Γ ` S : Z < C
which is identical in meaning to the other judgment, except that the type C
is input rather than output.

2.3.1 Kinding

a : K ∈ Σ Γ ` S : K > type

Γ ` a · S : type

Γ ` A : type Γ, x : A ` B : type

Γ ` Πσx:A.B : type

Notice here that Πµ types are well-kinded only in the event that the vari-
able they bind actually has a strict occurrence. This is a key property when
proving soundness of the system.

Γ ` A : type Γ, x : A ` B : type Γ, x : A
µ x ∈ B

Γ ` Π[µ]x:A.B : type

21

2.4 Typing

Γ ` A : type

Γ ` (N : A) : A

Γ ` R : A

Γ ` (R :) : A

x : A ∈ Γ Γ ` S : A > C

Γ ` x · S : C

Γ, x : A ` M : B

Γ ` λx.M : Π−x:A.B

c+ : Z ∈ Σ Γ ` S : Z > C

Γ ` c+ · S : C

c− : Z ∈ Σ Γ ` S : Z < C

Γ ` c− · S : C

2.5 Spines: Definitional Typing

The definitional typing system d̀ef uses the following rules to typecheck spines.
So that we can write down rules only once that work the same way for both
> and <, say ><s means > and ><i means <. Recall that µ,µ′ are variables
standing for either s or i.

Γ d̀ef () : type ><µ′ type

Γ d̀ef () : a · S ><µ′ a · S
Γ d̀ef M : A Γ d̀ef S : [M/x]AV ><µ′ W

Γ d̀ef (M ; S) : Π−x:A.V ><µ′ W

A = A′

Γ d̀ef M+ : A′ Γ d̀ef S : [M+/x]AV ><µ′ W

Γ d̀ef (M+; S) : Π+x:A.V ><µ′ W

Γ d̀ef M : A Γ d̀ef S : [M/x]AV ><µ′ W

Γ d̀ef (∗, S) : Π[µ]x:A.V ><µ′ W

These rules as a system are impractical for an implementation because of
the final rule. If read bottom-up, it requires the omitted argument M of a
spine to be nondeterministically guessed.

2.6 Algorithmic Typing

The algorithmic type checking judgment does higher-order matching (that is,
unification where all of the right-hand sides of equations have no free variables)
to recover missing arguments.

22

2.6.1 Matching

We use P to denote sets of equations:

P ::= > | (E1
.
= E2) ∧ P | (S1

.
= S2) ∧ P | (A1

.
= A2) ∧ P

Q for sets of typing constraints:

Q ::= > | (M : A) ∧Q

and U for unification problems that track two sets of equality constraints, and
one set of typing constraints:

U ::= ∃Ψ.(P, P ′, Q)

where Ψ denotes a list of variables

Ψ ::= · | Ψ, x : A

It will also be necessary to talk about lists θ of substitutions:

θ ::= · | [M/x]Aθ

There are several technical details about such substitutions θ that must be
treated (not least of which, typing them) but for space reasons we do not
cover them here.

The idea at a high level is that to solve a unification problem

∃x1:A1, . . . , xn:An.(P, P ′, Q)

is to find a set of instantiations for x1, . . . , xn that make P, P ′, Q all true.
Given that every xi has a strict occurrence in P , which is maintained as an
invariant of the algorithm, we can decompose equations in P while preserving
any solutions that might exist, either instantiating variables, or postponing
equations by transferring them to P ′, until P is empty, and all that remains
is P ′ and Q. Since P is empty, our invariant says that no variables remain,
so both P ′ and Q are closed, and can be checked directly. The only potential
difficulty is the fact that we recursively call the typechecker on Q. But by
inspection, the algorithm only puts strictly smaller type-checking problems
into Q.

We define a transition relation =⇒θ ‘takes one step, resulting in substitu-
tion θ’ via the following rules. The basic rules for working on a set of equations
are quite straightforward, and all result in the empty substitution.

23

(a · S1
.= a · S2) ∧ P =⇒ (S1

.= S2) ∧ P

(Πρx:A1.B1
.= Πρx:A2.B2) ∧ P =⇒

(A1
.= A2) ∧ (B1

.= B2) ∧ P

(λx.M1
.= λx.M2) ∧ P =⇒ (M1

.= M2) ∧ P

(x · S1
.= x · S2) ∧ P =⇒ (S1

.= S2) ∧ P

(cσ · S1
.= cσ · S2) ∧ P =⇒ (S1

.= S2) ∧ P

(() .= ()) ∧ P =⇒ P

((E2;S1)
.= (E2;S2)) ∧ P =⇒ (E1

.= E2) ∧ (S1
.= S2) ∧ P

(∗ .= ∗) ∧ P =⇒ P

(R1 :) .= (R2 :) ∧ P =⇒ (R1
.= R2) ∧ P

(N1 : A1)
.= (N2 : A2) ∧ P =⇒ (N1

.= N2) ∧ (A1
.= A2) ∧ P

These are used via

P =⇒ P0

∃Ψ′(P, P ′, Q) =⇒ ∃Ψ′(P0, P
′, Q)

These less trivial rules handle the occurrence of variable on the left. Recall
that we are doing matching, not full unification, so ∃-quantified variables do
not occur on the right.

∃Ψ, x : A,Ψ′.((x · (H1; · · · ;Hn) .= R) ∧ P, P ′Q) =⇒[M/x]A

∃Ψ, ([M/x]AΨ′).[M/x]A(P, P ′, Q)

(if xi →∗
η̄ Hi where x1, . . . , xn are distinct variables not among those in

Ψ, x,Ψ′,Γ where M = λx1 . . . xn.R, if M has no free variables except those in
Γ)

∃Ψ, x : A,Ψ′.((x · (H1; · · · ;Hn) .= R) ∧ P, P ′Q) =⇒

∃Ψ, x : A, Ψ′.(P, (x · (H1; · · · ;Hn) .= R) ∧ P ′, Q)

(if the above rule doesn’t apply)

Iterated =⇒θ is the relation =⇒∗
θ, defined by

U =⇒∗
· U

U =⇒θ U ′ U ′ =⇒∗
θ′ U ′′

U =⇒∗
θ′θ U ′′

|= is defined, like `, uniformly over |=def and |=alg as follows:

Γ |= >
Γ ` M : A Γ |= Q

Γ |= (M : A) ∧Q

24

Γ |= P

Γ |= (W
.
= W) ∧ P

Γ |= P Γ |= P ′ Γ |= Q

Γ |= (P, P ′, Q)

Now we are able to give a definition of the core of the algorithm, the
constraint generation judgment, which takes the form

Γ; Ψ; Ψ′ ` S : Z ><µ′ C/(P, Q)

This claims that if we are trying to apply a head of type Z to S, and the
resulting type is C, then we must find instantiations for the variables in Ψ′ to
satisfy the equations P and type constraints Q. Γ, Ψ, S, Z are input to this
judgment, and Ψ′, P, Q are output. C is input if µ′ = i, and output if µ′ = s.
The judgment is defined by the following rules.

Γ; Ψ; · ` () : a · S < a · S ′/(a · S .
= a · S ′ ∧ >,>)

Γ; Ψ; · ` () : a · S > a · S/(>,>)

Γ; Ψ, x : A; Ψ′ ` S : Z ><µ′ C/(P, Q)

Γ; Ψ; x : A, Ψ′ ` (∗; S) : Π[µ]x:A.Z ><µ′ C/(P, Q)

Γ àlg M+ : A′

Γ; Ψ; Ψ′ ` S : [M+/x]AZ ><µ′ C/(P, Q)

Γ; Ψ; Ψ′ ` (M+; S) : Π+x:A.Z ><µ′ C/((A
.
= A′) ∧ P, Q)

Γ; Ψ; Ψ′ ` S : [M/x]AZ ><µ′ C/(P, Q)

Γ; Ψ; Ψ′ ` (M ; S) : Π−x:A.Z ><µ′ C/(P, (M : A) ∧Q)

Finally, the toplevel rules which tell how to algorithmically typecheck a
spine are

Γ; ·; Ψ′ ` S : Z < C/(P,Q)

∃Ψ′.(P,>, Q) =⇒∗
θ′ (>, P ′, Q′) Γ |=alg (P ′, Q′)

Γ àlg S : Z < C

Γ; ·; Ψ′ ` S : Z > C/(P,Q)

∃Ψ′.(P,>, Q) =⇒∗
θ′ (>, P ′, Q′) Γ |=alg (P ′, Q′)

Γ àlg S : Z > θ′C

When we have the type as input (Γ àlg S : Z < C) we invoke constraint
generation to produce Ψ′, P, Q, and call unification to check that the con-
straints are satisfied. If unification succeeds, then type-checking does. If we

25

are to output a type (Γ àlg S : Z < C) then we furthermore use the substi-
tution returned by unification, and apply it to the type C which constraint
generation produced, and return this as the result type of S.

2.7 Correctness

The statements of soundness and completeness of unification are somewhat
technical:

Lemma 2.1 (Soundness of Unification) Suppose that

∃Ψ′.(P, P ′, Q) =⇒∗
θ0

(>, P ′′, Q′)

and Γ |= (>, P ′′, Q). Then there is a θ′ such that θ′ = θ0 and Γ ` θ′ : Ψ′ and
Γ |= θ′(P, P ′, Q).

Lemma 2.2 (Completeness of Unification) Suppose there exists θ′ such
that Γ ` θ′ : Ψ′ and Γ |= θ′(P, P ′, Q). Suppose further that for every x ∈ Ψ′

that there is an equation W
.
= W ′ in P and a set ∆x of variables disjoint from

those declared in Γ, Ψ′ such that Γ; ∆x
 x ∈ W . Then there exist P ′′, Q, θ0

such that ∃Ψ′.(P, P ′, Q) =⇒∗
θ0

(>, P ′′, Q′) and θ′ = θ0 and Γ |= (>, P ′′, Q′).

The main thrust of them, however, as is standard with such transition
systems, is that (a) all of the individual transitions preserve solutions, and in
our case, preserve strict occurrences as well, and (b) each transition decreases
the size of the problem, so that solvability of a problem is decidable. The
correctness of unification then leads to the correctness of the typing algorithm

àlg with respect to the definition d̀ef .

Lemma 2.3 (Soundness and Completeness of àlg)

(i) If Γ àlg M : A, then Γ d̀ef M : A.

(ii) If Γ d̀ef M : A, then Γ àlg M : A.

3 Equivalence

Having defined LF∗ and establishing that the definitional typing judgment is
decidable, we turn now to the issue of showing that it is equivalent to LF .
As mentioned previously, we construe the language of LF as a strict subset
of the language of LF∗. Henceforth we syntactically distinguish every LF
object with a ◦ in the subscript and every LF∗ object with a ∗ subscript. The
grammar of LF is

M◦ ::= N◦ | R◦

N◦ ::= λx.M◦

R◦ ::= x · S◦ | c+ · S◦

E◦ ::= M◦

S◦ ::= () | (E◦; S◦)

26

A◦, B◦ ::= a · S◦ | Π−x:A◦.B◦

K◦ ::= type | Π−x:A◦.K◦

This is simply the LF∗ grammar with c−, Π+, Π[µ], (∗; S), (M+; S) removed.
The typing judgments and rules that apply to this subset of LF∗ are exactly
the ordinary typing rules for LF . The only difference is cosmetic: here we say
c+, Π− where one would of course find merely c, Π in a normal treatment of
LF .

It remains to show that LF∗ is isomorphic to LF , in the sense that every
proof term in LF∗ corresponds to one and only one proof term in LF . Fix
for the sake of discussion signatures Σ◦ and Σ∗, in LF and LF∗ respectively,
and assume that they assign types and kinds to exactly the same constant
and type family symbols, except that whenever Σ has c+, we find exactly one
of c+ or c− in Σ∗. Under suitable further assumptions (described below) that
Σ◦ and Σ∗ are in fact equivalent signatures, we aim to show that there is a
translation from well-formed objects in Σ◦ to well-formed objects in Σ∗ that
is bijective, homomorphic with respect to typing, and so on.

One difficulty in establishing this result via such a translation comes from
the fact that neither LF nor LF∗ prima facie bears strictly more information
than the other: LF∗ signatures have more information in the form of Π-
annotations, and its terms contain type ascriptions foreign to LF , while an
LF term generally contains subterms that are omitted in its LF∗ counterpart.
Because of this, we cannot simply define an erasure function W 7→ W ∗ from
LF to LF∗ that erases some subterms to ∗. We need another erasure W 7→ W ◦

which erases Π-annotations, and we need W 7→ W ∗ to fill in necessary type
ascriptions.

This notation is chosen to suggest that (—)∗ takes objects into LF∗, and
that (—)◦ takes objects back to LF , though this latter statement is not strictly
true. The general idea is that both mappings erase some information, and that
objects W◦ and W∗ ought to be considered equivalent when the mappings bring
them together, when ‘(W◦)

∗ = (W∗)
◦’.

The mapping (—)◦ for Π-types is defined by (Πρx:A.W)◦ = Π−x:A.(W ◦).
Otherwise, W ◦ = W . However, the definition of (—)∗ is less simple. Since it
needs to insert type ascriptions, it cannot be merely a function from terms to
terms, types to types, and so on. To know which type to insert, we must carry
along the type, and in order to know the type of variables, we must carry along
a context as well. We write this translation, then, using the same syntax as
the typing judgment itself, as (Γ◦ ` M◦ : A◦)

∗ for terms, and (Γ◦ ` A◦ : type)∗

for types.

For spines it is still not enough to write something of the form (Γ◦ `
S◦ : Z◦ > C◦)

∗. We need an additional argument Z∗, because its Π binders
carry the required extra annotations required to translate the spine, (dictating,
importantly, which arguments to erase) whereas Z◦ does not. Therefore the
translation function for spines takes the form (Γ◦ ` S◦ : Z◦ > C◦)

∗
Z∗ .

The translation is defined as follows:

27

Terms
(Γ◦ ` λx.M◦ : Π−x:A◦.B◦)

∗ =

λx.(Γ◦, x : A◦ ` M◦ : B◦)
∗

(Γ◦ ` x · S◦ : C◦)
∗ = x · (Γ◦ ` S◦ : A◦ > C◦)

∗
(Γ◦`A◦:type)∗

(if x : A◦ ∈ Γ◦)

(Γ◦ ` c+ · S◦ : C◦)
∗ = cσ · (Γ◦ ` S◦ : A◦ > C◦)

∗
A∗

(if cσ : A∗ ∈ Σ∗ and c+ : A◦ ∈ Σ◦)

Spines We mention only the case for typed (not kinded) spines. The other
case is analogous. We split cases on the subscript Z∗. Make the abbreviations
A∗ = (Γ◦ ` A◦ : type)∗, and S∗ = (Γ◦ ` S◦ : [M◦/x]A◦Z◦ > C◦)

∗
[M∗/x]A∗Z∗

, and

M∗ = (Γ◦ ` M◦ : A◦)
∗. Then for Πσ we do

(Γ◦ ` (M◦; S◦) : Π−x:A◦.Z◦ > C◦)
∗
Πσx:A∗.Z∗

=

 ((M∗ : A∗); S∗) if σ = +, M∗ normal;
((M∗:); S∗) if σ = +, M∗ atomic;
(M∗; S∗) otherwise.

Observe that we only add the type annotation A∗ when it is necessary. For
Π[µ] we simply erase the argument, and make the same recursive call on S◦ as
before:

(Γ◦ ` (M◦; S◦) : Π−x:A◦.Z◦ > C◦)
∗
Π[µ]x:A∗.Z∗

= (∗; S∗)

(Γ◦ ` () : C◦ > C◦)
∗
C∗ = ()

Types
(Γ◦ ` Π−x:A◦.B◦ : type)∗ =

Π−x:(Γ◦ ` A◦ : type)∗.(Γ◦, x : A◦ ` B◦ : type)∗

(Γ◦ ` a · S◦ : type)∗ = a · (Γ◦ ` S◦ : K◦ > type)∗K∗

(if a : K∗ ∈ Σ∗ and a : K◦ ∈ Σ◦)

We may also translate contexts in the evident way, namely by translating
each of the types in them. With these maps we can state the correspondence
condition for the two signatures:

Definition 3.1 Σ◦ and Σ∗ are equivalent if

• For every c, we have that cσ : A∗ ∈ Σ∗ and c+ : A◦ ∈ Σ◦ implies (A∗)
◦ =

(· ` A◦ : type)∗.

• For every a, we have that a : K∗ ∈ Σ∗ and a : K◦ ∈ Σ◦ implies (K∗)
◦ = (· `

K◦ : type)∗.

When two signatures are equivalent, the theories they generate should be
equivalent. This essentially amounts to two properties, that the image under
the translation of the terms of a type actually belong to the translation of the
type itself, and that the translation restricted to any one type is a bijection.

28

Theorem 3.2 (Type Preservation) Suppose that Σ◦ and Σ∗ are equiva-
lent. Then

• if Γ◦ `Σ◦ M◦ : A◦, then (Γ◦)
∗ `Σ∗ (Γ◦ ` M◦ : A◦)

∗ : (Γ ` A◦ : type)∗

• if Γ◦ `Σ◦ S◦ : A◦ > C◦ and (Γ◦ ` A◦ : type)∗ = (A∗)
◦, then (Γ◦)

∗ `Σ∗ (Γ◦ `
S◦ : A◦ > C◦)

∗
A∗ : A∗ > (Γ ` C : type)∗

• If Γ◦ is a Σ◦-context, then (Γ◦)
∗ is a Σ∗-context.

• if Γ◦ `Σ◦ A◦ : type then (Γ◦)
∗ `Σ∗ (Γ◦ ` A◦ : type)∗ : type.

• if Γ◦ `Σ◦ K◦ : kind then (Γ◦)
∗ `Σ∗ (Γ◦ ` K◦ : kind)∗ : kind.

Stating and proving the bijectivity of the translation, though important,
is considerably more difficult, and so we do not develop it here.

4 Conclusion

We have described a type system which internalizes facts about which parts
of terms can be safely omitted, while preserving representational adequacy.
An implementation can achieve significant savings by not representing these
omitted parts at all, and still ‘prove the same theorems’ as before.

The empirical advantage of this species of change of representation has
been confirmed by earlier work. Ours retains several of its key properties.
By working in a system derived from LF , we have at our disposal all of its
representational techniques, such as higher-order abstract syntax. Like LFi,
full unification is not used, and instead only a subset — in our case, higher-
order matching — is necessary. This is important for a maximally simple and
trustable implementation.

The divergence from LFi is that LF∗ seeks to make type theoretic sense
out of the possibility that subterms can be redundant. We do not have LFi’s
ability to assign both an ‘inference recipe’ and a ‘checking recipe’ to a single
constant, since we impose the restriction that a constant has a single type,
which gives its reconstruction recipe once and for all. However, preliminary
investigation suggests that in many cases — most especially when the object
language is a type theory admitting a bidirectional typing algorithm itself — a
constant is consistently always or almost always used in one way or the other.
Thus, only one recipe is really necessary most of the time.

There is also a possible answer to this difficulty from using notational
definitions. It is still an open problem whether notational definitions could
feasibly be combined with this system, but if they could, then we could regain
the ability to freely use different recipes by introducing a constant as being
definitionally equal to an old one: one which, by virtue of being exposed at a
new type, specifies a different reconstruction strategy for its arguments.

On the other side of the balance, there are forms of omission which LF∗
can handle, which LFi cannot. Since LF∗ places a priority on pushing the
mechanics of omission into the language itself at as fundamental a level as

29

possible, the design of it is such that all terms, types, and kinds can contain
placeholders for omitted information as a matter of course: the indices to a
type family are general terms, and terms may contain placeholders. LFi, on
the other hand, has restrictions on when placeholders can appear in types. We
anticipate, therefore, that encoding techniques that use more high-order and
high-level constructions may benefit from the uniform treatment of omission
afforded by LF∗. A more precise evaluation of the effectiveness of the proposed
system still awaits implementation and experimentation, which we hope to
complete soon.

Acknowledgements

Many thanks are due Frank Pfenning for his encouragement and help with
both the conceptual and technical portions of this work, and to Kevin Watkins
for the original formulation of the type system.

References

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for
defining logics. Journal of the Association for Computing Machinery,
40(1):143–184, January 1993.

[HP01] Robert Harper and Frank Pfenning. On the equivalence and canonical
forms in the LF type theory. Technical report, Carnegie Mellon
University, 2001.

[HT94] Masami Hagiya and Yozo Toda. On implicit arguments. In Logic,
Language and Computation, pages 10–30, 1994.

[Lut01] Marko Luther. More on implicit syntax. In Automated Reasoning.
First International Joint Conference (IJCAR’01), Siena, Italy, June
18–23, 2001, Proceedings, volume 2083 of Lecture Notes in Artificial
Intelligence, pages 386–400, Berlin, 2001. Springer-Verlag.

[Mil91] Dale Miller. A logic programming language with lambda-abstraction,
function variables, and simple unification. Journal of Logic and
Computation, 1(4):497–536, 1991.

[Miq01] Alexandre Miquel. The implicit calculus of constructions: Extending
pure type systems with an intersection type binder and subtyping. In
S. Abramsky, editor, Proc. of 5th Int. Conf. on Typed Lambda Calculi
and Applications, TLCA’01, Krakow, Poland, 2–5 May 2001, volume
2044, pages 344–359. Springer-Verlag, Berlin, 2001.

[Nec97] George C. Necula. Proof-carrying code. In Proceedings of the 24th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Langauges (POPL ’97), pages 106–119, Paris, January 1997.

30

[NL98] George C. Necula and Peter Lee. Efficient representation and validation
of logical proofs. In Proceedings of the 13th Annual Symposium on Logic
in Computer Science (LICS’98), pages 93–104, Indianapolis, Indiana,
1998. IEEE Computer Society Press.

[PE98] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In
Proceedings of the ACM SIGPLAN ’88 Symposium on Language Design
and Implementation, pages 199–208, Atlanta, Georgia, June 1998.

[Pfe00] Frank Pfenning. Structural cut elimination I. intuitionistic and classical
logic. Information and Computation, 157(1/2):84–141, mar 2000.

[PS98] Frank Pfenning and Carsten Schürmann. Algorithms for equality and
unification in the presence of notational definitions. In T. Altenkirch,
W. Naraschewski, and B. Reus, editors, Types for Proofs and Programs,
pages 179–193, Kloster Irsee, Germany, March 1998. Springer-Verlag
LNCS 1657.

[WCPW03] K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. A concurrent
logical framework I: Judgments and properties. Technical report,
Carnegie Mellon University, 2003.

31

LFM 2004 Preliminary Version

A logical framework with explicit conversions

Herman Geuvers and Freek Wiedijk 1,2

Department of Computer Science, University of Nijmegen
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

Abstract

The type theory λP corresponds to the logical framework LF. In this paper we
present λH, a variant of λP where convertibility is not implemented by means of
the customary conversion rule, but instead type conversions are made explicit in
the terms. This means that the time to type check a λH term is proportional to
the size of the term itself.

We define an erasure map from λH to λP , and show that through this map the
type theory λH corresponds exactly to λP : any λH judgment will be erased to a
λP judgment, and conversely each λP judgment can be lifted to a λH judgment.

We also show a version of subject reduction: if two λH terms are provably con-
vertible then their types are also provably convertible.

1 Introduction

1.1 Problem

This paper addresses the question whether a formal proof should be allowed
to contain the formal equivalent of the sentence ‘this is left as an exercise to
the reader.’ To explain what we mean here, consider the following ‘proof’:

Theorem. The non-trivial zeroes of Riemann’s ζ(s) function all lie on the
complex line <s = 1

2
.

Proof. There exists a derivation 3 of this statement with a length less than
1010100

symbols (finding it is left as an exercise to the reader). Therefore
the statement is true. 2

1 Thanks to Thorsten Altenkirch for the suggestion to use John-Major equality in our
system.
2 Email: {herman,freek}@cs.kun.nl
3 The formal system in which this derivation is constructed does not really matter. Take
any system in which one can do practical formal proofs. Some version of ZFC, like Mizar.
Or HOL. Or Coq. It does not matter.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

32

Now suppose that the statement in the proof about the existence of the deriva-
tion is true. 4 Then would this be an acceptable proof of the Riemann hypoth-
esis? Can we really accept the number 1010100

(which is the only interesting
thing that this ‘proof’ contains) to be a proof here? Somehow it does not
seem to contain enough relevant information.

At the TYPES meeting in Kloster Irsee in 1998, there was an interesting
discussion after the talk by Henk Barendregt, where he had explained and
advocated how to use the βδι-reduction of type theory to make Coq [12] auto-
matically do calculations during its type check phase. This uses the technique
of reflection (see e.g. [3,10] for examples and a discussion), where part of the
object language is reflected in itself to make computations and reasoning on
the meta-level possible within the system.

Most people clearly considered this way of using Coq’s convertibility check
to be a feature. The only dissenting voice came from Per Martin-Löf, who did
not like it at all and seemed to consider this to be a bug. We do not have an
overview of todays opinions, but the community seems to be quite unanimous
that this kind of ‘automatic calculations by type checking’ is a good thing.

In the Automath system [8] the main performance bottleneck was the con-
vertibility check (if the calculated type of a term M is N , but it is used in
a context where the type should be N ′, then the system needs to verify that
N =βδ N ′.) In fact, the inefficiency of the convertibility check meant that cor-
rectness of Automath was in practice only semi-decidable. Although in theory
it is decidable whether an Automath text is type correct, in practice when it
is not correct the system often just would be endlessly reducing and would
not terminate in an acceptable time anymore. 5 For this reason the Automath
system from the seventies just gave up after having failed to establish con-
vertibility after some given number of reduction steps. Automath apparently
searched for a ‘convertibility proof’. This proof would have to be rediscovered
every time the Automath terms would be type checked, and it would not be
stored in a ‘convertibility proof term’.

The LF system [11] (currently implemented in the Twelf system [5]), which
is the best known logical framework, has – like Automath and Coq – a con-
version rule. But the HOL system [4,6] does not. In HOL β-reduction is not
automatically tried by the system, but is one of the derivation rules of the
logic. Similarly δ- and ι-reductions are performed using the rules of the logic.
If one considers a HOL ‘proof term’ that stores the HOL rules that have been
used to obtain a certain theorem [2], then this proof term somehow documents
the ‘reduction information’ that is not available in a proof term from the type
theoretical/LF world. 6

4 Which of course we do not know. But suppose.
5 This problem is less noticeable in Coq because there many definitions are ‘opaque’ (they
cannot be unfolded).
6 Of course, as the HOL logic does not have dependent types, this kind of reduction is
much less important in the first place.

33

The goal of this paper is to investigate whether it is possible to have a
system close to the systems from type theory, but in which the convertibility
of types is explicitly stored in the proof terms (like it is done in HOL). In
such a system the type checker will not need to do a convertibility check on
its own. Instead the term will contain the information needed to establish
the convertibility. In such a system the type of a term will be unique, instead
of only being unique up to conversion. 7 Because of all this, type checking a
term will be cheap. If we consider the substitution operation and term identity
checking to take unit time, the time to type check a term will be linear in the
size of the term.

In the system that we describe in this paper, checking a proof matches
much more the image of ‘following the proof with your little finger, and check-
ing locally that everything is correct’ than is the case with the standard type
theoretical proof systems.

1.2 Approach

We define a system called λH. 8 This system is very close to λP , the proper
type system that corresponds to LF. However, there is no conversion rule.
Instead conversions are made explicit in the terms. If H is a term that shows
that A is convertible to A′, which we will write as

` H : A = A′

and if the term a has type A, then the term aH (the conversion H applied to
a) will have type A′.

Note that in our system we have explicit ‘equality judgments’ just like in
Martin-Löf style type theory [9]. However there is a significant difference. In
Martin-Löf style type theory there are no terms that prove equalities. The
equality judgments in such theories look like:

` A = A′ : B

and the equality is on the left of the colon. In contrast, in our system two
terms that are provably equal do not need to have the same computed type,
so there will not be a common type to the right of the colon. Instead we will
have a proof term, and so our equality will be to the right of the colon.

The fact that two terms in our system that occur in an equality judgment
do not need to have computed types that are syntactically equal, means that
our judgmental equality is a version of John-Major equality [7].

7 So in such a system the type of a term will be (λx:A.B) a, or it will be B[x := a], but
not both.
8 The ‘H’ in the name of the system reflects the letter that we use for the convertibility
proof terms. So λH is ‘the logical framework with Hs’, i.e., with convertibility proofs.

34

1.3 Related Work

Robin Adams is working on a version of pure type systems that have judg-
mental equalities in the style of Martin-Löf type theories [1]. However, he
does not have terms in his system that represent the derivation of the equal-
ity judgments. Also, he does not represent the conversions themselves in the
terms. Therefore in his system more terms are syntactically identical than in
our system. Another difference is that he develops his system for all functional
pure type systems, while we only have a system that corresponds to λP .

1.4 Contribution

We define a system λH in which type conversion is represented in the proof
term. We show that this system corresponds exactly to the proper type system
λP . We also show that this system has a property closely related to subject
reduction.

The λH system is quite a bit more complicated than the λP system. It
has 13 instead of 4 term constructors, and 15 instead of 7 derivation rules.

1.5 Outline

In Section 2 we define our system. In Section 3 we show that it corresponds to
the λP system. In Section 4 we show that an analog of the subject reduction
property of λP holds for our system. In Section 5 we define a weak reduction
relation for our equality proof terms that is confluent and strongly normalizing
and that satisfies subject reduction. Finally, in Section 7 we present a slight
modification of our system, where we do not allow conversions to go through
the ill-typed terms. Such a system corresponds more closely to a semantical
view upon type theory.

2 The system λH

Definition 2.1 The λH expressions are given by the following grammar (the
syntactic category V are the variable names):

T ::= 2 | ∗ | ΠV :T .T | λV :T .T | T T | T E

E ::= T̄ | E† | E · E | β(T) | ι(T) | {E , [V]E} | 〈E , [V]E〉 | EE

C ::= | C,V : T
J ::= C ` T : T | E : T = T

The T are the terms of the system, the E are convertibility proofs, the C are
the contexts, and the J are the judgments. The sorts are the special cases of
T that are the elements of {2, ∗}.

Definition 2.2 We define the erasure operation recursively by:

35

|x| ≡ x

|2| ≡2

|∗|≡ ∗
|Πx:A.B| ≡Πx:|A|.|B|
|λx:A.b| ≡λx:|A|.|b|

|Fa| ≡ |F ||a|
|aH | ≡ |a|

It maps λH terms to λP terms and is extended straightforwardly to contexts.

There are two kinds of judgments in λH: equality judgments and typing
judgments. The first are of the form H : a = b, where H codes a proof of
convertibility (through not necessarily well-typed terms) of a and b. The rules
for equality judgments are independent of typing judgments. In the rules for
the typing judgments, equality judgments appear as a side-condition (in the
rule for conversion).

Definition 2.3 The rules that inductively generate the λH judgments are
the following (in these rules s only ranges over sorts):

definitional equality

Ā : A = A

H : A = A′

H† : A′ = A

H : A = A′ H ′ : A′ = A′′

H ·H ′ : A = A′′

β-redex

β((λx:A.b) a) : (λx:A.b) a = b[x := a]

erasing equality proofs

ι(a) : a = |a|

congruence rules

H : A = A′ H ′ : B = B′

{H, [x]H ′} : Πx:A.B = Πx:A′.B′

H : A = A′ H ′ : B = B′

〈H, [x]H ′〉 : λx:A.B = λx:A′.B′

36

H : F = F ′ H ′ : a = a′

HH ′ : Fa = F ′a′

start & weakening

Γ ` A : s

Γ, x : A ` x : A

Γ ` A : s Γ ` b : B

Γ, x : A ` b : B

box & star

` ∗ : 2

typed lambda terms

Γ ` A : ∗ Γ, x : A ` B : s

Γ ` Πx:A.B : s

Γ ` A : ∗ Γ, x : A ` b : B : s

Γ ` λx:A.b : Πx:A.B

Γ ` F : Πx:A.B Γ ` a : A

Γ ` Fa : B[x := a]

conversion

Γ ` a : A H : A = A′

Γ ` aH : A′

We write Γ ` A : B : C as an abbreviation of Γ ` A : B and Γ ` B : C.
We write A =λH A′ if we have that H : A = A′ for some H. We write ‘A
is type correct in context Γ’ if we have that Γ ` A : B for some B. We
write ‘A is type correct’ if it is type correct in some context. We write ‘Γ is
well-formed’ if some derivable judgment has Γ as the context. Finally we will
write derivability in λH as `λH to distinguish it from derivability in λP which
is written `λP . (If we omit the subscript, it will be apparent from the context
which system is meant.)

The following lemmas about λH are immediate:

Lemma 2.4 Any subterm of a type correct term is type correct (in the appro-
priate context).

Lemma 2.5 If Γ ` A : B : C then C is a sort.

Lemma 2.6 If Γ ` a : A then either Γ ` A : s for some sort s, or A ≡ 2.

37

Lemma 2.7 (uniqueness of types) If Γ ` a : A and Γ ` a : A′ then A ≡
A′.

We now show that typing is in linear time by defining a type checking
algorithm.

Definition 2.8 Define the function type : C×T → T ∪{false} simultaneously
with the functions wf : C → {true, false} and comp : E × T → T ∪ {false} as
follows.

typeΓ(∗) = if wf(Γ) then 2 else false

typeΓ(2) = false

typeΓ(x) = if wf(Γ) ∧ (x:A) ∈ Γ then A else false

typeΓ(Πx:A.B) = if typeΓ(A) ≡ ∗ ∧ typeΓ,x:A(B) ∈ {∗, 2}
then typeΓ,x:A(B) else false

typeΓ(λx:A.M) = if typeΓ(A) ≡ ∗ ∧ typeΓ,x:A(M) 6= 2

then Πx:A.typeΓ,x:A(M) else false

typeΓ(MN) = if typeΓ(M) ≡ Πx:typeΓ(N).B
then B[x := N] else false

typeΓ(MH) = if typeΓ(M) ≡ A then comp(H, A) else false

wf(〈−〉) = true

wf(Γ, x:A) = typeΓ(A) ∈ {∗, 2}

comp(Ā, B) = if A ≡ B then B else false

comp(H†, B) = comp−1(H, B)

comp(H ·H ′, B) = comp(H ′, comp(H, B))

comp(ι(A), B) = if A ≡ B then |A| else false

comp(β((λx:A.M)N), B) = if B ≡ (λx:A.M)N then M [x := N] else false

comp({H, [x]H ′}, B) = if B ≡ Πy:A.C
then Πx:comp(H, A).comp(H ′, C[y := x])
else false

comp(〈H, [x]H ′〉, B) = if B ≡ λy:A.C
then λx:comp(H, A).comp(H ′, C[y := x])
else false

comp(HH ′, B) = if B ≡ AC
then comp(H, A)comp(H ′, C) else false

The function comp−1 is defined totally similar to comp, with two exceptions:

comp−1(ι(A), B) = if |A| ≡ B then A else false

comp−1(β((λx:A.M)N), B) = if B ≡ M [x := N] then (λx:A.M)N else false

Proposition 2.9 (type checking) Γ `λH a : A if and only if type(Γ, a) ≡ A
and the time for type to compute an answer is linear in the length of the inputs.

38

Proof. One first proves the fact that, H : B = C if and only if comp(H, B) =
C. Then Γ `λH a : A implies type(Γ, a) ≡ A is proved by induction on
the derivation, simultaneously with ‘Γ is well formed’ implies wf(Γ) = true.
The other way around, one proves simultaneously that type(Γ, a) ≡ A implies
Γ `λH a : A and that wf(Γ) = true implies ‘Γ is well formed’ (by induction
over the length of the input: lth(Γ, a), resp. lth(Γ)).
comp(H, A) is clearly linear in the size of the equational proof term H. To
make sure that type computes a type in linear time, one has to collect the
‘side conditions’ wf(Γ) properly to avoid checking the well-foundedness of the
(local) context for every variable separately.

3 Correspondence to λP

Lemma 3.1 If A =λH A′ then |A| =β |A′|.

Proof. By induction on the derivation of A =λH A′.

Proposition 3.2 (‘from λH to λP ’) If Γ `λH a : A then |Γ| `λP |a| : |A|.

Proof. By induction on the derivation of Γ `λH a : A, using the previous
Lemma in the conversion rule.

Lemma 3.3 For A, A′ ∈ T ,

(i) if |A| ≡ |A′|, then A =λH A′,

(ii) if |A| =β |A′|, then A =λH A′.

Proof.

(i) If |A| ≡ |A′|, then ι(A) · ιA′ : A = A′.

(ii) If |A| =β |A′|, we first prove that |A| =λH |A′|, by induction on the proof
(in the equational theory of the λ-calculus) of |A| =β |A′|. Then we
conclude by using that ι(A) : A = |A|. We do some cases
• A ≡ Πx:B.C and A′ ≡ Πx:B′.C ′ and |Πx:B.C| =β |Πx:B′.C ′| was

derived from |B| =β |B′| and |C| =β |C ′|. By IH, H0 : |B| = |B′|
and H1 : |C| = |C ′| for some H0, H1, so {H0, [x]H1} : |Πx:B.C| =
|Πx:B′.C ′|.

• A ≡ (λx:B.M)P , A′ ≡ M ′[P ′/x] with |(λx:B.M)P | →β |M ′[P ′/x]|.
Then β((λx:B.M)P) : (λx:B.M)P = M [P/x] and we are done by two
applications of (i) (using |M [P/x]| ≡ |M ′[P ′/x]|).

Proposition 3.4 (‘from λP to λH’) Let Γ be a λP -context and a, A be λP -
terms such that Γ `λP a : A. Then the following two properties hold.

(i) There is a correct λH-context Γ′ such that |Γ′| ≡ Γ.

(ii) For all λH-contexts Γ′ for which |Γ′| ≡ Γ, there are λH-terms a′, A′ such
that Γ′ `λH a′ : A′ and |a′| ≡ a, |A′| ≡ A.

39

Proof. Simultaneously by induction on the λP derivation, distinguishing
cases according to the last applied rule. We treat four cases and abbrevi-
ate ‘induction hypothesis’ to IH.

• (application)
Γ `λP F : Πx:A.B Γ `λP a : A

Γ `λP Fa : B[x := a]

The IH states that there is an λH-context Γ′ such that |Γ′| ≡ Γ. Further-
more, for Γ′ any λH-context such that |Γ′| ≡ Γ, by IH, there are F ′, a′, A′, A′′

and B′ such that Γ′ `λH F ′ : Πx:A′.B′, Γ′ `λH a′ : A′′ and |F ′| ≡ F , |a′| ≡ a,
|A′| ≡ |A′′| ≡ A and |B′| ≡ B. By Lemma 3.3, we have H : A′′ = A′ for
some H, so Γ′ `λH a′H : A′ and Γ′ ` Fa′H : B′[a′H/x]. We are done, because
|Fa′H | ≡ Fa and |B′[a′H/x]| ≡ B[a/x].

• (λ)
Γ, x:A `λP M : B Γ `λP A : ?

Γ `λP λx:A.M : Πx:A.B

The IH states that there is an λH-context Γ′ such that |Γ′| ≡ Γ. Further-
more, for Γ′ any λH-context such that |Γ′| ≡ Γ, by IH, there is an A′ such
that Γ′ `λH A′ : ? and |A′| ≡ A. So Γ′, x:A′ is a correct λH-context. So,
by IH there are M ′ and B′ such that Γ′, x:A′ `λH M ′ : B′ and |M ′| ≡ M
and |B′| ≡ B. Hence, Γ′ ` λx:A′.M ′ : Πx:A′.B′ and we are done, because
|λx:A′.M ′| ≡ λx:A.M and |Πx:a′.B′| ≡ Πx:A.B.

• (conversion)
Γ `λP M : A Γ `λP B : s A =β B

Γ `λP MH : B

The IH states that there is an λH-context Γ′ such that |Γ′| ≡ Γ. Further-
more, for Γ′ any λH-context such that |Γ′| ≡ Γ, by IH, there is are M ′, A′, B′

such that Γ′ `λH M ′ : A′, Γ `λH B′ : s and |A′| ≡ A, |B′| ≡ B, |M ′| ≡ M .
So |A′| ≡ A =β B ≡ |B′| and by Lemma 3.3, H : A′ = B′ for some H. Now,
Γ′ `λH M ′ : B′ by the conversion rule in λH and we are done.

• (weakening)
Γ `λP A : ? Γ `λP M : B

Γ, x:A `λP M : B

The IH states that there is an λH-context Γ′ such that |Γ′| ≡ Γ. By IH,
there is an A′ such that Γ′ `λH A′ : ? and |A′| ≡ A. So Γ′, x:A′ is a correct
λH-context, proving part (1). Now, for any λH context Γ′, x:A′ such that
|Γ′, x:A′| ≡ Γ, x:A, we know that |Γ′| ≡ Γ, so, by IH there are M ′ and B′

such that Γ′ `λH M ′ : B′ and |M ′| ≡ M and |B′| ≡ B. As Γ′, x:A′ is correct,
we can weaken this to obtain Γ′, x:A′ `λH M ′ : B′ and we are done.

Corollary 3.5 (conservativity of λP over λH) Given a well-formed λH
context Γ and λH type A in Γ,

|Γ| `λP M : |A| ⇒ ∃M ′(Γ `λH M : A ∧ |M ′| ≡ M)

40

Proof. The second part of the Proposition ensures that there are N and B
such that Γ `λH N : B and |N | ≡ M and |B| ≡ |A|. Then B =λH A, due to
Lemma 3.3, say H : B = A. Then Γ `λH NH : A.

4 An analogue of subject reduction

The following proposition is the equivalent for λH of the subject reduction
property of λP . The system λH does not have a notion of β-reduction, so the
statement a →β a′ in the condition of the statement is replaced by a =λH a′.
Also, we do not get that the type is conserved, it just is conserved up to
convertibility (so if a = a′ and a : A then we will not always get that a′ : A,
but just that a′ : A′ for some A′ with A = A′.)

Proposition 4.1 (‘subject reduction’) If Γ `λH a : A : s and Γ `λH a′ :
A′ : s′ and a =λH a′ then A =λH A′ and s ≡ s′.

Proof. From Proposition 3.2 we get that |Γ| `λP |a| : |A| : s and |Γ| `λP |a′| :
|A′| : s′ and |a| =β |a′|. By subject reduction of λP and uniqueness of types
in λP we get that |A| =β |A′| and s ≡ s′. From Lemma 3.3 we finally get that
A =λH A′.

5 Conversion reduction

Definition 5.1 We define the conversion reduction relation →→ as the rewrite
relation of the following rewrite rules:

AA′ →A

AH·H′ → (AH)
H′

Ā†→ Ā

H††→H

(H ·H ′)†→H ′† ·H†

We will now list some simple properties of conversion reduction (with some
proofs omitted for space reasons):

Proposition 5.2 Conversion reduction is confluent.

Proposition 5.3 Conversion reduction is strongly normalizing.

(These two propositions even hold for terms that are not type correct.)

Proposition 5.4 (subject reduction for conversion reduction)
If Γ `λH a : A and a →→ a′ then Γ `λH a′ : A.

Proof. By induction on the derivation of Γ `λH a : A one proves that, if
a → a′, then Γ `λH a′ : A, distinguishing cases according to the applied
reduction step. (The a →→ a′ case then follows immediately.)

41

Although this proposition is a subject reduction property, it is not related to
the subject reduction property of λP , as it does not involve β-reduction.

Proposition 5.5 If Γ `λH a : A and a →→ a′ then a =λH a′.

Proof. If a →→ a′, then |a| ≡ |a′| and hence a =λH a′ by Lemma 3.3.

Proposition 5.6 A term that is in conversion reduction normal form does
not contain the operations Ā and H · H ′, and it only contains the operation
H† in the combinations β(. . .)† and ι(. . .)†.

This last proposition shows that we can do away with the Ā and H · H ′

operations in our system.

6 Discussion

Imagine formalizing the ‘proof’ of the Riemann hypothesis on page 1 in Coq.
Using reflection this would be doable (even constructively) and, if the Riemann
hypothesis has a proof, it would actually be a correct proof too. However, type
checking this proof would be completely infeasible.

Now imagine a version of Coq that is built on top of the logical framework
λH. When type checking this Coq ‘proof’ the system would need to store the
reduction information in the explicit conversions in the λH proof term that it
would build internally. Therefore that proof term would be impractically big.
So in such a system the proof would not be considered to be a real proof as
the underlying λH proof object would be impossible to construct.

For this reason λH adequately represents both our unease with our ‘proof’
of the Riemann hypothesis, as well as Per’s unease with Henk’s talk in Kloster
Irsee.

(Note that this formalization of the ‘proof’ of the Riemann hypothesis
needs ι-reduction, so it is not possible in LF itself. Therefore for our argu-
ment one needs to imagine a version of Coq’s type theory that has explicit
conversions: a system that relates to the calculus of inductive constructions
CiC, in the same way that the system λH relates to λP .)

7 Future work

An interesting thing to do now is to implement λH as the basis of an actual
proof assistant, to see whether it is a practical system for doing actual proof
checking. Part of such a system might be a term lifter that lifts proof terms
from λP to λH, inserting the conversions that were needed to make the terms
type check.

Another issue is whether it is possible to build such a system in a way that
the bulk of the proof terms will not actually be stored in memory, but checked
and discarded while it is being generated. This is the way that HOL checks
its proofs. Henk Barendregt calls this ephemeral proofs. So the question is

42

whether it will be possible to have a λH implementation with ephemeral proof
terms.

7.1 Avoiding ill-typed terms

In the system λH, we have avoided the conversion rule by introducing proof
terms that witness an equality (and that can be checked in linear time). But
the conversion goes through T , the set of ‘pseudo-terms’. This is in line with
most implementations of proof checkers, where equality checking is done by
a separate algorithm that does not take typing into account. But what if we
restrict equalities to conversions that pass through the well-typed terms only?
This is more in line with a semantical intuition, where the ill-typed terms just
do not exist. We can adapt the syntax of λH to cover this situation and we
put the question whether this system is equivalent to λH. We call this new
system λF . 9

The system λF has the same terms and equality proofs as λH, but the
judgments are different:

J ::= C ` T : T | C ` E : T = T
So an equality in λF is always stated and proved within a context, in which the
terms are well-typed. The rules that inductively generate the λF judgments
are the same as for λH, apart from the rules that involve equalities, which are
as follows (in these rules s only ranges over sorts):

definitional equality

Γ ` A : B

Γ ` Ā : A = A

Γ ` H : A = A′

Γ ` H† : A′ = A

Γ ` H : A = A′ Γ ` H ′ : A′ = A′′

Γ ` H ·H ′ : A = A′′

β-redex

Γ ` A : ∗ Γ, x : A ` b : B : s Γ ` a : A

Γ ` β((λx:A.b) a) : (λx:A.b) a = b[x := a]

conversion

Γ ` a : A Γ ` H : A = A′

Γ ` aH : A′

9 The ‘F ’ stands for ‘fully well-typed’.

43

Γ ` a : A Γ ` H : A = A′

Γ ` ι(aH) : a = aH

congruence rules

Γ ` A : ∗ Γ, x : A ` B : s
Γ ` A′ : ∗ Γ, x′ : A′ ` B′ : s

Γ ` H : A = A′ Γ, x : A ` H ′ : B = B′[x′ := xH]

Γ ` {H, [x:A]H ′} : Πx:A.B = Πx′:A′.B′

Γ ` A : ∗ Γ, x : A ` b : B : s
Γ ` A′ : ∗ Γ, x : A′ ` b′ : B′ : s

Γ ` H : A = A′ Γ, x : A ` H ′ : b = b′[x′ := xH]

Γ ` 〈H, [x:A]H ′〉 : λx:A.b = λx:A′.b′

Γ ` F : Πx:A.B Γ ` a : A
Γ ` F ′ : Πx′:A′.B′ Γ ` a′ : A′

Γ ` H : F = F ′ Γ ` H ′ : a = a′

Γ ` HH ′ : Fa = F ′a′

(Note that the ι(. . .) of λF just removes one conversion, in contrast to the
ι(. . .) of λH which removes all conversions at once. Removing all conversions
generally leads to a term that is not well-typed, so that is not an option for
λF where all terms have to be well-typed, even in the conversion proofs.)

References

[1] Robin Adams. Pure Type Systems with Judgemental Equality. Unpublished,
2003.

[2] Stefan Berghofer. New features of the Isabelle theorem prover – proof terms and
code generation, 2000.
http://www4.in.tum.de/~berghofe/papers/TYPES2000_slides.ps.gz

[3] H. Geuvers, F. Wiedijk, J. Zwanenburg, Equational Reasoning via Partial
Reflection, in Theorem Proving for Higher Order Logics, TPHOL 2000, Portland
OR, USA, eds. M. Aagaard and J. Harrison, LNCS 1869, pp. 162–178.

[4] M.J.C. Gordon and T.F. Melham, editors. Introduction to HOL. Cambridge
University Press, Cambridge, 1993.

[5] Robert Harper, Furio Honsell, and Gordon Plotkin, A framework for defining
logics, in Symposium on Logic in Computer Science, IEEE Computer Society
Press, 1987, pp. 194–204.

44

http://www4.in.tum.de/~berghofe/papers/TYPES2000_slides.ps.gz

[6] John Harrison. The HOL Light manual (1.1), 2000.
http://www.cl.cam.ac.uk/users/jrh/hol-light/manual-1.1.ps.gz

[7] Conor McBride. Dependently Typed Functional Programs and their Proofs. PhD
thesis, University of Edinburgh, 1999.
http://www.dur.ac.uk/c.t.mcbride/thesis.ps.gz

[8] R.P. Nederpelt, J.H. Geuvers, and R.C. de Vrijer. Selected Papers on Automath,
volume 133 of Studies in Logic and the Foundations of Mathematics. Elsevier
Science, Amsterdam, 1994.

[9] Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming in Martin-
Löf ’s Type Theory, An Introduction. Oxford University Press, 1990.
http://www.cs.chalmers.se/Cs/Research/Logic/book/book.ps

[10] M. Oostdijk and H. Geuvers, Proof by Computation in the Coq system,
Theoretical Computer Science 272 (1-2), 2001, pp. 293–314.

[11] Frank Pfenning and Carsten Schürmann. System description: Twelf – a meta-
logical framework for deductive systems, in Proceedings of the 16th International
Conference on Automated Deduction (CADE-16), ed. H. Ganzinger, LNAI 1632,
1999, pp. 202–206.

[12] The Coq Development Team. The Coq Proof Assistant Reference Manual, 2002.
ftp://ftp.inria.fr/INRIA/coq/current/doc/Reference-Manual-all.ps.gz

45

http://www.cl.cam.ac.uk/users/jrh/hol-light/manual-1.1.ps.gz
http://www.dur.ac.uk/c.t.mcbride/thesis.ps.gz
http://www.cs.chalmers.se/Cs/Research/Logic/book/book.ps
ftp://ftp.inria.fr/INRIA/coq/current/doc/Reference-Manual-all.ps.gz

LFM 2004 Preliminary Version

Specifying Properties of Concurrent
Computations in CLF ?

Kevin Watkins a,1 Iliano Cervesato b,2 Frank Pfenning a,3

David Walker c,4

a Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA
b ITT Industries, AES Division, Alexandria, VA

c Department of Computer Science, Princeton University, Princeton, NJ

Abstract

CLF (the Concurrent Logical Framework) is a language for specifying and rea-
soning about concurrent systems. Its most significant feature is the first-class rep-
resentation of concurrent executions as monadic expressions. We illustrate the rep-
resentation techniques available within CLF by applying them to an asynchronous
pi-calculus with correspondence assertions, including its dynamic semantics, safety
criterion, and a type system with latent effects due to Gordon and Jeffrey.

Key words: Please list keywords from your paper here, separated
by commas.

1 Introduction

This paper cannot describe the clf framework in detail; a complete descrip-
tion is available in other work [19,18,3], and the syntax and typing rules of the
framework are summarized in Appendix B. Nevertheless, in this introduction,
we briefly discuss the lineage of frameworks on which clf is based, and the
basic design of clf.

A logical framework is a meta-language for the specification and imple-
mentation of deductive systems, which are used pervasively in logic and the
theory of programming languages. A logical framework should be as simple

? This research was sponsored in part by the NSF under grants CCR-9988281, CCR-
0208601, CCR-0238328, and CCR-0306313, and by NRL under grant N00173-00-C-2086.
1 Email: kw@cs.cmu.edu
2 Email: iliano@itd.nrl.navy.mil
3 Email: fp@cs.cmu.edu
4 Email: dpw@cs.princeton.edu

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

46

and uniform as possible, yet provide intrinsic means for representing common
concepts and operations in its application domain. A logical framework is
characterized by an underlying meta-logic or type theory and a representation
methodology.

The principal starting point for our work is the lf logical framework [7],
which is based on a minimal type theory λΠ with only the dependent function
type constructor Π. lf directly supports concise expression of variable renam-
ing and capture-avoiding substitution at the level of syntax, and parametric
and hypothetical judgments in deductions, following the judgments-as-types
principle. Proofs are reified as objects, which allows properties of and relations
between proofs to be expressed within the framework.

Representations of systems involving state remained cumbersome until the
design of the linear logical framework llf [2] and its close relative rlf [10].
llf is a conservative extension of lf with the linear function type A −◦ B,
the additive product type A & B, and the additive unit type >. The main
additional representation of llf is that of state-as-linear-hypotheses. Impera-
tive computations consequently become linear objects in the framework. They
can serve as index objects, which means we can express properties of stateful
systems at a high level of abstraction.

While llf solves many problems associated with stateful computation,
the encoding of concurrent computations remained unsatisfactory for several
reasons. One of the problems is that llf formulations of concurrent systems
inherently sequentialize the computation steps.

In this paper we are concerned with clf, a conservative extension of llf
with intrinsic support for concurrency. Concurrent computations are encapsu-
lated in a monad [15], which permits a simple definitional equality and guar-
antees conservativity over lf and llf. The definitional equality on monadic
expressions identifies different interleavings of independent steps, thereby ex-
pressing true concurrency. Dependent types then allow us to specify proper-
ties of concurrent computations, as long as they do not rely on the order of
independent steps.

We illustrate the framework’s expressive power and representation tech-
niques through a sample encoding of the asynchronous π-calculus with cor-
respondence assertions, following Gordon and Jeffrey [6]. Further examples,
such as encodings of Petri-nets, Concurrent ML, and the security protocol
specification framework msr can be found in another technical report [3].

The remainder of the paper is organized as follows: Section 2 introduces the
π-calculus with which we are concerned and its syntax; Section 3 describes the
original static semantics of Gordon et al. and its clf representation; Section 4
describes the operational semantics of the language and its clf representa-
tion; Section 5 introduces the syntax of traces and describes the abstraction
judgment relating computations and traces, and briefly discusses the safety
criterion; Section 6 briefly describes related work; and Section 7 concludes.
Appendices summarize the π-calculus encoding and the syntax and judgments

47

pr : type.
nm : type.
tp : type.

label : type.

stop : pr. pstopq = stop
par : pr→ pr→ pr. pP | Qq = par pPq pQq

repeat : pr→ pr. prepeat Pq = repeat pPq
new : tp→ (nm→ pr)→ pr. pnew(x :τ); Pq = new pτq (λx. pPq)

choose : pr→ pr→ pr. pchoose P Qq = choose pPq pQq
out : nm→ nm→ pr. pout x〈y〉q = out x y
inp : nm→ tp→ pinp x(y :τ); Pq = inp x pτq (λy. pPq)

(nm→ pr)→ pr.
begin : label→ pr→ pr. pbegin L; Pq = begin pLq pPq

end : label→ pr→ pr. pend L; Pq = end pLq pPq

Fig. 1. Process syntax represented in clf

of the framework.

2 The asynchronous π-calculus with correspondence as-
sertions

Our asynchronous π-calculus with correspondence assertions follows Gordon
and Jeffrey’s presentation [6]. Correspondence assertions, originally developed
by Woo and Lam [20], come in two varieties, begin L and end L, where L is
a label that carries information about the state of a communication protocol.
Gordon and Jeffrey have shown that a variety of important correctness prop-
erties of cryptographic protocols can be stated in terms of matching pairs of
these begin and end assertions.

To illustrate the basic ideas, we will examine a simple handshake protocol
taken directly from Gordon and Jeffrey’s work. This protocol is intended to
ensure that if a sender named a receives an acknowledgment message then
the receiver named b has actually received the message. In the asynchronous
π-calculus with correspondence assertions, we specify the protocol as follows.

Send(a, b, c) = new(msg); new(ack);
(out c〈msg , ack〉
| inp ack(); end (a, b,msg))

Rcv(a, b, c) = inp c(x, y); begin (a, b, x); out y〈〉

The standard π-calculus process constructors used here are parallel compo-
sition (P | Q), generation of a new name x to be used in a process P (new(x); P
where x is bound in P), asynchronous output on channel c (out c〈msg , ack〉),
and input on channel c (inp c(x1, . . . , xn); P where variables x1 through xn are
bound in P). In the protocol, the sending process generates a new message

48

and a new acknowledgment channel. The sender uses the asynchronous out-
put command to send the pair of message and acknowledgment channel on c
and waits for a response on ack . Once the sender receives the acknowledg-
ment, it executes an end assertion which specifies that the sender (named a)
requires that the receiver (named b) has already received the input message
(msg). The receiver cooperates with the sender by waiting for pairs of message
and acknowledgment on channel c. After receiving on c, the begin assertion
declares that the receiver b has received the input message. After this decla-
ration, the receiver sends an acknowledgment to the sender. We hope that in
all executions of senders in parallel with receivers, begin assertions match up
with end assertions. If they do, sender a can be sure that receiver b received
the message msg .

Now, consider combining a single sender in parallel with a single receiver:
new(c); (Send(a, b, c) | Rcv(a, b, c)). This configuration is safe since in every
possible execution, every end (a, b,msg) assertion is preceded in that execution
by a distinct corresponding begin (a, b,msg) assertion. On the other hand,
placing multiple different senders in parallel with a single copy of a receiver is
unsafe:

Send(a, b, c) | Send(a′, b, c) | Rcv(a, b, c)

This configuration is unsafe because there exists an execution in which an
end L assertion is executed but there has been no prior matching begin L.
More specifically, the second sender a′ may create a message and send it to
the receiver. The receiver, thinking it is communicating with a, receives the
message, executes begin (a, b,msg), and returns the acknowledgment. Finally,
the second sender executes end (a′, b,msg). In this protocol, since the identity
of the sender (either a or a′) was not included in the message, there has been
confusion over who the receiver was communicating with. This is a very simple
example, but Gordon and Jeffrey have demonstrated that these assertions can
be used to identify serious flaws in much more complicated and important
protocols.

2.1 Syntax

The syntax of the π-calculus processes P with correspondence assertions is
presented below. We have simplified Gordon and Jeffrey’s calculus in a couple
of ways, replacing polyadic input and output processes with monadic ver-
sions, dropping any data structures other than channels x, y, z and replacing
deterministic if statements with non-deterministic choice (choose P Q). Two
process forms that did not show up in the informal example above are the
process stop, which does nothing, and the replicated process repeat P , which
acts as an unbounded number of copies of itself. The static semantics makes
use of types τ , which are discussed in the next section; these do not affect the
operational semantics of a program.

49

name : tp. pNameq = name
chan : tp→ (nm→ eff)→ tp. pCh(x :τ)eq = chan pτq (λx. peq)

Fig. 2. Type syntax represented in clf

P, Q ::= stop | (P | Q) | repeat P | new(x :τ); P
| choose P Q | out x〈y〉 | inp x(y :τ); P
| begin L; P | end L; P

The representation of process syntax follows standard lf methodology.
The signature, shown in Figure 1, represents process syntax via clf types
pr (processes), nm (names), tp (types), and label (assertion labels). The rep-
resentation function mapping processes to clf objects is shown at the right.

A few comments: The type nm of names does not contain any closed
terms; it classifies bound variables within a process expression. The type tp is
discussed in Section 3. Channels are a special case of names. We do not specify
any particular syntax for assertion labels, but it is assumed that they might
mention names bound by new or inp. As is common in lf representations, we
use higher-order abstract syntax, which allows us to model π-calculus bound
variables using framework variables and to implement π-calculus substitution
using the framework’s substitution.

The most important property of this representation is adequacy : every
process in the original language has its own representative as a clf object of
type pr, and every object in pr is such a representation. The canonical forms
property for clf renders proofs of such results almost trivial.

3 The static semantics

Gordon and Jeffrey present a static semantics with types and effects for their
language. The goal of the static semantics is to ensure that the correspondence
property for assertions is not violated: for each end L assertion reached in an
execution, a distinct begin L assertion for L must have been reached in the
past. The static semantics associates an effect e (a multiset of labels) with
each program point, such that it is safe to execute end L for each label L in
the multiset. (Of course, not all safe programs will necessarily have a valid
typing.)

Since clf includes llf as a sublanguage, we will be able to represent the
static “state” of the effect system as a multiset of linear hypotheses in llf
style [2]. The basic idea is to record a multiset of begins already reached at the
current program point as linear hypotheses of the typing judgment. 5 Then
each occurrence of begin L contributes a linear hypothesis of type effect L for

5 Really these are affine hypotheses, since the invariant is that the multiset be merely a
lower bound: it is perfectly safe to “forget” that a begin was reached at some point in the
past. Careful use of the additives > and & will allow us to simulate affine hypotheses with
linear ones.

50

has : nm→ tp→ type.
good : pr→ type.

consume : eff → type.
assume : eff → pr→ type.

gd stop : good stop ◦− >.
gd par : good (par P Q) ◦− good P ◦− good Q.

gd repeat : good (repeat P) ◦− > ← good P.
gd new : good (new τ (λx. P x))← wftp τ

◦−(Πx :nm. has x τ → good (P x)).
gd choose : good (choose P Q) ◦− (good P & good Q).

gd out : good (out X Y)← has X (chan τ (λy.E y))← has Y τ
◦−consume (E Y).

gd inp : good (inp X τ (λy. P y))← has X (chan τ (λy. E y))
← (Πy :nm. has y τ → assume (E y) (P y)).

gd begin : good (begin L P) ◦− (effect L−◦ good P).
gd end : good (end L P) ◦− effect L ◦− good P.

con eps : consume {1} ◦− >.
con join : consume {let {1} = latent L in let {1} = E in 1}

◦−effect L ◦− consume E.

ass eps : assume {1} P ◦− good P.
ass join : assume {let {1} = latent L in let {1} = E in 1}

◦−(effect L−◦ assume E P).

Fig. 3. Static semantics represented in clf

the checking of its continuation, and each end L consumes such a hypothesis.

This accounts for trivial instances of correct programs in which an end is
found directly within the continuation of its matching begin. Of course, in
actual use, one is more interested in cases in which the end and its matching
begin occur in different processes executing concurrently (as in the example of
Section 2).

Gordon et al. introduce latent effects to treat many such cases. The idea
is that each value transmitted across a channel may carry with it a multiset
of latent effects, the effects being debited from the process sending the value
and credited to the process receiving it. Since communication synchronizes
the sending and receiving processes, it is certain that the begins introducing
the debited effects in the sending process will occur before any ends making
use of the credited effects in the receiving process. 6

These considerations lead to a simple type syntax. Each name in the static
semantics has a type τ : either Name (really nonsense; i.e., just a nonce) or

6 Of course, this implicitly relies on the unicast nature of communication in the language.
If multicast or broadcast were allowed, more than one process could be credited, violating
the non-duplicable nature of effect hypotheses.

51

Ch(x :τ)e, representing a channel transmitting names of type τ and a latent
effect e. These types (“π-types,” for short) are represented by clf type tp, the
constructors of which are shown in Figure 2. Latent effects e are themselves
multisets of labels, and are represented in clf by a type eff discussed below.

Although a latent effect is again a multiset of labels, the llf strategy
of representing multisets by linear hypotheses does not apply, because latent
effects must be first-class values. An lf strategy using explicit list constructors
(cons and nil) would represent the latent effects as first-class values, but the
lf equality on such lists would be too restrictive: [L1, L2] and [L2, L1] are
equal as multisets, but cons L1 (cons L2 nil) and cons L2 (cons L1 nil) are not
necessarily equal as lf objects.

In clf, we have a new alternative: expressions are first-class objects, and
clf’s concurrent equality on them can model multiset equality precisely. Each
label multiset [L1, . . . , Ln] will be represented by an expression {let {1} =
latent L1 in . . . let {1} = latent Ln in 1}. The equality on the representation
then naturally models equality of multisets. We take eff to be a notational
abbreviation for the type {1} of such expressions, and add the following dec-
laration to the signature.

latent : label→ {1}.

In addition, we must axiomatize the objects of type {1} that correspond to
such multisets; this is the judgment wfeff presented in Appendix A.

Next we represent the π-calculus typing judgment itself as a clf type
family good, defined in Figure 3. We use A ◦−B and A← B, which associate
to the left, as alternate forms of B −◦A and B → A, giving the signature the
shape of a logic program. The type A in Πu :A. B has been omitted where it is
determined by context. We often omit outermost Π quantifiers; in such cases
the corresponding arguments to the constant in question are also omitted
(implicit). We have also η-contracted some subterms in order to conserve
space; these should be read as abbreviations for their η-long (canonical) forms.

Since not every declared effect must actually occur (that is, there is im-
plicitly a weakening principle for effects), we must use the additive unit >
to consume any leftover effects at the leaves of a derivation (instances of the
gd stop or con eps rules).

The type family wftp, not shown in the figure (see Appendix A), represents
the judgment that a π-type is well formed, reducing more or less to the judg-
ment wfeff for any latent effects mentioned in the π-type. The type family
has contains no closed objects, but in the course of a derivation of good P ,
hypotheses has x τ will be introduced for each name bound by new or inp
in P . Similarly, the family effect has no closed objects, but in the course of a
typing derivation, linear hypotheses effect L can be introduced by begin and
consumed by end.

The task of assume and consume is to introduce and consume linear hy-

52

potheses for the whole multiset of effects contained in a latent effect. Latent
effects are consumed by out, which has no continuation, and produced by inp,
which does. Accordingly, assume takes the continuation as an argument, and
invokes good to check it once the multiset of effects has been introduced into
the linear context.

It can be shown by extensions of the standard techniques developed for
the llf fragment of clf that this representation is adequate: a process P is
well-typed in the original system just when there is an object of type good P
in clf.

4 The operational semantics

Gordon and Jeffrey’s operational semantics [6] is based on a traced transition
system P

s−→ P ′, where s is a trace: a sequence of begin and end actions, inter-
nal actions τ , and gen actions binding freshly generated names (corresponding
to the execution of new). Although we have not specified the language of la-
bels, it is assumed that they may mention such names. Then P

s−→ P ′ when
P can evolve to P ′ while performing the actions in trace s. The traced transi-
tion system itself depends on the usual notion of structural congruence P ≡ P ′

found in the π-calculus literature.

The clf representation has a somewhat different structure. Since clf has
a first-class notation for concurrent computations, we can factor the traced
transition system into two judgments: first, that a process P has a concurrent
execution E (which is represented by a clf expression); and second, that an
execution E has a (serialized) trace s. This section is concerned with the first
judgment, while the next section treats traces.

Computations in this semantics are represented by clf expressions

x1 :nm, . . . , xm :nm, r1 : run P1, . . . , ri : run Pi;
ri+1

∧:run Pi+1, . . . , rn
∧:run Pn ` E ← >

in a context having unrestricted hypotheses of type nm for each generated
name, unrestricted hypotheses r1 . . . ri of type run P for each process P that is
executing and available unrestrictedly, and linear hypotheses ri+1 . . . rn of type
run P for each process P that is available linearly, where run : pr → type. 7

The final result of the computation is taken as the additive unit >, which
means that computation can stop at any time, with any leftover resources
(linear hypotheses) consumed by 〈〉, its introduction form.

Then each of the structural process constructors stop, par, repeat, and new
can be represented by a corresponding synchronous clf connective:

7 Here ← denotes the lax typing judgment, not reverse implication.

53

ev stop : run stop−◦ {1}.
ev par : run (par P Q)−◦ {run P ⊗ run Q}.

ev repeat : run (repeat P)−◦ {!run P}.
ev new : run (new τ (λu. P u))−◦ {∃u :nm. run (P u)}.

The remaining constructors are interpreted according to their semantics:

ev choosei : run (choose P1 P2)−◦ {run Pi}.
ev sync : run (out X Y)−◦ run (inp X τ (λy. P y))

−◦{run (P Y)}.
ev begin : ΠL : label. run (begin L P)−◦ {run P}.

ev end : ΠL : label. run (end L P)−◦ {run P}.

We depart from the usual practice of leaving outermost Π quantifiers implicit
for reasons that will become clear in Section 5.

One interesting feature of the clf encoding is that many of the structural
equivalences of the original presentation of the π-calculus appear automat-
ically (shallowly) as consequences of the principles of exchange, weakening
(since > is present) and so forth satisfied by clf hypotheses. In the clf
setting the rest of the structural equivalences are captured within a general
notion of simulation, discussed briefly in Section 5.

In this representation, each concurrent computation starting from a pro-
cess P corresponds to a clf object of type run P −◦ {>}; that is, a term
∧
λr. {E} where E is a monadic expression of type > in a context containing
a single linear hypothesis r representing the process P . Because clf’s notion
of equality identifies monadic expressions differing only in the order of exe-
cution of independent computation steps, each such object (modulo equality)
represents the dependence graph of a possible computation. Thus judgments
(represented by clf types) concerning such objects, such as the abstraction
judgment to be introduced in the next section, are predicates on depedence
graphs, not on serialized computations.

There is no simple adequacy result at this stage, since the judgment
P

s−→ P ′ of Gordon et al. refers to the trace s, which is not directly avail-
able in the clf operational semantics. (Moreover, the process P ′ to which P
evolves is only available in clf implicitly as the set of leftover hypotheses con-
sumed by the > introduction at the end of the clf expression representing a
computation.) Once traces and the abstraction judgment relating a computa-
tion to its traces are introduced, it will be possible to state a precise adequacy
result.

5 Traces and abstraction

The syntax of the traces s mentioned in the judgment P
s−→ P ′ of Gordon et al.

can be represented straightforwardly by lf techniques. Though we have left
the label syntax unspecified, it is assumed that labels might depend on names

54

abst : {>} → tr→ type.

abst nil : abst E tnil.
abst stop : abst {let {1} = ev stop∧R in let { } = E in 〈〉} s← abst E s.
abst par : abst {let {r1 ⊗ r2} = ev alt∧R in let { } = E∧r1

∧r2 in 〈〉} s
← (Πr1. Πr2. abst (E∧r1

∧r2) s).
abst repeat : abst {let {!r} = ev repeat∧R in let { } = E r in 〈〉} s

← (Πr. abst (E r) s).
abst new : abst {let {[x, r]} = ev new∧R in let { } = E x∧r in 〈〉}

(tgen (λx. s x))
← (Πx. Πr. abst (E x∧r) (s x)).

abst choosei : abst {let {r} = ev choosei
∧R in let { } = E∧r in 〈〉} (tint s)

← (Πr. abst (E r) s).
abst sync : abst {let {r} = ev sync∧R1

∧R2 in let { } = E∧r in 〈〉} (tint s)
← (Πr. abst (E∧r) s).

abst begin : abst {let {r} = ev begin L∧R in let { } = E∧r in 〈〉} (tbegin L s)
← (Πr. abst (E∧r) s).

abst end : abst {let {r} = ev end L∧R in let { } = E∧r in 〈〉} (tend L s)
← (Πr. abst (E∧r) s).

Fig. 4. The abstraction judgment as a clf program

introduced in the course of the computation, so the actions gen representing
the generation of fresh names in the execution of a new process must bind a
variable in the style of higher-order abstract syntax.

The representation of traces is as follows:

tr : type.

tnil : tr. pεq = tnil
tint : tr→ tr. pτ, sq = tint psq

tbegin : label→ tr→ tr. pbegin L, sq = tbegin pLq psq
tend : label→ tr→ tr. pend L, sq = tend pLq psq
tgen : (nm→ tr)→ tr. pgen 〈x〉, sq = tgen (λx. psq)

Now we are equipped with enough tools to write the abstraction judgment
relating a computation to its traces, as a clf type family abst : {>} → tr →
type, the logic program for which is shown in Figure 4. The first argument
of this relation is the clf object representing the dependence graph of the
computation, while the second argument is an associated trace. The mode
(in the sense of logic programming) is input for the first argument and output
for the second. However, the relation is not a function, because from a single
execution (as dependence graph) many possible (serial) abstractions as a trace
might be extracted. Nevertheless, each execution has at least one abstraction
as a trace.

It is also noteworthy that the context in which the abst judgment executes
uses unrestricted hypotheses r : run P for each executing process P , whether

55

or not the corresponding process was represented by a linear hypothesis in the
original execution. This is a common phenomenon when writing higher-level
judgments in llf style.

This judgment, taken together with clf’s equality admitting concurrency
equations, defines for each concurrent computation the set of possible serializa-
tions of that computation as a trace. The traces need not describe the whole
computation; the rule abst nil allows abstraction to stop after computing the
trace of any prefix of the computation. This suffices because we are interested
only in safety properties, which are violated whenever they are violated on a
prefix of the computation.

We would like to show that each traced transition P
s−→ P ′ of Gordon

and Jeffrey’s system corresponds to an object
∧
λr. E : run P −◦ {>} as in

Section 4 together with an abstraction abst E s yielding the same trace. As
it turns out, this is not quite the case, because the structural equivalences
considered in that paper induce certain rearrangements of tgen with respect
to other actions that are not possible in the clf variant. However, defining an
appropriate notion of “similarity” on traces admitting rearrangement of tgen
steps (which, moreover, can be characterized by another clf judgment), we
find that each traced transition is in correspondence with a clf expression
and abstraction yielding a “similar” trace.

The proof technique is illustrative but is not presented here in detail. In
brief, one considers the notion of simulation P1 � P2 induced by the clf
operational semantics of Section 4, abstraction, and “similarity” of traces:
whenever P1 and some context consisting of other processes and names yields
a given trace, P2 yields a similar trace in the same context. Then all the
structural equivalences of the traced transition system are simulations in this
sense, and it follows easily that each traced transition has its clf counterpart.
The converse is simple, because each rule of the clf operational semantics is
immediately available as a step of the traced transition system (or a structural
equivalence). So we have:

Proposition 1 (Adequacy of operational semantics) The traced transi-
tion system proves P

s−→ P ′ for some P ′ just when there exist E : run pPq −◦
{>} and A : (Πr. abst (E∧r) s′) (in a context binding the free names of P and
P ′), and s is similar to s′.

Finally, we can define the safety criterion for processes. In a constructive
setting, it is easiest to characterize unsafety, because it is witnessed by finitary
evidence. A process is unsafe precisely when it has an execution admitting
some abstraction as a trace that violates the correspondence property (see
Section 2). It turns out to be easy to write a clf judgment characterizing
those traces that violate the correspondence property (see Appendix A). Thus,
each step of the criterion is modeled by a clf judgment, and we can write
an overall judgment unsafe P , which, as a clf type, contains all the proofs of
unsafety of P . This turns out to be the same, mutatis mutandis, as Gordon

56

and Jeffrey’s definition.

6 Related work

Right from its inception, linear logic [5] has been advocated as a logic with an
intrinsic notion of state and concurrency. In the literature, many connections
between concurrent calculi and linear logic have been observed. Due to space
constraints we cannot survey this relatively large literature here. In a logical
framework, we remove ourselves by one degree from the actual semantics; we
represent rather than embed calculi. Thereby, clf provides another point of
view on many of the prior investigations.

Most closely related to our work is Miller’s logical framework Forum [13],
which is based on a sequent calculus for classical linear logic and focusing
proofs [1]. As shown by Miller and elaborated by Chirimar [4], Forum can
also represent concurrency. Our work extends Forum in several directions.
Most importantly, it is a type theory based on natural deduction and therefore
offers an internal notion of proof object that is not available in Forum. Among
other things, this means we can explicitly represent relations on deductions
and therefore on concurrent computations.

There have been several formalizations of versions of the π-calculus in a
variety of reasoning systems, such as hol [11], Coq [8,9], Isabelle/HOL [17]
or Linc [14]. A distinguishing feature of our sample encoding in this paper is
the simultaneous use of higher-order abstract syntax, linearity, modality, and
the intrinsic notion of concurrent computations. Also, we are not aware of a
formal treatment of correspondence assertions or dependent effect typing for
the π-calculus.

Systems based on rewriting logic, such as Maude [12], natively support
concurrent specifications (and have been used to model Petri nets, ccs, the
π-calculus, etc). However, lacking operators comparable to clf’s dependent
types and proof-terms, Maude users must code concurrent computations in-
dependently from the concurrent systems that originate them.

As already mentioned above, clf is a conservative extension of llf with
the asynchronous connectives ⊗, 1, !, and ∃, encapsulated in a monad. The
idea of monadic encapsulation goes back to Moggi’s monadic meta-language [15]
and is used heavily in functional programming. Our formulation follows the
judgmental presentation of Pfenning and Davies [16] that completely avoids
the need for commuting conversions, but treats neither linearity nor the ex-
istence of normal forms. This permits us to reintroduce some equations to
model true concurrency in a completely orthogonal fashion.

7 Conclusions

The goal of this work has been to extend the elegant and logically motivated
representation strategies for syntax, judgments, and state available in lf and

57

llf to the concurrent world. We have shown how the availability of a nota-
tion for concurrent executions, admitting a proper truly concurrent equality,
enables powerful strategies for specifying properties of such executions.

Ultimately, it should become as simple and natural to manipulate the
objects representing concurrent executions as it is to manipulate lf objects.
If higher-order abstract syntax means never having to code up α-conversion or
capture-avoiding substitution ever again, we hope that in the same way, the
techniques explored here can make it unnecessary to code up multiset equality
or concurrent equality ever again, so that intellectual effort can be focused on
reasoning about deeper properties of concurrent systems.

References

[1] Andreoli, J.-M., Logic programming with focusing proofs in linear logic, Journal
of Logic and Computation 2 (1992), pp. 197–347.

[2] Cervesato, I. and F. Pfenning, A linear logical framework, Information &
Computation 179 (2002), pp. 19–75.

[3] Cervesato, I., F. Pfenning, D. Walker and K. Watkins, A concurrent logical
framework II: Examples and applications, Technical Report CMU-CS-02-102,
Department of Computer Science, Carnegie Mellon University (2002), revised
May 2003.

[4] Chirimar, J. L., “Proof Theoretic Approach to Specification Languages,” Ph.D.
thesis, University of Pennsylvania (1995).

[5] Girard, J.-Y., Linear logic, Theoretical Computer Science 50 (1987), pp. 1–102.

[6] Gordon, A. D. and A. Jeffrey, Typing correspondence assertions for
communication protocols, Theoretical Computer Science 300 (2003), pp. 379–
409.

[7] Harper, R., F. Honsell and G. Plotkin, A framework for defining logics, Journal
of the Association for Computing Machinery 40 (1993), pp. 143–184.

[8] Hirschkoff, D., A full formalisation of pi-calculus theory in the Calculus
of Constructions, in: E. Gunter and A. Felty, editors, Proceedings of the
10th International Conference on Theorem Proving in Higher-Order Logics
(TPHOLs’97) (1997), pp. 153–169.

[9] Honsell, F., M. Miculan and I. Scagnetto, Pi-calculus in (co)inductive type
theories, Theoretical Computer Science 253 (2001), pp. 239–285.

[10] Ishtiaq, S. and D. Pym, A relevant analysis of natural deduction, Journal of
Logic and Computation 8 (1998), pp. 809–838.

[11] Melham, T., A mechanized theory of the pi-calculus in HOL, Nordic Journal of
Computing 1 (1995), pp. 50–76.

58

[12] Meseguer, J., Software specification and verification in rewriting logic, Lecture
notes for the Marktoberdorf International Summer School, Germany (2002).

[13] Miller, D., A multiple-conclusion meta-logic, in: S. Abramsky, editor, Ninth
Annual Symposium on Logic in Computer Science (1994), pp. 272–281.

[14] Miller, D. and A. Tiu, A proof theory for generic judgments, in: P. Kolaitis,
editor, Proceedings of the 18th Annual Symposium on Logic in Computer
Science (LICS’03) (2003), pp. 118–127.

[15] Moggi, E., Notions of computation and monads, Information and Computation
93 (1991), pp. 55–92.

[16] Pfenning, F. and R. Davies, A judgmental reconstruction of modal logic,
Mathematical Structures in Computer Science 11 (2001), pp. 511–540, notes to
an invited talk at the Workshop on Intuitionistic Modal Logics and Applications
(IMLA’99), Trento, Italy, July 1999.

[17] Röckl, C., D. Hirschkoff and S. Berghofer, Higher-order abstract syntax with
induction in Isabelle/HOL: Formalizing the pi-calculus and mechanizing the
theory of contexts, in: F. Honsell and M. Miculan, editors, Proceedings of the 4th
International Conference on Foundations of Software Science and Computation
Structures (FOSSACS’01) (2001), pp. 364–378.

[18] Watkins, K., I. Cervesato, F. Pfenning and D. Walker, A concurrent logical
framework I: Judgments and properties, Technical Report CMU-CS-02-101,
Department of Computer Science, Carnegie Mellon University (2002), revised
May 2003.

[19] Watkins, K., I. Cervesato, F. Pfenning and D. Walker, A concurrent logical
framework: The propositional fragment, in: Types for Proofs and Programs,
Springer-Verlag LNCS, 2004 Selected papers from the Third International
Workshop Torino, Italy, April 2003. To appear.

[20] Woo, T. and S. Lam, A semantic model for authentication protocols, in:
Proceedings of the 1993 IEEE Computer Society Symposium on Research in
Security and Privacy (1993), pp. 178–194.

59

A π-calculus encoding summarized

Syntax.

eff = {1} : type.
latent : label→ eff. p[L1, . . . , Ln]q =

{let {1} = latent pL1q in . . .
let {1} = latent pLnq in 1}

name : tp. pNameq = name
chan : tp→ (nm→ eff)→ tp. pCh(x :τ)eq = chan pτq (λx. peq)

stop : pr. pstopq = stop
par : pr→ pr→ pr. pP | Qq = par pPq pQq

repeat : pr→ pr. prepeat Pq = repeat pPq
new : tp→ (nm→ pr)→ pr. pnew(x :τ); Pq = new pτq (λx. pPq)

choose : pr→ pr→ pr. pchoose P Qq = choose pPq pQq
out : nm→ nm→ pr. pout x〈y〉q = out x y
inp : nm→ tp→ pinp x(y :τ); Pq = inp x pτq (λy. pPq)

(nm→ pr)→ pr.
begin : label→ pr→ pr. pbegin L; Pq = begin pLq pPq

end : label→ pr→ pr. pend L; Pq = end pLq pPq

tnil : tr. pεq = tnil
tint : tr→ tr. pτ, sq = tint psq

tbegin : label→ tr→ tr. pbegin L, sq = tbegin pLq psq
tend : label→ tr→ tr. pend L, sq = tend pLq psq
tgen : (nm→ tr)→ tr. pgen 〈x〉, sq = tgen (λx. psq)

Dynamic semantics.

ev stop : run stop−◦ {1}.
ev par : run (par P Q)−◦ {run P ⊗ run Q}.

ev repeat : run (repeat P)−◦ {!run P}.
ev new : run (new τ (λu. P u))−◦ {∃u :nm. run (P u)}.

ev choosei : run (choose P1 P2)−◦ {run Pi}.
ev sync : run (out X Y)−◦ run (inp X τ (λy. P y))−◦ {run (P Y)}.

ev begin : ΠL : label. run (begin L P)−◦ {run P}.
ev end : ΠL : label. run (end L P)−◦ {run P}.

60

Static semantics.

wflab : label→ type.

wfeff : eff → type.
wff eps : wfeff {1}.
wff lat : wfeff {let {1} = latent L in let {1} = E in 1} ← wflab L← wfeff E.

wftp : tp→ type.
wf name : wftp name.
wf chan : wftp (chan τ (λx.E x))← wftp τ ← (Πx. has x τ → wfeff (E x)).

consume : eff → type.
assume : eff → pr→ type.

con eps : consume {1} ◦− >.
con join : consume {let {1} = latent L in let {1} = E in 1}

◦−effect L ◦− consume E.

ass eps : assume {1} P ◦− good P.
ass join : assume {let {1} = latent L in let {1} = E in 1}

◦−(effect L−◦ assume E P).

has : nm→ tp→ type.
good : pr→ type.

gd stop : good stop ◦− >.
gd par : good (par P Q) ◦− good P ◦− good Q.

gd repeat : good (repeat P) ◦− > ← good P.
gd new : good (new τ (λx. P x))← wftp τ

◦−(Πx :nm. has x τ → good (P x)).
gd choose : good (choose P Q) ◦− (good P & good Q).

gd out : good (out X Y)← has X (chan τ (λy. E y))← has Y τ
◦−consume (E Y).

gd inp : good (inp X τ (λy. P y))← has X (chan τ (λy.E y))
← (Πy :nm. has y τ → assume (E y) (P y)).

gd begin : good (begin L P) ◦− (effect L−◦ good P).
gd end : good (end L P) ◦− effect L ◦− good P.

61

Abstraction.

abst : {>} → tr→ type.

abst nil : abst E tnil.
abst stop : abst {let {1} = ev stop∧R in let { } = E in 〈〉} s← abst E s.
abst par : abst {let {r1 ⊗ r2} = ev alt∧R in let { } = E∧r1

∧r2 in 〈〉} s
← (Πr1. Πr2. abst (E∧r1

∧r2) s).
abst repeat : abst {let {!r} = ev repeat∧R in let { } = E r in 〈〉} s

← (Πr. abst (E r) s).
abst new : abst {let {[x, r]} = ev new∧R in let { } = E x∧r in 〈〉}

(tgen (λx. s x))
← (Πx. Πr. abst (E x∧r) (s x)).

abst choosei : abst {let {r} = ev choosei
∧R in let { } = E∧r in 〈〉} (tint s)

← (Πr. abst (E r) s).
abst sync : abst {let {r} = ev sync∧R1

∧R2 in let { } = E∧r in 〈〉} (tint s)
← (Πr. abst (E∧r) s).

abst begin : abst {let {r} = ev begin L∧R in let { } = E∧r in 〈〉} (tbegin L s)
← (Πr. abst (E∧r) s).

abst end : abst {let {r} = ev end L∧R in let { } = E∧r in 〈〉} (tend L s)
← (Πr. abst (E∧r) s).

Safety.

invalid : tr→ type.
remove : label→ tr→ tr→ type.

6= : label→ label→ type.

inval end : invalid (tend).
inval int : invalid (tint s)← invalid s.

inval gen : invalid (tgen (λx. s x))← (Πx. invalid (s x)).
inval begin : invalid (tbegin L s)← remove L s s′ ← invalid s′.

rem match : remove L (tend L s) s.
rem nil : remove L tnil tnil.
rem int : remove L (tint s) (tint s′)← remove L s s′.

rem gen : remove L (tgen (λx. s x)) (tgen (λx. s x))
← (Πx. remove L (s x) (s′ x)).

rem begin : remove L (tbegin L′ s) (tbegin L′ s′)← remove L s s′.
rem end : remove L (tend L′ s) (tend L′ s′)← L 6= L′ ← remove s s′.

invalid : tr→ type.
unsafe : pr→ type.

show unsafe : ΠE : (run P −◦ {>}). unsafe P ← (Πr. abst (E∧r) s)← invalid s.

62

B CLF type theory summarized

See the technical report [18] for further details.

Syntax.

K,L ::= type | Πu :A. K

A, B, C ::= A−◦B | Πu :A. B | A & B

| > | {S} | P
P ::= a | P N

S ::= ∃u :A. S | S1 ⊗ S2 | 1 | !A | A

Γ ::= · | Γ, u :A

∆ ::= · | ∆, x∧:A

Σ ::= · | Σ, a :K | Σ, c :A

N ::=
∧
λx. N | λu. N | 〈N1, N2〉
| 〈〉 | {E} | R

R ::= c | u | x | R∧N | R N | π1R | π2R

E ::= let {p} = R in E |M
M ::= [N, M] |M1 ⊗M2 | 1 | !N | N

p ::= [u, p] | p1 ⊗ p2 | 1 | !u | x

Ψ ::= p∧:S, Ψ | ·

Typing.

Judgments.

Γ `Σ K ⇐ kind

Γ `Σ A⇐ type

Γ `Σ P ⇒ K

Γ `Σ S ⇐ type

Γ; ∆ `Σ N ⇐ A

Γ; ∆ `Σ R⇒ A

Γ; ∆ `Σ E ← S

Γ; ∆; Ψ `Σ E ← S

Γ; ∆ `Σ M ⇐ S

` Σ ok

`Σ Γ ok

Γ `Σ ∆ ok

Γ `Σ Ψ ok

inst kA(u. K, N) = K ′

inst aA(u. B, N) = B′

inst sA(u. S, N) = S ′

63

Rules.

` · ok
` Σ ok · `Σ K ⇐ kind

` Σ, a :K ok
` Σ ok · `Σ A⇐ type

` Σ, c :A ok

`Σ · ok
`Σ Γ ok Γ `Σ A⇐ type

`Σ Γ, u :A ok

Γ `Σ · ok

Γ `Σ ∆ ok Γ `Σ A⇐ type

Γ `Σ ∆, x∧:A ok

Γ `Σ · ok

Γ `Σ S ⇐ type Γ `Σ Ψ ok

Γ `Σ p∧:S, Ψ ok

Henceforth, it will be assumed that all judgments are considered relative
to a particular fixed signature Σ, and the signature indexing each of the other
typing judgments will be suppressed.

Γ ` type⇐ kind
typeKF

Γ ` A⇐ type Γ, u :A ` K ⇐ kind
Γ ` Πu :A. K ⇐ kind

ΠKF

Γ ` A⇐ type Γ ` B ⇐ type
Γ ` A−◦B ⇐ type

−◦F
Γ ` A⇐ type Γ, u :A ` B ⇐ type

Γ ` Πu :A. B ⇐ type
ΠF

Γ ` A⇐ type Γ ` B ⇐ type
Γ ` A & B ⇐ type

&F
Γ ` > ⇐ type

>F

Γ ` S ⇐ type

Γ ` {S} ⇐ type
{}F

Γ ` P ⇒ type
Γ ` P ⇐ type

⇒type⇐

Γ ` a⇒ Σ(a)
a

Γ ` P ⇒ Πu :A. K Γ; · ` N ⇐ A

Γ ` P N ⇒ inst kA(u. K, N)
ΠKE

Γ ` S1 ⇐ type Γ ` S2 ⇐ type
Γ ` S1 ⊗ S2 ⇐ type

⊗F
Γ ` 1⇐ type

1F

Γ ` A⇐ type Γ, u :A ` S ⇐ type
Γ ` ∃u :A. S ⇐ type

∃F
Γ ` A⇐ type
Γ ` !A⇐ type

!F

Γ; ∆, x∧:A ` N ⇐ B

Γ; ∆ `
∧
λx. N ⇐ A−◦B

−◦I Γ, u :A; ∆ ` N ⇐ B

Γ; ∆ ` λu. N ⇐ Πu :A. B
ΠI

Γ; ∆ ` N1 ⇐ A Γ; ∆ ` N2 ⇐ B

Γ; ∆ ` 〈N1, N2〉 ⇐ A & B
&I

Γ; ∆ ` 〈〉 ⇐ > >I

Γ; ∆ ` E ← S

Γ; ∆ ` {E} ⇐ {S} {}I
Γ; ∆ ` R⇒ P ′ P ′ ≡ P

Γ; ∆ ` R⇐ P
⇒⇐

64

Γ; · ` c⇒ Σ(c)
c

Γ; · ` u⇒ Γ(u)
u

Γ; x∧:A ` x⇒ A
x

Γ; ∆1 ` R⇒ A−◦B Γ; ∆2 ` N ⇐ A

Γ; ∆1, ∆2 ` R∧N ⇒ B
−◦E Γ; ∆ ` R⇒ A & B

Γ; ∆ ` π1R⇒ A
&E1

Γ; ∆ ` R⇒ Πu :A. B Γ; · ` N ⇐ A

Γ; ∆ ` R N ⇒ inst aA(u. B, N)
ΠE

Γ; ∆ ` R⇒ A & B

Γ; ∆ ` π2R⇒ B
&E2

Γ; ∆1 ` R⇒ {S0} Γ; ∆2; p
∧:S0 ` E ← S

Γ; ∆1, ∆2 ` (let {p} = R in E)← S
{}E

Γ; ∆ `M ⇐ S

Γ; ∆ `M ← S
⇐←

Γ; ∆; p1
∧:S1, p2

∧:S2, Ψ ` E ← S

Γ; ∆; p1 ⊗ p2
∧:S1 ⊗ S2, Ψ ` E ← S

⊗L
Γ; ∆; Ψ ` E ← S

Γ; ∆; 1∧:1, Ψ ` E ← S
1L

Γ, u :A; ∆; p∧:S0, Ψ ` E ← S

Γ; ∆; [u, p]∧:∃u :A. S0, Ψ ` E ← S
∃L

Γ, u :A; ∆; Ψ ` E ← S

Γ; ∆; !u∧:!A, Ψ ` E ← S
!L

Γ; ∆ ` E ← S

Γ; ∆; · ` E ← S
←← Γ; ∆, x∧:A; Ψ ` E ← S

Γ; ∆; x∧:A, Ψ ` E ← S
AL

Γ; ∆1 `M1 ⇐ S1 Γ; ∆2 `M2 ⇐ S2

Γ; ∆1, ∆2 `M1 ⊗M2 ⇐ S1 ⊗ S2
⊗I

Γ; · ` 1⇐ 1
1I

Γ; · ` N ⇐ A Γ; ∆ `M ⇐ inst sA(u. S, N)

Γ; ∆ ` [N, M]⇐ ∃u :A. S
∃I Γ; · ` N ⇐ A

Γ; · ` !N ⇐ !A
!I

65

LFM 2004 Preliminary Version

A Coq Library for Verification of Concurrent
Programs

Reynald Affeldt a,1 Naoki Kobayashi b,2

a Department of Computer Science, University of Tokyo, Tokyo, Japan
b Department of Computer Science, Tokyo Institute of Technology, Tokyo, Japan

Abstract

Thanks to recent advances, modern proof assistants now enable verification of real-
istic sequential programs. However, regarding the concurrency paradigm, previous
work essentially focused on formalization of abstract systems, such as pure con-
current calculi, which are too minimal to be realistic. In this paper, we propose a
library that enables verification of realistic concurrent programs in the Coq proof
assistant. Our approach is based on an extension of the π-calculus whose encoding
enables such programs to be modeled conveniently. This encoding is coupled with a
specification language akin to spatial logics, including in particular a notion of fair-
ness, which is important to write satisfactory specifications for realistic concurrent
programs. In order to facilitate formal proof, we propose a collection of lemmas
that can be reused in the context of different verifications. Among these lemmas,
the most effective for simplifying the proof task take advantage of confluence prop-
erties. In order to evaluate feasibility of verification of concurrent programs using
this library, we perform verification for a non-trivial application.

Key words: Coq, concurrent programs, π-calculus

1 Introduction

Concurrent programs are ubiquitous: multi-threaded programs in network
servers, distributed programs for database applications, etc. In order to guar-
antee their correctness and security properties, it is important to verify them
formally. The main difficulty in formally verifying concurrent programs is
the size of their state space. The latter can be very large (because of non-
determinism) and even infinite (for non-terminating applications, such as re-
active systems).

1 Email: affeldt@yl.is.s.u-tokyo.ac.jp
2 Email: kobayasi@kb.cs.titech.ac.jp

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

66

Proof assistants and model checkers can be regarded as complementary
tools for formal verification. Model checkers are fully automated but can only
handle finite state space systems (without appropriate abstraction techniques).
Proof assistants are interactive but they can handle infinite state space systems
directly, using inductive reasoning. In this paper, we are concerned with formal
verification based on proof assistants.

Proof assistants have been applied successfully to the formal verification
of sequential programs. There exist tools to enable practical verification of
imperative programs (e.g., [11]). Proof assistants have been used to verify
realistic programs (e.g., [3,24,2]).

Regarding concurrency, previous work using proof assistants has focused
on abstract concurrent systems rather than on realistic concurrent programs.
There are many formalizations of pure concurrent calculi (e.g., [14,10,15,25,26])
and experiments with the combined use of proof assistants and model check-
ers for minimal concurrent languages (e.g., [29,19]). This work demonstrates
the usefulness of proof assistant-based formal verification for concurrent pro-
grams. However, the minimality of formalized calculi and languages makes it
cumbersome to verify realistic concurrent programs. Moreover, in view of the
large proof developments in previous work, it is even questionable whether
such verifications can be done in practice. For these reasons, we think that
formal verification of realistic concurrent programs has not yet been addressed
satisfactorily.

In this paper, we introduce a library that enables verification of realistic
concurrent programs using a general-purpose proof assistant, namely Coq [27].
This library consists of:

• A modeling language with attractive features for verification of realistic
concurrent programs. This modeling language is based on the π-calculus
[20] (a foundational language for the study of concurrent systems) but is
different from encodings developed in previous work in that it allows Coq
datatypes and control structures to be used. Consequently, it makes it
easy to model realistic concurrent programs and to run these models using
existing virtual machines and compilers.

• A specification language for realistic concurrent programs. In particular, it
provides a notion of fairness that is necessary to write satisfactory specifi-
cations for realistic concurrent programs.

• A collection of lemmas in order to facilitate formal proof. The most effective
lemmas are based on confluence properties. They allow for smaller formal
proofs by reducing the state space that needs to be explored for the purpose
of verification.

To evaluate the feasibility of verification of concurrent programs using our
library, we have performed formal verification of an existing mail server.

67

Paper Outline

We explain the three parts of the library in turn (the modeling language,
the specification language and the collection of lemmas) and then report on
the case study. We use the syntax of Coq (version 7).

2 Modeling Language

In this section, we introduce (a Coq encoding of) a simple concurrent language
that can be used to model a wide range of realistic concurrent programs. Sim-
plicity and generality are inherited from the π-calculus, on which this model-
ing language is based. Because of its minimality, the (pure) π-calculus is not
well-suited to modeling of realistic concurrent programs. The main reason
is that datatypes and control structures (conditionals and functions) need to
be encoded by means of the concurrent primitives. Our modeling language
addresses this shortcoming by extending the π-calculus with datatypes and
functions, similarly to the Pict programming language [23]. We call our mod-
eling language applπ, which stands for “applied π-calculus” 3 .

In Sect. 2.1 and Sect. 2.2 we discuss the encoding of the syntax and the
operational semantics of applπ, respectively.

2.1 Syntax Encoding

The syntax of applπ consists of channels and processes. Intuitively, processes
perform computations and exchange values with other processes through chan-
nels.

Channels are encoded by means of the functional type chan. Any type
in Set can be used as a datatype for communicated values, and channels
themselves can be communicated:

Axiom chan : Set -> Set.

Processes are encoded by means of the inductive type proc. Each con-
structor of proc corresponds to a concurrent primitive of the π-calculus 4 :

Inductive proc : Type :=

zeroP: proc

| inP: (A:Set)(chan A) -> (A -> proc) -> proc

| rinP: (A:Set)(chan A) -> (A -> proc) -> proc

| outP: (A:Set)(chan A) -> A -> proc -> proc

| parP: proc -> proc -> proc

| nuP: (A:Set)((chan A) -> proc) -> proc.

3 We introduce this abbreviation to avoid confusion with Abadi and Fournet’s applied
π-calculus [1] which is an extension of the π-calculus to study security protocols.
4 The concurrent primitives of applπ are more precisely a subset of those of the π-calculus:
replication is restricted to input processes and there is no external choice. These restrictions
have little impact on expressiveness, as discussed in [23].

68

Intuitively, zeroP represents the inert process. (inP c [x:A]P) represents an
input process: it waits for some value v of type A along the channel c and then
behaves as process ([x:A]P v). (outP c v P) represents an output process:
it sends the value v along the channel c and then behaves as process P. (parP
P Q) represents the parallel composition of the processes P and Q. (rinP c

[x:A]P) represents replicated input: it waits for some value v of type A along
the channel c and then behaves as process (parP (rinP c [x:A]P) ([x:A]P

v)). The process (nuP [x:(chan A)]P) represents channel creation: it cre-
ates a new channel c’ and then behaves as the process ([x:(chan A)]P c’).
Processes are in the Type universe so that they cannot be sent as data.

This encoding allows the Coq language to be used as the functional core
of applπ. This effect is achieved by higher-order abstract syntax (HOAS),
an encoding technique used to ease the management of binders. Concretely,
process continuations for input and channel creation primitives are taken to be
Coq functions. Thus, one can use the Coq language to write applπ processes.
Our encoding can be said to be a deep embedding because we define the syntax
as an inductive type that we use in the next section to define the operational
semantics. However, the ability to integrate Coq functions gives it also the
flavor of a shallow embedding. (See for instance [21] or [25] for definitions.)

The use of dependent types guarantees that channels are used consistently
according to their type. For instance, (inP c [x:A]P) is rejected by Coq if c
has not type chan A. Without dependent types, we would have to introduce
a sum type for values and insert explicit tagging/untagging to perform data
emission and reception, what would make modeling in applπ cumbersome.
The combined use of HOAS and dependent types makes our encoding different
from previous work on encoding of the π-calculus in Coq.

The following definitions are used in the rest of the paper. They represent
output and input processes without continuations:

Definition OutAtom [A:Set; x:(chan A); v:A] := (outP x v zeroP).

Definition InAtom [A:Set; x:(chan A)] := (inP x [x:A]zeroP).

Before discussing the formal operational semantics, we illustrate the prac-
tical advantages of applπ as a modeling language.

2.1.1 Modeling Realistic Concurrent Programs

By way of example, we show below how to model a simple client/server pro-
gram.

The process below represents a simple server. It waits on the channel
i for a request, more precisely a pair of a natural number and a channel. It
computes the successor of the received natural number and sends it back using
the received channel:

69

Definition server [i:(chan nat*(chan nat))]:proc :=

(rinP i [ar:?]

let a = (Fst ar) in let r = (Snd ar) in

(OutAtom r (plus a (1)))).

We observe that it is easy to write realistic programs because our encoding
provides us with the Coq language and the Coq standard library (here: let

construct; plus, Fst, Snd functions).

The process below represents a client for the above server. It sends a
request and waits for the answer of the server along a channel it has created.
Eventually, it displays the server response along the channel o:

Definition client [i:(chan nat*(chan nat));o:(chan nat)]:proc :=

(nuP [r:?]

(parP (OutAtom i ((0),r)) (inP r [x:?](OutAtom o x)))).

The parallel composition (parP (server i) (client i o)) models a
simple client/server program. We discuss further modeling issues in our case
study.

2.1.2 Executing applπ Models

It is possible to run applπ models with little modification by using the extrac-
tion facility of Coq. For instance, the server above can be turned into OCaml
code:

Coq < Recursive Extraction server.

...

(* various OCaml data structures and functions, including

a datatype for concurrent primitives and the plus function *)

...

let server i =

RinP (False, i, (fun ar -> OutP (True, (snd ar),

(plus (fst ar) (S O)), ZeroP)))

To run that program using existing virtual machines or compilers, it is suf-
ficient to replace the type constructors for concurrent primitives by OCaml
functions with the appropriate semantics. For a sample OCaml module with
such functions, see http://web.yl.is.s.u-tokyo.ac.jp/~affeldt/applpi.

This facility can be used to run applπ models as programs on their own.
More radically, one can use applπ not as a modeling language but as a pro-
gramming language, the Coq interface providing static type checking (a la
polyadic π-calculus, thanks to our use of dependent types) and OCaml pro-
viding an efficient execution environment for formally verified programs.

70

http://web.yl.is.s.u-tokyo.ac.jp/~affeldt/applpi

2.2 Operational Semantics Encoding

The operational semantics of applπ is a relation between processes, which
defines what it means for a process to execute actions such as data emis-
sion/reception and channel creation. Similarly to the syntax, the operational
semantics is borrowed from the π-calculus. More precisely, it is a non-standard
labeled transition semantics. Before explaining the encoding, we justify the
need for a non-standard semantics.

Our use of HOAS makes it difficult to encode the standard semantics of
the π-calculus. The difficulty comes from the fact that ν-bound channels and
conditionals are handled at the meta-level in our syntax encoding (respectively
by Coq variables and Coq case analysis). For illustration, let us consider the
following applπ process:

(nuP [x:?](parP (inP x [_:?](OutAtom x v)) (OutAtom x v)))

Using a standard semantics, we would expect it to reduce by communication
along channel x to the process:

(nuP [x:?](OutAtom x v))

It is difficult to write in Coq a rule to perform such reductions because the
processes that are reduced are inside a meta-level λ-abstraction. Honsell et
al. [15] solve this problem in their HOAS encoding of the (pure) π-calculus by
introducing several artifacts. For instance, their encoding of the standard rule
for channel creation requires an additional predicate to check occurrence of a
channel in a process (predicate notin in the rule fRES in [15]). However, such a
predicate cannot be defined for applπ because conditionals are represented by
Coq case analysis (whereas they are represented by type constructors in [15]).

Our solution is to distinguish between channels already created and chan-
nels to be created. For this purpose, instead of considering sole processes, we
consider states, i.e. pairs of a process with the list of the channels created so
far. In a state, channels already created appear in the list and the channels to
be created appear as ν-bound channel in the process. (In comparison, both
kinds of channels are represented by ν-bound channels in standard semantics.)
We denote by L#P the state composed of the list L and the process P, by nilC

the empty list, and by & the addition of an element to a list. The applπ process
above is rewritten into the state:

nilC#(nuP [x:?](parP (inP x [_:?](OutAtom x v)) (OutAtom x v)))

Using our non-standard semantics, it first creates a new channel x’ to re-
place x:

x’&nilC#(parP (inP x’ [_:?](OutAtom x’ v)) (OutAtom x’ v))

and then reduces by communication along channel x’:

x’&nilC#(OutAtom x’ v)

Concretely, the operational semantics is encoded by means of two inductive

71

predicates Trans and Redwith.

(Trans P l Q) means that process P reduces to process Q by performing
the elementary action l (of type TrLabel, representing either data emission,
data reception, channel creation or communication). The formal definition of
the Trans predicate is similar to standard labeled transition semantics except
for the rule for channel creation:

Inductive Trans: proc-> TrLabel -> proc -> Prop :=

...

| tr_new: (A:Set)(C:(chan A)->proc)(x:(chan A))

(Trans (nuP C) (NewL x) (C x))

...

(Redwith S l S’) means that state S reduces to state S’ by performing a
communication or a channel creation (action of type RedLabel). In particular,
it captures what it means for a channel to be new (or fresh): simply that it
does not appear in the list of channels created so far.

Inductive Redwith: state -> RedLabel -> state -> Prop :=

...

| red_new: (L:ChanList)(P,Q:proc)(A:Set)(x:(chan A))

(Trans P (NewL x) Q) -> (fresh x L) ->

(Redwith L#P (New x) (x&L)#Q).

In the following, when (Redwith S l S’) is true for some l, we write
(Red S S’). We also write Reds for the reflexive, transitive closure of Red.

3 Specification Language

Specification of concurrent programs deals with questions such as reachabil-
ity of desirable states. There are several specification languages (or logics)
designed for that purpose, such as spatial logics [4] or Dam’s π-µ-calculus
[9]. The specification language provided in our library is based on Cardelli
and Gordon’s spatial logic [4], because we found it expressive enough for our
purpose.

Concerning temporal formulas, an important issue developed in our speci-
fication language is formalization of strong fairness. Intuitively, strong fairness
is a system property enjoyed by execution environments in which communica-
tions that can execute infinitely often are eventually scheduled for execution.
It is an important assumption without which we cannot write satisfactory
specifications for realistic concurrent programs. For instance, let us consider
the following program:

(parP (parP (OutAtom d v) (inP d [_:?](OutAtom e v)))

(parP (OutAtom c v) (rinP c [_:?](OutAtom c v))))

A property that one might want to check is that the process (OutAtom e v) is
eventually revealed. However, without the fairness assumption, this property

72

does not even hold.

We show in Sect. 3.1 how we encode the fairness assumption and in Sect. 3.2
we give the semantics of the formulas of our specification language.

3.1 Encoding of the Fairness Assumption

Fairness is expressed by means of quantifications over runs of concurrent pro-
grams. We first explain how we encode runs.

3.1.1 Encoding of Runs

A run intuitively consists of a maximal sequence of successive reductions.

A state sequence is an indexed set of optional states. A stable state is a
state that cannot evolve anymore.

Definition stateSeq : Type := nat -> (optionT state).

Definition Stable [S:state] : Prop := ~(EXT T:state | (Red S T)).

A reduction sequence is a state sequence such that each state is obtained
by a reduction of its predecessor:

Definition isRedSeq [PS:stateSeq] : Prop :=

(n:nat)((S:state)(PS n)==(SomeT ? S) ->

(EXT S’:state | (PS (S n))==(SomeT ? S’)/\(Red S S’)) \/

(PS (S n))==(NoneT ?)) /\

((PS n)==(NoneT ?) -> (PS (S n))==(NoneT ?)).

A maximal reduction sequence (or a run) is a reduction sequence whose
last state is stable, or an infinite reduction sequence:

Definition isMaxRedSeq [PS:stateSeq] : Prop := (isRedSeq PS) /\

((n:nat)(P:state)

((PS n)==(SomeT ? P) -> (PS (S n))==(NoneT ?) -> (Stable P))).

One may observe that empty sequences are valid runs. In the encoding of
formulas, we enforce the condition that a run starts with some state.

3.1.2 Encoding of Fairness

We formalize the notion of strong fairness. Informally, strong fairness says
that any process that is infinitely often enabled is eventually reduced 5 .

We need a few intermediate definitions. We say that P is a subprocess of Q
when Q consists of the parallel composition of P with some other process(es).
The predicate (reduced P Q R) intuitively means Q reduces to R by reducing
its subprocess P. The formal definition is omitted for lack of space.

We define what it means for a subprocess to be enabled and eventually
reduced :

5 Weak fairness says that a continuously and infinitely enabled process is eventually re-
duced. Strong fairness subsumes weak fairness.

73

Definition enabled [P:proc; Q:state] : Prop :=

(EXT R:state | (reduced P Q R)).

Definition ev_reduced [P:proc; PS:stateSeq] : Prop :=

(EX n:nat | (EXT S:state | (EXT S’:state |

(PS n)==(SomeT ? S) /\ (PS (S n))==(SomeT ? S’) /\

(reduced P S S’)))).

We define what it means for a property to hold infinitely often:

Definition is_postfix [PS’,PS:stateSeq] : Prop :=

(EX n:nat | (m:nat)(PS’ m)==(PS (plus m n))).

Definition infinitely_often [p:state->Prop; PS:stateSeq] : Prop :=

(PS’:stateSeq)(is_postfix PS’ PS) ->

(EX n:nat | (EXT S:state | (PS’ n)==(SomeT ? S) /\ (p S))).

A fair reduction sequence is a state sequence such that there is no process
that is infinitely often enabled but never reduced:

Definition isFairRedSeq [PS:stateSeq] : Prop :=

(PS’:procSeq)(is_postfix PS’ PS)->

(P:proc)(infinitely_often [Q:state](enabled P Q) PS’) ->

(ev_reduced P PS’).

3.2 Available Formulas

Our specification language consists of a set of logical and spatial formulas (of
type form) and a set of temporal formulas (of type tform). The semantics of
formulas is implemented by means of two satisfaction relations (sat of type
form->state->Prop and tsat of type tform->state->Prop). The explicit
distinction between logical and spatial formulas, and temporal formulas is
required for the confluence properties introduced in the next section to hold.
The informal semantics of basic formulas can be found in Table 1. Observe
that we make use of a predicate Cong that encodes the standard notion of
structural congruence (which intuitively relates processes that only differ by
spatial rearrangements).

By way of example, we show the formal semantics of the FMUSTEV temporal
formula. It is defined by quantification over all possible fair runs, as defined
in the previous section:

Axiom FMUSTEV_satisfaction : (P:state)(f:form)

(tsat (FMUSTEV f) P) <->

((PS:stateSeq)(PS O)==(SomeT ? P) ->

(isMaxRedSeq PS) -> (isFairRedSeq PS) ->

(EXT S:state | (EX n:nat | (PS n)==(SomeT ? S) /\ (sat f S)))).

In the implementation, the satisfaction relations are axiomatized. This is
because the formula for negation does not respect the positivity constraints
imposed by Coq. This problem has already been observed in [26]. This is not

74

Logical Formulas

(sat ISANY S)

(sat NEG f S)

(sat OR f g S)

iff
iff
iff

True

~(sat f S)

(sat f S)\/(sat g S)

Spatial Formulas

(sat INPUTS c f L#P)

(sat OUTPUTS c v f L#P)

(sat CONSISTS f g L#P)

iff

iff

iff

(Cong P (parP (inP c Q) R)) and
(sat f L#(Q v)) for any v

(Cong P (parP (outP c v Q) R)) and
(sat f L#Q)

(Cong P (parP Q R)) with
(sat f L#Q) and (sat g L#R)

Temporal Formulas

(tsat (MAYEV f) S)

(tsat (FMUSTEV f) S)

iff

iff

for some run, there exists S’ such that
(Reds S S’) and (sat f S’)

for any fair run, there exists S’ such that
(Reds S S’) and (sat f S’)

Table 1
Basic Formulas

problematic as long as we do not study formally the properties of the formulas.

4 Collection of Lemmas

At this point, we are able to write a concurrent program P, a (temporal)
property f, and we can try to prove (tsat f P) using Coq tactics. This direct
approach is tedious because the Coq native tactics are too low-level and not
adapted to the problem at hand. Our solution is to propose a collection of
lemmas (and accompanying tactics) to facilitate formal proof.

The main difficulty in proving properties of concurrent programs is non-
determinism. In order to prove a property for some program, one often needs
to check all possible runs. This is at best costly and often impossible because
there may be infinitely many runs or because some process is unknown. To
deal with these situations, we propose several lemmas based on confluence
properties.

In Sect. 4.1, we explain lemmas based on confluence properties and in
Sect. 4.2, we give an overview of the whole library.

75

4.1 Confluence Properties

4.1.1 Basic Idea

We say that two reductions are confluent when they can be executed in either
order to reach the same result. More precisely, if P is a process such that

P
l1−→ P1 and P

l2−→ P2 are confluent, then for any P ′ such that P2
l1−→ P ′, we

have P1
l2−→ P ′. Graphically, P has the following “diamond property”:

�
��	

@
@@R

@
@R

�
�	

P
l1 l2

P1 P2

P ′
l2 l1

Since we know that, no matter the run, P necessarily reduces to P ′, it is not
always necessary to explore both runs to verify a FMUSTEV property. This is
the basic idea behind lemmas based on confluence properties.

4.1.2 Partial Confluence and Linearized Channels

In order to identify “diamond properties”, we appeal to the notion of partial
confluence, which is more general than confluence and often occurs in pratice.

We say that a reduction is partially confluent [18] when it is confluent with

any other reduction. More precisely, if P is a process such that P
l1−→ P1 is a

partially confluent reduction, then for any reduction P
l2−→ P2 and for any P ′

such that P2
l1−→ P ′, we have P1

l2−→ P ′.

The property of partial confluence is enjoyed by linearized channels [18].
A linearized channel is a generalization of a linear channel. It can be used
more than once, but only in a sequential manner: an output process (outP c

v P) can reuse c again for output in P, an input process (inP c P) can reuse
c again for input in (P v) for any v of the appropriate type.

We introduce linearized channels in applπ by adding some boolean infor-
mation to the type of channels chan:

Axiom chan : Set -> bool -> Set.

and by adding a new constructor to the type of processes proc:

Inductive proc : Type :=

...

| nuP: (A:Set)((chan A false)->proc) -> proc (* non-linearized *)

| nuPl: (A:Set)((chan A true)->proc) -> proc. (* linearized *)

The operational semantics is modified accordingly.

For the time being, we assume that linearized channels are correctly anno-
tated. Verification that a process is well-annotated can be done by the type
system proposed in [17], Sect. 6.

76

4.1.3 Sample Confluence Property

The following example is taken from our library:

Axiom conf_red_com :

(L:ChanList; P,P’:proc; A:Set; c:(chan A true))

(well_annotated L#P) ->

(Redwith L#P (epsilon c) L#P’)->

(f:form)(K:ChanList)(free_chans K f) ->

~(in_ChanList c K) -> (* f does not depend on the *)

(M:ChanList)(guard M L#P’) -> (* channels that are consumed *)

(inter K M nilC) -> (* or revealed by communication *)

(tsat (FMUSTEV f) L#P’)->

(tsat (FMUSTEV f) L#P).

Intuitively, it says that if L#P reduces to L#P’ by a linearized communica-
tion, then in order to prove (tsat (FMUSTEV f) L#P), it is sufficient to prove
(tsat (FMUSTEV f) L#P’) (modulo some conditions that we do not explain
here in detail for lack of space).

Currently, these lemmas are axiomatized. They are similar to partial order
reduction techniques used in model checking and can be informally justified
as such (see for instance [6], Chap. 10).

4.2 Library Overview

The library consists of the applπ language as defined in Sect. 2 (extended
with linearized channels), the specification language as defined in Sect. 3, and
a collection of lemmas. Although the library is very large (at the time of this
writing, 35 proof scripts, 11178 commands for 14951 lines), only a few lemmas
are axiomatized (most axioms have actually been discussed in this paper).
Not all lemmas are equally important.

During formal proof, the most important lemmas are those that simplify
the goal. For instance, confluence properties such as the one seen above are
such lemmas: they basically act by simplifying the process that appears in the
goal. Similarly, the properties of the formulas of the specification language
(distributivity laws, etc.) act by simplifying the formula that appears in the
goal.

There are a large number of lemmas that are not intended to be used
directly during formal proof but that are very important because they are
ubiquitously used to prove other lemmas. Such technical lemmas prove prop-
erties about the applπ language (injection, inversion) whose proofs are not
immediate because of our use of dependent types, and properties about struc-
tural congruence (structural congruence is a bisimulation, etc.).

See http://web.yl.is.s.u-tokyo.ac.jp/~affeldt/applpi for details.

77

http://web.yl.is.s.u-tokyo.ac.jp/~affeldt/applpi

5 Case Study

We evaluate feasibility of verification of concurrent programs using our library.
Our case study is the SMTP receiver part of an existing mail server. In short,
this program receives and processes SMTP commands, sends back SMTP
replies and queues received electronic mail.

We chose this application for the purpose of comparison. Indeed, we have
already performed verification of this application in Coq using a different ap-
proach that consists of building a faithful functional model [2]. In short, the
original Java implementation was turned into a Coq function using monadic
style programming, third-party programs (client and file system) were modeled
using Coq predicates and non-software aspects were modeled using functional
constructs (for instance, non-deterministic system failures were modeled us-
ing infinite lists to serve as test oracles). Arguably, this approach has little
overhead because it takes advantage of the Coq built-in support for functional
programs. Therefore, comparison should highlight the overhead of using our
library for verification.

In the following, we first explain how we model the mail server using our
library, and then we comment on the formal proof that it correctly implements
the SMTP protocol.

See http://web.yl.is.s.u-tokyo.ac.jp/~affeldt/applpi for details.

Modeling of the Main Program

The mail server is modeled as a process (work) that is itself the paral-
lel composition of several subprocesses that handle incoming SMTP requests
(get helo def, etc.). The state of the application is reified as a data structure
that is communicated from one subprocess to the other. The flow of commu-
nication reproduces the flow of control of the Java program. Subprocesses
correspond to the Java methods that (are supposed to) implement the SMTP
protocol. The reified state corresponds to fields of the server object:

Definition work

[c1:InputStream;c2:OutputStream;tofs:ToFileSystem]:proc :=

let st = initial_state in

(nuPl [heloc:(chan STATE ?)]

(nuPl [mailc:(chan STATE ?)]

(nuPl [rcptc:(chan STATE ?)]

(parP (rinP heloc (get_helo_def heloc mailc))

(parP (rinP mailc (get_mail_def mailc rcptc))

(parP (rinP rcptc (get_rcpt_def mailc rcptc))

(OutAtom heloc st))))))).

Modeling benefits from the fact that applπ is based on the π-calculus. The
connections between the mail server and third-party programs (client and file-
system) are modeled using channels (instead of sockets in the original Java

78

http://web.yl.is.s.u-tokyo.ac.jp/~affeldt/applpi

implementation) that are aggregated into the reified state and “move” around
with the state during computation. Acknowledgments are modeled by a typ-
ical π-calculus idiom: a fresh channel is sent to receive the acknowledgment
on it.

Modeling of Third-party Programs

Third-party programs are modeled by Coq predicates. For instance, the
client is modeled by predicates (speaks valid protocol and acknowledges replies)
that implement the SMTP protocol as defined in RFC 821.

Modeling of System Errors

System errors are modeled by channels. A system failure (resp. a network
error) is modeled by outputting some value along the channel system failure chan

(resp. IOexn chan). Since non-determinism is inherent to applπ, we can model
non-deterministic system failures by a process:

Definition may_fail :=

(nuP [x:?](parP (InAtom x)

(parP (OutAtom x tt)

(inP x [_:?](OutAtom system_failure_chan tt))))).

This is more elegant than infinite lists that serve as test oracles in the func-
tional model discussed above. Indeed, the process may fail is clearly sepa-
rated from the model of the main program, so that we can extract an ML
program for the server without pollution from the modeling of system errors.

Formal Proof

We have formally proved that the parallel composition of the mail server, a
valid client, a valid file-system, and a non-deterministic system failures gener-
ator ends up with a successful termination (modeled by channel result chan,
similarly to system errors), a system failure or a network error (formula
reports succ or error):

Definition reports_succ_or_error : form :=

(OR (OUTPUTS result_chan tt ISANY)

(OR (OUTPUTS IOexn_chan tt ISANY)

(OUTPUTS system_failure_chan tt ISANY))).

Goal

(Client:InputStream->OutputStream->proc)

(s:InputStream)(y:OutputStream)(valid_client (Client s y))->

(file_system:ToFileSystem->proc)

(tofs:ToFileSystem)(valid_fs tofs (file_system tofs)) ->

(* channels for termination detection are distinct *)

(is_set result_chan&(IOexn_chan&(system_failure_chan&nilC)))->

(tsat (FMUSTEV reports_succ_or_error)

79

(result_chan&(IOexn_chan&(system_failure_chan&nilC)))#

(nuPl [s1:InputStream]

(nuPl [s2:OutputStream]

(nuPl [tofs:ToFileSystem]

(parP (Client s1 s2) (parP (file_system tofs)

(parP (work s1 s2 tofs) may_fail))))))).

Verification using our library requires 3927 commands. This is large com-
pared to the 1059 commands required by the verification using the functional
model. However, there are several ways to reduce the size of the proof. In
particular, we used for verification a confluence property that is weaker (but
easier to use in practice) than the one presented in Sect. 4.1. Also, it should be
observed that the applπ model is more satisfactory than the functional model
in many respects: the work process takes multi-threading into account and it
can easily be run as an ML program, which was not the case of the functional
model.

6 Conclusion

In this paper, we proposed a Coq library to verify realistic concurrent pro-
grams. We have formalized a modeling language based on the π-calculus that
is convenient to write and run (models of) realistic concurrent programs. We
have introduced a specification language based on spatial logics extended with
the notion of strong fairness. In order to facilitate formal proof, we have built
a collection of lemmas among which confluence properties of the modeling lan-
guage significantly simplify proofs. We have evaluated the feasibility of our
approach by verifying a non-trivial application using our library.

Related Work

There exist several formalizations of pure concurrent calculi in proof assis-
tants. In Coq, Hirschkoff proposes a first-order abstract syntax encoding of
the π-calculus and formalizes proof techniques [14]; Despeyroux formalizes a
proof of subject reduction for the π-calculus [10]; Honsell et al. formalize the
foundational paper on the π-calculus [15]; Scagnetto and Miculan formalize
the ambient calculus (a derivative of the π-calculus) and its spatial logic [26].
In Isabelle, Röckl et al. propose a HOAS encoding of the π-caculus and for-
malize the Theory of Contexts [25]. This work focuses on the formalization
of the theory of pure concurrent calculi. In contrast, we are concerned with
verification of realistic concurrent programs and we aim at building a practical
library for that purpose.

The verification of concurrent programs using proof assistants is also ad-
dressed using the UNITY formalism. In particular, there exist several for-
malizations of compositional reasoning (e.g., [13,22]) that is useful to tackle
realistic examples. Our work is complementary: we use the π-calulus as an

80

underlying formalism and therefore we can benefit from known analyses to
formalize additional proof techniques (e.g., lemmas based on confluence prop-
erties).

Watkins et al. propose a logical framework [28] with built-in facilities
for reasoning about concurrency. Using this concurrent logical framework
(CLF), Cervesato et al. encode several concurrent systems [5], including the
π-calculus. Although the authors have not addressed directly the issue of ver-
ification of realistic concurrent programs, it seems that an implementation of
CLF may ease the development of a library similar to ours.

Coupet-Grimal [7] proposes an encoding of linear temporal logic in Coq.
Temporal formulas are defined for an abstract transition system and their
properties are collected into a library that has been used to prove correctness
of a garbage-collection algorithm [8]. It would be useful to integrate similar
reasoning on temporal formulas for our language.

Future Work

As stated in Sect. 4.1, we assume that channels are annotated so as to
reflect partial confluence. In order to verify that channels are correctly anno-
tated, we plan to formalize an adequate type system inside Coq, similarly to
the work by Gay [12] who formalizes the type system of Kobayashi et al. [18]
in Isabelle. We also plan to provide mechanical proofs for the lemmas based
on confluence properties that are axiomatized for the time being.

We have been formalizing new formulas (such as fixed points) to enhance
expressiveness but they are not yet integrated in the library.

In order to reduce the size of formal proofs, we are improving automation
and investigating additional proof techniques based on other type systems,
such as Kobayashi’s type system for lock-freedom [16].

References

[1] Mart́ın Abadi and Cédric Fournet. Mobile values, new names, and secure
communication. In Proceedings of the 28th ACM Symposium on Principles
of Programming Languages, pages 104–115, Jan. 2001.

[2] Reynald Affeldt and Naoki Kobayashi. Formalization and verification of a mail
server in Coq. In Mitsuhiro Okada, Benjamin Pierce, Andre Scedrov, Hideyuki
Tokuda, and Akinori Yonezawa, editors, International Symposium on Software
Security, Tokyo, Japan, November 8–10, 2002, volume 2609 of Lecture Notes in
Computer Science, pages 217–233. Springer, Feb. 2003.

[3] Paul E. Black. Axiomatic Semantics Verification of a Secure Web Server. PhD
thesis, Department of Computer Science, Brigham Young University, Feb. 1998.

[4] Luca Cardelli and Andrew D. Gordon. Anytime, anywhere: modal logics
for mobile ambients. In Proceedings of the 27th ACM SIGPLAN-SIGACT
symposium on principles of programming languages, pages 365–377, 2000.

81

[5] Iliano Cervesato, Frank Pfenning, David Walker, and Kevin Watkins. A
concurrent logical framework II: Examples and applications. Technical
Report CMU-CS-02-102, Department of Computer Science, Carnegie Mellon
University, Pittsburgh, PA, Mar. 2002. Revised May 2003.

[6] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking.
MIT Press, 2000.

[7] Solange Coupet-Grimal. An axiomatization of linear temporal logic in the
calculus of inductive constructions. Journal of Logic and Computation,
13(6):801–813, 2003.

[8] Solange Coupet-Grimal and Catherine Nouvet. Formal verification of an
incremental garbage collector. Journal of Logic and Computation, 13(6):815–
833, 2003.

[9] Mads Dam. Logic for Concurrency and Synchronisation, chapter Proof Systems
for the pi-calculus Logics. Kluwer Academic Publishers, 2003.

[10] Joëlle Despeyroux. A higher-order specification of the π-calculus. In Jan van
Leeuwen, Osamu Watanabe, Masami Hagiya, Peter D. Mosses, and Takayasu
Ito, editors, International Conference IFIP TCS 2000, volume 1872 of Lecture
Notes in Computer Science, pages 425–439. Springer, Aug. 2002.

[11] Jean-Christophe Filliâtre. Why: a multi-language multi-prover verification tool.
Research Report 1366, LRI, Université Paris Sud, Mar. 2003.

[12] Simon J. Gay. A framework for the formalisation of pi calculus type systems in
Isabelle/HOL. In Richard J. Boulton and Paul B. Jackson, editors, Theorem
Proving in Higher Order Logics, Edinburgh, Scotland, UK, volume 2152 of
Lecture Notes in Computer Science, pages 217–232. Springer, Sep. 2001.

[13] Barbara Heyd and Pierre Crégut. A modular coding of UNITY in Coq. In
Joakim von Wright, Jim Grundy, and John Harrison, editors, Theorem Proving
in Higher Order Logics, volume 1125 of Lecture Notes in Computer Science,
pages 251–266. Springer, Aug. 1996.

[14] Daniel Hirschkoff. Mise en œuvre de preuves de bisimulation. PhD thesis, École
Nationale des Ponts et Chaussées, 1999.

[15] Furio Honsell, Marino Miculan, and Ivan Scagnetto. π-calculus in (co)inductive
type theory. Theoretical Computer Science, 253(2):239–285, Feb. 2001.

[16] Naoki Kobayashi. A type system for lock-free processes. Information and
Computation, 177(2):122–159, Sep. 2002.

[17] Naoki Kobayashi. Type systems for concurrent programs. In Proceedings
of UNU/IIST 10th Anniversary Colloquium, March 2002, Lisbon, Portugal.
Springer-Verlag, 2002. Tutorial.

[18] Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity and
the Pi-Calculus. In Proceedings of ACM SIGACT/SIGPLAN Symposium on
Principles of Programming Languages (POPL’96), pages 358–371. ACM Press,
1996.

82

[19] Panagiotis Manolios. Mechanical Verification of Reactive Systems. PhD thesis,
The University of Texas at Austin, Department of Computer Sciences, Austin,
TX, Aug. 2001.

[20] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, parts I and II. Information and Computation, 100(1):1–77, Sep.
1992.

[21] Tobias Nipkow, David von Oheimb, and Cornelia Pusch. µJava: Embedding
a programming language in a theorem prover. In Friedrich L. Bauer and
Ralf Steinbrüggen, editors, Foundations of Secure Computation, volume 175
of NATO Science Series F: Computer and Systems Sciences, pages 117–144.
IOS Press, 2000.

[22] Lawrence C. Paulson. Mechanizing a theory of program composition for
UNITY. ACM Transactions on Programming Languages and Systems,
23(5):626–656, 2001.

[23] Benjamin C. Pierce and David N. Turner. Pict: A programming language based
on the pi-calculus. In G. Plotkin, C. Stirling, and M. Tofte, editors, Proof,
Language and Interaction: Essays in Honour of Robin Milner. MIT Press, 2000.

[24] Benjamin C. Pierce and Jérôme Vouillon. Specifying a file synchronizer (full
version). Draft, Mar. 2002.

[25] Christine Röckl, Daniel Hirschkoff, and Stefan Berghofer. Higher-order
abstract syntax with induction in Isabelle/HOL: Formalizing the pi-calculus
and mechanizing the theory of contexts. In FOSSACS’01, number 2030 in
Lecture Notes in Computer Science. Springer, 2001.

[26] Ivan Scagnetto and Marino Miculan. Ambient calculus and its logic in the
calculus of inductive constructions. In Frank Pfenning, editor, Electronic Notes
in Theoretical Computer Science, volume 70. Elsevier Science Publishers, 2002.

[27] The Coq Development Team, LogiCal Project. The Coq Proof Assistant,
Reference Manual. INRIA, 2002.

[28] Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David Walker. A
concurrent logical framework I: Judgments and properties. Technical
Report CMU-CS-02-101, Department of Computer Science, Carnegie Mellon
University, Pittsburgh, PA, Mar. 2002. Revised May 2003.

[29] Shen-Wei Yu. Formal Verification of Concurrent Programs Based on Type
Theory. PhD thesis, Department of Computer Science, University of Durham,
Oct. 1998.

83

LFM 2004 Preliminary Version

Ensuring the Correctness of Lightweight Tactics
for JavaCard Dynamic Logic

Richard Bubel 1 Andreas Roth 2 Philipp Rümmer 3

Institut für Logik, Komplexität und Deduktionssysteme
Universität Karlsruhe, Germany

Abstract

The interactive theorem prover developed in the KeY project, which implements
a sequent calculus for JavaCard Dynamic Logic (JavaCardDL) is based on taclets.
Taclets are lightweight tactics with easy to master syntax and semantics. Adding
new taclets to the calculus is quite simple, but poses correctness problems. We
present an approach how derived (non-axiomatic) taclets for JavaCardDL can be
proven sound in JavaCardDL itself. Together with proof management facilities,
our concept allows the safe introduction of new derived taclets while preserving the
soundness of the calculus.

Key words: taclets, lightweight tactics, dynamic logic,
theorem proving

1 Introduction

Background

Taclets are a new approach for constructing powerful interactive theorem
provers [?]. First introduced as Schematic Theory Specific Rules [?], they
are an efficient and convenient framework for lightweight tactics. Their most
important advantages are the restricted and, thus, easy to master syntax and
semantics compared to an approach based on meta languages like ML, and
their seamless integration with graphical user interfaces of theorem provers
which they can be efficiently compiled [?] into.

Taclets contain three kinds of information, the logical content of the rule
to be applied, information about side-conditions on their applicability, and
pragmatic information for interactive and automatic use. Due to their easy

1 Email:bubel@ira.uka.de
2 Email:aroth@ira.uka.de
3 Email:ruemmer1@ira.uka.de

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

84

syntax and intuitive operational semantics, a person with some familiarity in
formal methods should be able to write own taclets after a short time of study.

The interactive theorem prover developed in the KeYproject [?] is based on
taclets implementing a sequent calculus for JavaCard Dynamic Logic (Java-
CardDL) [?]. JavaCard is a subset of Java lacking multi-threading, garbage
collection and graphical user interfaces, but with additional features like trans-
actions.

JavaCardDL has around three hundred axiomatic rules, this means taclets
that capture the JavaCard semantics. Correctness of rules is crucial since new
taclets can be introduced quite easily. The work presented here ensures the
correctness of derived taclets for JavaCardDL by providing means to prove
them correct relatively to the core set of JavaCardDL axioms (possibly en-
riched with further axioms for certain theories). The soundness of taclets
is proven in the calculus itself and without escaping to higher order logics.
By our work, we extend an approach already described in [?] for classical
first-order logic to JavaCardDL.

Related Work

Related to our approach are other projects for program verification like
Bali [?,?], where consistence and correctness of rules that cover the Java se-
mantics are ensured using Isabelle, or the LOOP project [?] where PVS is
used as foundation, and the calculus rules are thus obtained as higher order
logic theorems. Complementary to the presented approach—ensuring correct-
ness for derived taclets—further work has been carried out in the KeY project
in order to cross-validate a few selected axiomatic rules against the Java ax-
iomatisation of Bali [?].

Structure of this Paper

In Sect. 1.1 we repeat the most important concepts of classical dynamic
logics and JavaCardDL. A formal description of taclets and a definition of the
basic vocabulary used throughout the paper is given in Sect. 2. The different
steps to be performed in order to prove the correctness of derived taclets
are described in Sect. 3–5. In Sect. 6 we give a justification of the complete
procedure as main theorem. Finally, in Sect. 7 we discuss the current and
future work to be done.

1.1 Dynamic Logic

Classical Dynamic Logics

The family of dynamic logics (DL) [?] belongs to the class of multi modal
logics. As programs are first-class citizens of DL formulas, they are well-
suited for program analysis and reasoning purposes. For the sake of simplicity
and as a consequence of using a non-concurrent and real world programming
language, we will only consider deterministic programs.

85

Let p be an arbitrary program and φ a first-order or dynamic logic formula,
then

• 〈p〉φ (“diamond p φ”): p terminates and after the execution of p formula φ
holds

• [p]φ (“box p φ”): if p terminates then after the execution of p formula φ
holds

are typical representatives of DL formulas. Deterministic propositional dy-
namic logic (DPDL) is defined over a signature Σ = (At0, P rg0, Op), where
At0, P rg0 are enumerable sets of propositional variables and atomic programs
respectively. Besides the classical propositional operators ¬,→ the operator
set Op contains box [p] and diamond 〈p〉 modalities for each program p. The
set of formulas is the smallest set defined inductively over At0 and Prg0:

• all classical propositional formulas are formulas in DPDL

• if φ, ψ are DPDL formulas then φ→ ψ and ¬φ are DPDL formulas

• if p ∈ Prg is a program and φ a formula in PDL then 〈p〉φ and [p]φ are
DPDL formulas

• the set Prg of programs is the smallest set satisfying
(i) Prg0 ⊆ Prg
(ii) if p, q ∈ Prg and ψ ∈ DPDL then

‘p;q’ (concatenation), ‘ if (ψ) {p} else {q}’ and ‘while (ψ) {p}’
are programs.

The semantics can be defined in terms of Kripke frames (S, (ρp)p∈Prg) with
a set S of states, and transition relations ρp : S → S which define the semantics
of each program p ∈ Prg. The relations ρp have to adhere certain conditions
w.r.t. the program constructors (;, if−else, etc.) from the definition above,
for example, program composition ρp;q = ρq ◦ ρp.

An excerpt from an axiom system for DPDL in terms of sequent calculus
rules is given in Table 1.

DPDL is useful to reason about program properties induced by the pro-
gram constructors. However, as a consequence of constructing programs from
atomic (anonymous) programs without any fixed semantics, they lack possibil-
ities to talk about individual programs and, thus, about functional properties.

Like the step from propositional to first-order logic, one extends DPDL to
deterministic quantified dynamic logics (DQDL). DQDL extends the proposi-
tional part to full first-order logic (with equality and universe D), and on the
program side it replaces the anonymous atomic programs with assignments of
the form v=t, where v is a variable and t an arbitrary term. In general, each
program state s ∈ S is assigned a first order structure (D, I) and a variable

valuation σ : Var → D respecting ρx=t(s) = s′ with σ′ = σt(D,I),σ

x .

Again a relatively 4 complete calculus can be given, the corresponding

4 Usually DQDL is interpreted in an arithmetic structure.

86

Γ ` 〈 if (ψ) {p; while (ψ) {p} } else {}〉φ,∆

Γ ` 〈while (ψ) {p}〉φ,∆
(1)

Γ, ψ ` 〈p〉φ, ∆ Γ,¬ψ ` 〈q〉φ, ∆

Γ ` 〈 if (ψ) {p} else {q}〉φ, ∆
(2)

Γ ` 〈p〉〈q〉φ, ∆

Γ ` 〈p;q〉φ, ∆
(3)

Γ{x←z}, x
.
= t{x←z} ` φ,∆{x←z}

Γ ` 〈x=t〉φ,∆
(4)

Table 1
DPDL/DQDL Axiomatisation (excerpt). z is a new variable.

assignment rule is shown in Table 1.

Example 1.1 For the universe D = N
of natural numbers, the DQDL formula
〈x=3;;y=x;〉y .

= x can be proven valid
with the rules of Table 1 as the proof on
the right shows.

∗
x
.
= 3, y

.
= x ` y

.
= x

(close)

x
.
= 3 ` 〈y=x;〉y .

= x
(4)

` 〈x=3;〉〈y=x;〉y .
= x

(4)

` 〈x=3;y=x;〉y .
= x

(3)

JavaCardDL

The step from academic languages as described in the previous paragraphs
to real world programming languages like JavaCard [?,?] leads to several
complications. In the next few paragraphs, we introduce some features of
JavaCardDL [?]. First some preliminaries:

• Formulas must not occur in JavaCardDL programs, instead Java expressions
of type boolean are used as guards.

• The set of variables Var = PVar] LVar is the disjoint union of pro-
gram variables PVar and logical variables LVar. In contrast to logical
variables, program variables can occur in programs as well as in formu-
las, but cannot be bound by quantifiers. For instance, let x ∈ LVar and
o, u ∈ PVar, then ∀x.〈o=u;〉x .

= u is a well-formed JavaCardDL formula,
whereas ∀x.〈o=x ;〉x .

= u is not.

• All states have the same universe D, and predicates and logical variables
are assumed to be rigid.

A sequent calculus covering JavaCard has to cope with aliasing, side-
effects, abrupt termination as result of thrown exceptions, breaks, continues
or returns and more. The KeY approach is led by the symbolic execution
paradigm, thus a majority of the calculus rules realises a JavaCard interpreter
reducing expressions and statements stepwise to side-effect free assignments.

87

Example 1.2 An easy-to-use decomposition rule similar to (3) is not avail-
able in JavaCardDL due to abrupt termination. For example

` 〈 l :{ if (v == 0) { break l; } else { v = 0; } v = 3;} 〉v .
= 3

cannot be decomposed to

` 〈 l :{ if (v == 0) { break l; } else { v = 0; } }〉〈v = 3〉v .
= 3,

as this is obviously not equivalent for v = 0.

Decomposition was essential for DPDL and DQDL in order to reduce the
complexity of programs stepwise to atomic programs or assignments, which
can be handled by rules of the calculus without having a dedicated rule for
each program.

JavaCardDL therefore introduces the notion of a first active statement to
which a rule applies, and a program context ‘ .. ◦1 ...’ whose inactive prefix
‘ .. ’ matches on all preceding labels, opening braces or try blocks. Consider
the following rule:

#b
.
= true ` 〈 .. {#sta1} ...〉φ #b

.
= false ` 〈 .. {#sta2} ...〉φ

` 〈 .. if (#b) {#sta1} else {#sta2} ...〉φ
(5)

where #b is a side-effect free boolean expression and #sta1, #sta2 are arbi-
trary JavaCard statements.

Example 1.3 (Example 1.2 continued) Applying rule (5) to

` 〈 l :{ if (v == 0) { break l; } else { v = 0; } v = 3;}〉v .=3

where ◦1 corresponds to the program between ‘ l :{’ (inactive program prefix)
and ‘v = 3;}’ (suffix of the program context) now yields the two sequents

(i) (v==0)
.
= true ` 〈 l :{ { break l; } v = 3; }〉v .=3 and

(ii) (v==0)
.
= false ` 〈 l :{ { v = 0; } v = 3; }〉v .=3

2 Taclets

Taclets are lightweight, stand-alone tactics with simple syntax and semantics.
Their introduction was motivated by the observation that only few basic ac-
tions in proof construction are sufficient to implement most rules for first-order
modal logic. These are:

• to recognise sequents as an axiom, and to close the according proof branch,

• to modify at most one formula per rule application,

• to add a finite (and fixed) number of formulas to a sequent,

• to let a proof goal split in a fixed number of branches,

88

• to restrict the applicability according to context information.

These are the only actions which taclet constructs are provided for. This
restriction turns out to reduce the complexity for users of a proof system
significantly [?].

Taclets by Example

Taclets describe rule schemas in a concise and easily readable way. A very
simple example rewrites terms 1 + 1 with 2. In taclet notation such a rule
schema is written:

find(1 + 1) replacewith(2)

In a taclet—in addition to the logical content of the described rule—an op-
erational meaning is encoded: If a user of a taclet-based prover selects the term
of the find-part (i.e. 1 + 1) of a taclet and chooses the taclet for application,
the find-part is replaced with (an instantiation of) the replacewith-term
(i.e. 2).

In this simple form, the rule schemas described by taclets are not expressive
enough for practical use; schema variables and more constructs besides find
and replacewith make them powerful enough to fulfil the requirements posed
above.

Schema Variables and Instantiations

Expressions 5 in taclets may contain elements from a set SV of schema
variables. An instantiation ι(v) of a schema variable v ∈ SV is a concrete
expression that must fulfil certain conditions depending on the kind of the
schema variable (see below). We may, e.g., define a schema variable i such
that ι(i) must be a term of an integer sort.

Expressions e in taclets containing schema variables from SV are called
schematic expressions over SV . The instantiation map ι can be canonically
continued on schematic expressions:

ι(op(e1, . . . , en)) =

 ι(op) if n = 0 and op ∈ SV

op(ι(e1), . . . , ι(en)) otherwise
(6)

Thus e describes a set {ι(e) | ι is an instantiation map for every v ∈ SV }
of concrete expressions. For instance, a taclet find(i + i) replacewith(2 ∗ i)
contains schematic terms over {i}. Applied on a sequent containing the term
3 + 3, i is instantiated with ι(i) = 3 and the taclet replaces ι(i + i) = 3 + 3
with ι(2 ∗ i) = 2 ∗ 3 in the new goal.

5 By expression we denote syntactical elements like terms or formulas, but in the context
of JavaCardDL also Java programs.

89

Taclet Syntax

replacewith(2) is an example of a goal template, this means the descrip-
tion of how a goal changes by applying the taclet. More than one goal template
may be part of a taclet, separated by semicolons, which describes that a goal
is split by the taclet. If there is no goal template in a taclet, applications close
the proof branch. Additionally, goal templates may contain the following
clauses:

• While in the example taclets above the find- and replacewith-parts con-
sisted of terms, they can also be sequents. All find- and replacewith-
parts of a taclet must either be terms or sequents. These sequents indicate
that the described expression must be a top-level formula in either the
antecedent or succedent, e.g. a taclet find(`φ→ ψ) replacewith(φ `ψ)
(over the schema variables {φ, ψ}) is applicable only to top-level formulas
in the succedent. A sequent in the find-part must have either an empty
antecedent or succedent.

• Taclet applications can add formulas to the antecedent or succedent. This
is denoted by the keyword add followed by a schematic sequent (similarly
to replacewith).

• Taclets support the dynamic enlargement of the taclet rule base by adding
new taclets described behind the key word addrules. Though a theoretical
treatment in accordance with the concepts of this paper is possible [?] we
omit this feature in the sequel.

Often more information on the sequent a taclet is applicable to is needed. Such
side conditions are described by the following optional taclet constituents:

• A taclet that contains an if followed by a schematic sequent context is only
directly applicable if context is a “sub-sequent” of the sequent the taclet is
applied to. If this is not the case, the taclet is however still applicable but,
by an automatic cut, it is required to show the if-condition.

• Predefined clauses in a varcond-part describe conditions on the instantia-
tions of schema variables. The most important ones are:
– v not free in s, which disallows logical variables ι(v) to occur unbound

in ι(s).
– v new depending on s, which introduces a new skolem symbol ι(v) (pos-

sibly depending on free “meta variables” occurring in ι(s)).

The complete syntax of taclets is reiterated here as an overview:

[if (context)] [find (f)] [varcond (c1,. . . ,ck)]

[replacewith (rw1)] [add (add1)];
...

...

[replacewith (rwn)] [add (addn)]

(7)

90

For i = 1 . . . n, context and addi stand for a schematic sequent, f and rwi for
a schematic term, formula, or sequent but all of the same kind. c1, . . . , ck are
variable conditions.

Additionally—though out of scope of this paper—taclets can be assigned
to one or several rule sets, which makes them available to be automatically
executed by strategies. For a homogenous treatment in this paper f and
rwi are declared to be never empty: we assume that skipping replacewith

is a shorthand for rwi = f , a skipped find means f = ` false, and false
always occurs in succedents of sequents. A skipped if- or add-part means
context = ` or addi = ` (resp.).

Schema Variable Types

While the above definitions have been general enough to be applied to
every first-order modal logic, we are now focusing on special schema variables
for JavaCardDL. Let SVtac denote the schema variables contained in a taclet
tac. Schema variables v ∈ SVtac are assigned to one out of a predefined list of
types, each having special properties concerning admissible instantiations ι(v).
An instrument to define these properties is to introduce prefix sets (denoted
by Πl(v), Πpv(v), and Πjmp(v)) for schema variables v. A selection of the most
relevant schema variable types is given below. If v is of type

• Variable, then v is assigned a sort, ι(v) must be of that sort. Moreover,
ι(v) must be a logical variable. For v 6= v′ ∈ SV : if v′ is a Variable schema
variable then ι(v) 6= ι(v′). ι(v) must not occur bound in ι(v′′) for all v′′ ∈ SV .

• Term, then v is assigned a sort, ι(v) must be of that sort.
v is assigned a set Πl(v) ⊆ SV of schema variables. Πl(v) is defined to be

the smallest set with, for all constituents of tac, if v occurs in the scope of a
Variable schema variable v′ ∈ SV then v′ ∈ Πl(v) except there is a variable
condition v′ not free in v declared in t. v is assigned a set Πpv(v) which
is the smallest set of program variables that occur but are not declared in
tac or are declared above 6 every occurrence of v.

We require from instantiations ι: If, for some v′ ∈ SVtac, ι(v
′) is a logical

variable that occurs unbound in ι(v) then v′ ∈ Πl(v); if ι(v′) is a program
variable that occurs undeclared in ι(v) then v′ ∈ Πpv(v).

• Formula, then as for Term, v is assigned Πl(v) and Πpv(v). v must fulfil the
same conditions concerning these sets.

• Statement, then ι(v) is a JavaCard statement. Again, v is assigned Πpv(v)
and it must satisfy the same conditions as above concerning this set.

v is assigned a set Πjmp(v) consisting of JavaCard statements break,
continue, break l, continue l for all labels l, if v is enclosed with a suitable
jump target. If jst is a break or continue statement of ι(v) with a target

6 If we consider tac as abstract syntax tree.

91

not in ι(v) then jst ∈ Πjmp(v).
7 Usually Statement schema variables have

names starting with # to distinguish them from regular Java elements.

• ProgramVariable, then ι(v) is a local program variable or class attribute of
Java. v is assigned a Java type and ι(v) must be of that type. Again, names
of this kind of variable start with #.

• ProgramContext, then ι(v) is a program transformation 8 pt that takes a
Java program element α and delivers a new program element pt(α), such
that pt(α) is a sequence of statements of which the first one contains α and
has only opening braces, opening try blocks, etc., in front. For this case,
the continuation of the instantiation map (6) is then modified to

ι(op(e1, . . . , en)) := pt(ι(e1))

if n = 1 and op is a ProgramContext schema variable.
Usually, v is denoted by .. e1 ... containing the schematic Java program

e1, as introduced in Sect. 1.1.

Example 2.1 The following taclet performs a cut with the condition that the
focused term (t) equals 0 and replaces it in the respective goal by 0. We declare
t as Term schema variable of an integer sort.

find(t) replacewith(0) add(t
.
= 0 `);

replacewith(t) add(` t
.
= 0)

(8)

As an example that represents a rule of JavaCardDL, we take a taclet
that replaces the postfix increment operator applied to a program variable (x)
behind a statement (#sta) with an equivalent statement using assignment and
the + operator, and leaves the formula (φ) behind the diamond unchanged.
#sta is a Statement schema variable and φ a Formula schema variable.

find(〈#sta x++;〉φ) replacewith(〈#sta x=x+1;〉φ) (9)

Another taclet splits a proof for an if statement with the condition x==0
(where x is a concrete local variable) and produces goals, reducing the formula
to the statements of the appropriate branch and the if condition put to the
correct side of the sequent. #sta1 and #sta2 are Statement schema variables
and φ is a Formula schema variable.

find(〈 l : if (x==0) #sta1 else #sta2〉φ)

replacewith(〈 l : #sta1 〉φ) add(x
.
= 0 `);

replacewith(〈 l : #sta2 〉φ) add(` x
.
= 0)

(10)

7 For a complete treatment of JavaCardDL it is furthermore necessary to consider return-
statements, which are left out in this paper
8 Thus being an exception from the statement above that ι(v) must be an expression.

92

Semantics

Taclets have a precise operational semantics, which is described in detail
in [?], and which we have sketched informally above. For the purposes of this
paper it is sufficient to fix the logical meaning of a taclet in the traditional
rule schema notation.

We denote the union of two sequents and the subset relation between two
sequents as follows:(

Γ1 `∆1

)
∪

(
Γ2 `∆2

)
:= Γ1,Γ2 `∆1,∆2(

Γ1 `∆1

)
⊆

(
Γ2 `∆2

)
iff Γ1 ⊆ Γ2 and ∆1 ⊆ ∆2

First, we assume that f is a schematic sequent, i.e. taclet tac can only be
applied to top-level formulas. By the operational semantics of taclets [?], tac
represents the rule schema:

rw1 ∪ add1 ∪ (Γ `∆) . . . rwk ∪ addk ∪ (Γ `∆)

f ∪ (Γ `∆) (11)

where Γ `∆ is an arbitrary sequent with context ⊆ f ∪ (Γ `∆).

Similarly, if f is a schematic term or formula (seq[e] denotes a sequent
with an arbitrary but for a rule fixed occurrence of an expression e):

seq[rw1] ∪ add1 ∪ (Γ `∆) . . . seq[rwk] ∪ addk ∪ (Γ `∆)

seq[f] ∪ (Γ `∆)

where Γ `∆ is an arbitrary sequent with context ⊆ seq[f] ∪ (Γ `∆).

In Sect. 4, the notion of meaning formulas is derived that makes the mean-
ing of these rule schemas induced by taclets more precise.

Because of their simplicity and operational meaning, taclets can be schemat-
ically compiled into the GUI of taclet-based interactive theorem provers: In
the KeY system a mouse click over an expression displays only those taclets
whose find-part can be matched with the expression in focus. This reduces
drastically the cognitive burden on the user. For an extensive account on user
interaction see [?].

3 Outline of Bootstrapping Taclets

After having introduced basic notions and notations, we can focus on the
task of how to ensure correctness of derived taclets. We aim to prove their
soundness within the JavaCardDL calculus itself. Our approach is based on [?]
which has already provided this kind of bootstrapping for classical first-order
logic.

Given a taclet tac, we first derive a meaning formula M(tac) (see Sect. 4),
which is supposed to be valid if and only if all possible applications of tac are

93

correct proof steps. For example, consider the following taclet tac0:

find(true ∧ φ `) replacewith(φ `)

with a Formula schema variable φ. The corresponding meaning formula is

M(tac0) = ¬φ→ ¬(true ∧ φ) or equivalently (true ∧ φ) → φ

Intuitively, the meaning formula states that if a formula in an antecedent
is replaced, the new formula must be at most as strong as the old one. If this
can be proven for all instantiations of φ, i.e. for all formulas, then obviously
tac0 is sound.

Unfortunately, meaning formulas contain schema variables (here: φ) and
are thus no JavaCardDL formulas. Moreover, we have to quantify somehow
over all formulas. Skolemisation of schema variables (see Sect. 5) helps us,
however, not having to leave our original logic and not having to employ
higher order logics on the object level. Skolemisation of meaning formula
M(tac0) leads to

MSk(tac0) = (true ∧ φSk) → φSk,

where φSk is a new nullary predicate. We call these formulas MSk(tac) taclet
proof obligations. MSk(tac) is a JavaCardDL formula (with a slightly extended
vocabulary) and can be loaded into our interactive theorem prover. If the proof
obligation can be proven successfully then correctness of the taclet is ensured
for all possible applications according to the definition of the meaning formula.
The proof of the corresponding theorem is given in [?] and sketched in Sect. 6.

On a semantic level, this theorem can be justified by arguing that if an ap-
plication of the taclet tac leads to an incorrect proof, a suitable interpretation
D can be constructed such that the meaning formula M(tac) is not satisfied
under D (which is a direct consequence of the definition of meaning formulas)
and thus M(tac) could not have been proven. This semantic argumentation
works fine for first-order logics [?], but when JavaCardDL comes into play, the
complete complex JavaCard semantics would have to be incorporated in the
reasoning.

Instead, we take a syntactic approach getting the JavaCard semantics via
the JavaCardDL calculus for free. The basic idea is to show that an application
of a taclet tac can always be replaced by a transformed proof of MSk(tac).

4 Meaning Formulas of Taclets

The basis for our reasoning about the correctness of taclets is a meaning
formula [?] derived in this section. It is declared to be the meaning of a taclet
independently from concrete taclet application mechanisms, thus providing
a very flexible way to address soundness issues. In fact we define a taclet
application mechanism to be correct if (and only if) taclets with valid meaning

94

formulas are translated into sound rules. 9 To show that a taclet is correct it
is thus sufficient to prove the validity of its meaning formula.

For the whole section we define (Γ `∆)∗ :=
∧

Γ →
∨

∆, in particular
(`φ)∗ = φ and (φ `)∗ = ¬φ. Furthermore, in this section by the validity of
a sequent we mean the validity of (Γ `∆)∗. We define a (sequent) calculus C
to be sound if only valid sequents are derivable in C. We conceive rules

P1 . . . Pn

Q

as relations between tuples of sequents (the premisses) and single sequents
(the conclusion) and define that a rule R ∈ C is sound if for all tuples
(〈P1, . . . , Pk〉, Q) ∈ R:

if P1, . . . , Pk are valid, then Q is valid. (12)

For the calculus C we can state:

Lemma 4.1 C is sound if all rules R ∈ C are sound.

The rules Rtac we are interested in are defined through taclets tac over
a set SV of schema variables in the form as defined in (7). Assuming first
that the find-part is a sequent, taclets induce the rule schema (11). To apply
Lem. 4.1, for each instantiation ι of SV , (12) must be shown for k = n,
Pi = ι(rwi ∪ addi ∪ Γ `∆) (i = 1 . . . n), and Q = ι(f ∪ Γ `∆). Since the
formulas of Γ `∆ which are not in context are arbitrary and not influenced
by the rule application we can simply omit them and show the lemma for
Pi = ι(rwi ∪ addi ∪ context) (i = 1 . . . n) and Q = ι(f ∪ context). We assume
that tac does not introduce skolem functions, i.e. does not contain such a
variable condition. Then by the deduction theorem, the global condition (12)
can be strengthened to the local implication, namely that P ∗1 ∧ . . .∧P ∗n → Q∗

must be valid.

Since ι, as defined by (6), treats propositional junctors as a homomorphism
and the operator (·)∗ is a homomorphism regarding the union of sequents up to
propositional transformations, this formula can now be simplified as follows:

P ∗1 ∧ . . . ∧ P ∗n → Q∗=
n∧

i=1

ι(rwi ∪ addi ∪ context)∗ → ι(f ∪ context)∗ (13)

= ι
(n∧

i=1

(rw∗i ∨ add∗i) → (f ∗ ∨ context∗)
)
. (14)

If (14) is proven for all instantiations ι, then the rule Rtac represented by tac
is sound.

In the next definition our previously made assumptions are revoked: the
variable condition svi new depending on. . . introduces new skolem functions.

9 As a schematic formula, the meaning formula is by definition valid iff all instances of the
formula are valid.

95

If P1, . . . , Pn contain skolem symbols that do not occur in Q, the interpretation
of the symbols can be regarded as universally quantified in (12) by the usual
definition of ‘valid’. Because of their negation in (13), they are existentially
bound in the meaning formula. Moreover, taclets that have terms or formulas
instead of sequents as find-part and replacewith-parts are reduced to a rule
that adds an equivalence f ↔ rwi or equation f = rwi to the antecedent.

Definition 4.2 (Meaning Formula) Each taclet tac, as declared in (7), is
assigned an unquantified meaning formula tac∗, which is defined by:

tac∗ :=



∧n
i=1(rw

∗
i ∨ add∗i) → (f ∗ ∨ context∗) if f is a sequent∧n

i=1

(
f
.
= rwi → add∗i

)
→ context∗ if f is a term∧n

i=1

(
(f ↔ rwi) → add∗i

)
→ context∗ if f is a formula

Suppose sv1, . . . , svk ∈ SVtac are all schema variables, which tac contains a
variable condition svi new depending on. . . for. M(tac) := ∃x1 . . . ∃xk.φ is
defined to be the meaning formula of tac where φ is obtained from tac∗ by
replacing each svi with a new Variable schema variable xi with the same sort
as svi.

Example 4.3 (Example 2.1 continued) The taclets tac1, tac2, and tac3

defined through (8), (9), and (10), resp., have (after applying some proposi-
tional equivalence transformations) the following meaning formulas:

M(tac1) =
(
t
.
= 0 ∧ t

.
= 0

)
∨

(
t
.
= t ∧ ¬(t

.
= 0)

)
(15)

M(tac2) = 〈#sta x++;〉φ↔ 〈#sta x=x+1;〉φ (16)

M(tac3) =
(
(〈 l : if (x==0) #sta1 else #sta2〉φ↔ 〈 l : #sta1 〉φ)

∧ x
.
= 0

)
∨

(
(〈 l : if (x==0) #sta1 else #sta2〉φ↔ 〈 l : #sta2 〉φ)

∧ ¬(x
.
= 0)

)
(17)

5 Construction of Proof Obligations

Except for trivial taclets, the meaning formula M(tac) of a taclet tac contains
schema variables, which is at least inconvenient for proving M(tac). Variables
of these types do however not occur bound within the formula (resp. when
considering validity, they can be regarded as implicitly universally quantified),
and hence it is possible to replace them in a suitable way without altering the
validity of the meaning formula:

• Schema variables for logical variables or program variables can simply be
replaced with new concrete variables. It has to be taken in account, how-
ever, that when instantiating a schematic expression it is possible that two

96

different schema variables of type ProgramVariable are instantiated with the
same concrete variable (which is not possible for Variable schema variables
by the definitions of Sect. 2). By the presence or absence of such colli-
sions, the set of instances of a schematic expression is divided into (finitely
many) classes, which all have to be considered to capture the meaning of
the schematic expression.

• Schema variables for terms, formulas or Java statements can be replaced
with suitable “skolem” symbols, which are similar to the atomic programs
of DPDL for Statement schema variables. To model the notion of abrupt
termination, which does not exist in DPDL, tuples of Java jump statements
are attached to occurrences of symbols for statements.

• Schema variables for program contexts can be replaced with a surrogate
Java block containing atomic programs.

From now on, we only consider the replacement of schema variables for
logical variables, terms, formulas and statements, and we also assume that
the concerned taclets only contain schema variables of these kinds. Other
kinds of schema variables are treated in a similar way in [?].

5.1 Skolem symbols

We define two syntactic domains that consist of symbols for the skolemisation
of schema variables:

• Symbols that are placeholders for terms and formulas, and which are similar
to ordinary function and predicate symbols

• Symbols that are placeholders for Java statements, similar to the atomic
programs of DPDL.

As usual, the elements of both domains are assigned signatures that deter-
mine syntactically well-formed expressions. Their shape is described in more
detail as follows.

Skolem Symbols for Terms and Formulas

The sets of symbols for terms and formulas are denoted with FuncSk and
PredSk (resp.). The signature

α(sSk) =

{
(S, S1, . . . , Sn, T1, . . . , Tk) for sSk ∈ FuncSk

(S1, . . . , Sn, T1, . . . , Tk) for sSk ∈ PredSk

of a symbol sSk ∈ FuncSk ∪ PredSk consists of

• a result sort S, if sSk ∈ FuncSk,

• a finite sequence S1, . . . , Sn of sorts that determines the number and kinds
of term arguments; this sequence corresponds to the signature of ordinary
predicate symbols,

97

• a finite sequence T1, . . . , Tk of Java types, which are the component types
of a tuple of program variables with which occurrences of sSk are equipped.

Accordingly, the inductive definition of well-formed terms and formulas is
extended by:

If sSk ∈ FuncSk ∪ PredSk is a symbol with the signature α(sSk) as above,
t1, . . . , tn are terms of the sorts S1, . . . , Sn and pv1, . . . , pvk ∈ PVar are
program variables of the types T1, . . . , Tk, then

sSk(t1, . . . , tn; pv1, . . . , pvk)

is a term of sort S or a formula (resp.).

Skolem Symbols for Statements

The set of skolem symbols used for statements is denoted with StatementSk.
The signature α(stSk) = (T1, . . . , Tk,m) of a symbol stSk ∈ StatementSk con-
sists of

• a finite sequence T1, . . . , Tk of Java types (analogously to the symbols for
terms or formulas),

• a natural number m that gives the size of the jump table; this is a tuple of
Java statements that are arguments of occurrences of stSk within programs.

The symbols StatementSk extend the definition of well-formed Java programs,
i.e. the following (informal) rule is added to the Java grammar [?]:

If stSk ∈ StatementSk is a symbol with α(stSk) = (T1, . . . , Tk,m), pv1, . . . , pvk

are program variables of the types T1, . . . , Tk and jst1, . . . , jstm are Java
statements of the following kinds 10

• return-statements, with or without an argument (a plain program vari-
able)

• break- and continue-statements, with or without a label
• throw-statements whose argument is a program variable
then

stSk(pv1, . . . , pvk; jst1; . . . ; jstm)

is a statement.

5.2 From Meaning Formula to Proof Obligation

From now on we suppose that a taclet tac with meaning formula M(tac) is
fixed. Let SVtac be the set of schema variables M(tac) contains. We define an
instantiation ιSk over SVtac that replaces each schema variable either with a
JavaCardDL variable or with an appropriate skolem expression. The definition
refers to the properties of schema variables as introduced in Sect. 2:

10 Which are exactly the reasons that can lead to an abrupt termination of a statement,
see [?].

98

• If x ∈ SVtac is of type Variable, then ιSk(x) ∈ LVar is a new logical variable
that has the same sort as x.

• If sv ∈ SVtac is of type Term, Formula or Statement, then let {pv1, . . . , pvk} =
Πpv(sv) be the program variables that can occur undeclared in instantiations
of sv. Let T1, . . . , Tk be the Java types of pv1, . . . , pvk.

• If sv ∈ SVtac is of type Term, then

ιSk(sv) = fSk(v1, . . . , vl; pv1, . . . , pvk)

is a term, where
– v1, . . . , vl with vi = ιSk(xi) are the instantiations of x1, . . . , xl ∈ SVtac,

which are distinct Variable schema variables determined by the prefix
Πl(sv) = {x1, . . . , xl} of sv in tac

– and fSk ∈ FuncSk denotes a new skolem symbol with signature

α(fSk) = (S, S1, . . . , Sl, T1, . . . , Tk)

where S is the sort of sv and S1, . . . , Sl are the sorts of v1, . . . , vl.

• Analogously, if sv ∈ SVtac is a schema variable of type Formula, then

ιSk(sv) = pSk(v1, . . . , vl; pv1, . . . , pvk)

is a formula containing a new skolem symbol pSk ∈ PredSk for formulas.

• If sv ∈ SVtac is a schema variable of type Statement, then two additional
(and new) program variables are needed: tsv of Java type Throwable,
and dsv of Java type int (the latter variable is used in Sect. 5.3). Let
{jst1, . . . , jstm} = Πjmp(sv) be jump statements that can occur uncaught in
instantiations of sv. The instantiation ιSk(sv) of sv is the statement 11

ιSk(sv) = stSk(pv1, . . . , pvk, tsv, dsv; jst1; . . . ; jstm; throw tsv)

where stSk denotes a new skolem symbol for statements with signature
α(stSk) = (T1, . . . , Tk,m+ 1).

Finally, the taclet proof obligation of tac is defined to be the formula

MSk(tac) := ιSk(M(tac))

Example 5.1 (Example 4.3 continued) From the meaning formulas of the
taclets tac1, tac2 and tac3 the following proof obligations are derived:

11 We always add a throw-statement, as instantiations of sv may always terminate abruptly
through an exception regardless of Πjmp(sv).

99

MSk(tac1) =
(
tSk

.
= 0 ∧ tSk

.
= 0

)
∨

(
tSk

.
= tSk ∧ ¬(tSk

.
= 0)

)
(18)

MSk(tac2) = (19)

〈staSk(v, t#sta, d#sta; throw t#sta); v++;〉pSk(v) ↔

〈staSk(v, t#sta, d#sta; throw t#sta); v=v+1;〉pSk(v)
(20)

MSk(tac3) = (21)(
(〈 l : if (x==0) β1 else β2〉pSk(x) ↔ 〈 l : β1〉pSk(x)) ∧ x

.
= 0

)
∨(

(〈 l : if (x==0) β1 else β2〉pSk(x) ↔ 〈 l : β2〉pSk(x)) ∧ ¬(x
.
= 0)

) (22)

where we use the abbreviations

β1 = sta1Sk(x, t#sta1, d#sta1; break l; throw t#sta1);

β2 = sta2Sk(x, t#sta2, d#sta2; break l; throw t#sta2);

5.3 Decomposition Rules

Calculus rules for JavaCardDL programs always modify the leading statements
within a program block (see Sect. 1). Unfortunately, the addition of skolem
symbols for statements would destroy the (relative) completeness of a set of
rules: If a skolem symbol turns up as the first active statement of a program
block, no JavaCardDL rule will be applicable to that block.

As we have stated in Sect. 1.1 that a “naive” decomposition rule for Java-
CardDL cannot be posed due to abrupt termination, we define a family of
decomposition rules specifically for statement skolem symbols. These rules
cope with abrupt termination by applying a transformation to the state-
ment α = stSk(. . .). This transformation splits α in two parts α1 = st′Sk(. . .)
and α2, such that the concatenation α1;α2 is equivalent to the original state-
ment α. Furthermore, the first program fragment α1 is constructed in a way
that prevents abrupt termination, and thus, the equivalence

〈.. stSk(. . .); β ...〉φ↔ 〈st′Sk(. . .)〉〈.. α2; β ...〉φ (23)

holds. The remaining statement α2 does no longer contain any skolem sym-
bols, i.e. it is a pure JavaCard program, and hence it is possible to handle α2

by the application of regular JavaCardDL rules.

We assume that for each statement skolem symbol stSk ∈ StatementSk that
occurs within ιSk a second new skolem symbol Dec(stSk) is introduced, which
has the same signature as stSk except for the jump table:

α(stSk) = (T1, . . . , Tk,m) =⇒ α(Dec(stSk)) = (T1, . . . , Tk, 0).

Following equivalence (23), two decomposition taclets D�stSk
and D�

stSk
for

diamond and box modalities (resp.) are introduced for each statement skolem

100

symbol stSk that occurs in ιSk. We only give the definition of D�stSk
, as the

taclet for boxes is obtained analogously:

D�stSk
: { find (〈.. stSk(p1, . . . , pk; #jst1; . . . ; #jstm); ...〉φ)

replacewith (〈Dec(stSk)(p1, . . . , pk);〉〈.. ic ...〉φ) }

where p1, . . . , pk are schema variables for program variables, #jst1, . . . ,#jstm
are variables for statements corresponding to the signature α(stSk) and φ is a
schema variable for formulas. Furthermore the taclet contains an if-cascade ic,
which is denoted by α2 in equivalence (23):

{ i f (pk == 1) #jst1
else i f (pk == 2) . . .
else i f (pk == m) #jstm }

In this statement at most one of the jump statements represented by the
schema variables #jst1, . . . ,#jstm is selected and executed, depending on the
value of the last program variable argument pk (note that the type of pk is
int by the definitions of the last section).

Example 5.2 An application of the decomposition rule for diamond modali-
ties could look as follows:

` 〈st′Sk(t, d)〉〈try { if (d == 1) throw t; } catch (Exception e) {...}〉φ
` 〈try { stSk(t, d; throw t); } catch (Exception e) {...}〉φ

6 Main Result

To show that tac is derivable, which is by Sect. 4 equivalent to the derivability
of all instances ofM(tac), we assume that there is a closed proofH ofMSk(tac)
using the sequent calculus for JavaCardDL (extended by the skolem symbols
and the decomposition taclets of Sect. 5). It is possible to transform H into a
proof Hφ for each instance φ of M(tac):

Theorem 6.1 (Main Result) Suppose that a proof H of MSk(tac) exists.
Then for each instance φ = κ(M(tac)) of the meaning formula M(tac) there
is a proof Hφ.

In the following we will sketch a proof of Theorem 6.1. Due to lack of
space we skip most of the details of the proof; a more detailed account can be
found in [?].

The proof obligation MSk(tac) = ιSk(M(tac)) differs from other instances
φ = κ(M(tac)) of the meaning formula in the instantiation of schema vari-
ables for terms, formulas and statements: In MSk(tac) such variables are re-
placed with skolem symbols as introduced in Sect. 5.1. 12 Hence it is possible

12 Schema variables for logical variables are in both cases simply instantiated with logical
variables.

101

to obtain a “proof” H ′ of φ by replacing each occurrence of a skolem sym-
bol sSk(. . .) = ιSk(sv) in H with the instantiation κ(sv) from φ. In general,
the tree H ′ cannot be expected to be a proof, as it is possible that the replace-
ment of skolem symbols leads to invalid rule applications. But by a slightly
more complex transformation, as sketched below, it is possible to obtain a
legal proof:

For the replacement of skolem symbols we define an appropriate kind of
substitutions: We assume that a mapping σ of the skolem symbols

SymSk := FuncSk ∪ PredSk ∪ StatementSk

to terms, formulas and Java statements “with holes” is given. Namely, we
allow that for a symbol sSk with signature α(sSk) = ([S,]S1, . . . , Sn, T1, . . . , Tk)
(or α(sSk) = (T1, . . . , Tk,m) for statement symbols), the value σ(sSk) contains
a number of holes ◦i labelled with natural numbers i ∈ {1, . . . , n+ k} (or
i ∈ {1, . . . , k +m}, resp.).

Example 6.2 For a predicate skolem symbol pSk ∈ PredSk, an example of a
substitution is given by the following mapping:

σ(pSk) = r(◦2, a) ∧ q(◦1) ∧ 〈◦2=1;〉φ for pSk ∈ PredSk, α(pSk) = (S, int).

The mapping σ is continued to terms, formulas, Java programs, sequents,
proof trees and taclets as a morphism, and by the replacement of skolem
symbols. Holes are replaced with the arguments of occurrences of skolem
symbols: 13

σ(sSk(r1, . . . , rl)) := {◦1/r1, . . . , ◦l/rl}
(
σ(sSk)

)
Example 6.3 (Example 6.2 continued) The mapping σ is applied in the
following way to a formula containing the symbol pSk:

σ
(
∀x.pSk(x; i)

)
= ∀x.

(
r(i, a) ∧ q(x) ∧ 〈 i=1;〉σ(φ)

)
6.1 Treatment of Taclets

The most important observation to prove Theorem 6.1 is the following lemma:

Lemma 6.4 (Lifting of Taclet Applications) Suppose that Rtac′ is a rule
schema that is described by a taclet tac′, and that tac ′ does not contain skolem
symbols (as introduced in Sect. 5.1). If an instance of Rtac′ is given by

P1 · · · Pn

Q

13 Extensive considerations about possible collisions are omitted in this document; see [?]
for details.

102

and σ is a substitution of skolem symbols, then there is a proof tree with root
sequent σ(Q), whose open goals are exactly the sequents σ(P1), . . . , σ(Pn).

Proof. First suppose that the considered rule application is not the applica-
tion of a rewrite taclet within an argument of a skolem symbol occurrence.
Then it can be shown that

σ(P1) · · · σ(Pn)

σ(Q)

is an instance of Rtac′ .

Otherwise, if a rewrite taclet is applied to a term t within an argument
of a skolem symbol occurrence, it is possible that a single occurrence of t in
Q produces more than one occurrence of σ(t) in σ(Q) (like in example 6.3,
where a single occurrence of the program variable i in the original formula
yields multiple occurrences after the application of σ). Provided that the cut-
rule and rules treating equations are available, it is then possible to perform a
cut with the equation σ(t)

.
= σ(t) and apply tac ′ to one side of the equation.

Afterwards the equations σ(t)
.
= σ(ti) can be used to replace all occurrences

of σ(t) successively. This is illustrated by the following proof tree fragment,
in which we use the notation (Γ `∆) = σ(Q):

σ(P1)....
Γ1, σ(t) .= σ(t1) ` ∆1 · · ·

σ(Pn)....
Γn, σ(t) .= σ(tn) ` ∆n

Γ, σ(t) .= σ(t) ` ∆ tac′ ∗
Γ ` ∆, σ(t) .= σ(t)

Γ ` ∆

2

Corollary 6.5 Suppose that the proof H of MSk(tac) = ιSk(M(tac)) only
consists of applications of taclets tac′, and that the concerned taclets tac′ do
not contain skolem symbols. Then for each instance φ = κ(M(tac)) of the
meaning formula M(tac) there is a proof Hφ.

Proof. W.l.o.g. we may assume that ιSk and κ are equal w.r.t. the instan-
tiations of schema variables of type Variable. Each taclet application within
H can then be replaced with the proof tree fragment that is obtained from
Lem. 6.4, for a σ that substitutes skolem expressions sSk(. . .) = ιSk(sv) with
the concrete instantiation κ(sv), i.e. in a way such that σ(MSk(tac)) = φ. 2

6.2 Treatment of Decomposition Rules

Lem. 6.4 of the last section is not directly applicable to applications of the
taclets D�sSk

, D�
sSk

(Sect. 5.3), as these taclets contain statement skolem sym-
bols sSk and Dec(sSk). If these symbols are replaced with arbitrary Java state-
ments by the application of a substitution σ (as introduced in the previous
section), then the obtained taclet will furthermore be unsound in general.

103

We circumvent these problems by constructing particular substitutions σ
of the symbols sSk and Dec(sSk) with the property that σ(D�sSk

), σ(D�
sSk

) are
sound taclets, so that subsequently Lem. 6.4 can be applied for obtaining a
proof tree.

Lemma 6.6 Suppose that σ is a substitution that replaces all skolem symbols
of a formula ψ, and sSk is a skolem symbol for statements. Then there is a
substitution σ′ that differs from σ only in the symbols sSk, Dec(sSk), such that

(i) σ′(D�sSk
), σ′(D�

sSk
) are sound taclets

(ii) There is a proof tree (fragment) whose root is `σ(ψ), such that the only
goal left is `σ′(ψ).

Referring to this lemma it is possible to formulate an analogue of Lem. 6.4
for decomposition taclets:

Lemma 6.7 (Lifting of Decompositions) Suppose that RD is a rule that
is described by a decomposition taclet D (D = D�sSk

or D = D�
sSk

). If an
instance of RD is given by

P
Q

and σ′ is a substitution of skolem symbols as in Lem. 6.6 w.r.t. D, then there
is a proof tree of σ′(Q), whose only goal left is the sequent σ′(P).

Proof. First the application of D is replaced with an application of the
taclet σ′(D), which is sound by Lem. 6.6, (i) (this substitutes certain oc-
currences of sSk, Dec(sSk) within P and Q). Subsequently Lem. 6.4 can be
applied to the resulting rule application w.r.t. σ′. 2

Corollary 6.8 Suppose that the proof H of MSk(tac) = ιSk(M(tac)) only
consists of applications of taclets tac ′ that do not contain skolem symbols,
and of applications of decomposition taclets. Then for each instance φ =
κ(M(tac)) of the meaning formula M(tac) there is a proof Hφ.

Proof. σ is chosen as in the proof of Cor. 6.5. By repeated application of
Lem. 6.6, (ii) it is possible to construct a proof tree with root sequent `φ and
a single goal `σ′(MSk(tac)), with a substitution σ′ that is chosen according
to Lem. 6.6 for each skolem symbol sSk for statements.

It is then possible to construct a closed proof tree of ` σ′(MSk(tac)) by
transforming H: Each taclet application within H is replaced with the proof
tree fragment that is obtained from Lem. 6.4 or Lem. 6.7 (according to the
kind of the taclet). 2

7 Conclusions

In this paper, we have outlined how to ensure correctness of derived taclets.
Because of limited space, we have only sketched the basic idea and covered
only some few kinds of schema variables. The presented concept is completely

104

integrated in the taclet-based KeY prover. Even a greater class of possible
JavaCardDL taclets is supported.

As future work, it remains

• to generalise the concept of skolemisation of meaning formulas,

• to study quantified first-order logics with skolemised statements as ‘atomic’
programs, and

• to explore further areas of application, as for example, proofs of program
transformation properties.

Taclets are a simple but powerful concept. By their syntactic and semantic
simplicity, users are enabled to write new rules and add them to the system
easily. We have shown that, despite this fact, the correctness of the rule base
can be efficiently ensured—even for a special purpose logic like JavaCardDL.

Acknowledgements

We would like to thank Martin Giese and Steffen Schlager for useful com-
ments on earlier versions of this paper, as well as Bernhard Beckert and P.H.
Schmitt for fruitful discussions. Also we want to thank the anonymous referees
and workshop organisers.

105

Meta-programming With Built-in Type
Equality

Tim Sheard and Emir Pasalic

Computer Science & Engineering Department
OGI School of Science & Engineering
Oregon Health & Sciences University

{sheard,pasalic}@cse.ogi.edu

Abstract

We report our experience with exploring a new point in the design space for formal
reasoning systems: the development of the programming language Ωmega. Ωmega
is intended as both a practical programming language and a logic. The main goal of
Ωmega is to allow programmers to describe and reason about semantic properties of
programs from within the programming language itself, mainly by using a powerful
type system.

We illustrate the main features of Ωmega by developing an interesting meta-
programming example. First, we show how to encode a set of well-typed simply
typed λ-calculus terms as an Ωmega data-type. Then, we show how to implement a
substitution operation on these terms that is guaranteed by the Ωmega type system
to preserve their well-typedness.

Key words: Meta-programming, Meta-language, Equality types

1 Introduction

There is a large semantic gap between what a programmer knows about his
program and the way he has to express this knowledge to a formal system for
reasoning about that program. While many reasoning tools are built on the
Curry-Howard isomorphism, it is often hard for the programmers to concep-
tualize how they can put this abstraction to work. We propose the design of
a language that makes this important isomorphism concrete – proofs are real
object that programmers can build and manipulate without leaving their own
programming language.

We have explored a new point in the design space of formal reasoning
systems and developed the programming language Ωmega. Ωmega is both a

Preprint submitted to Elsevier Preprint 14 June 2004

106

practical programming language and a logic. These sometimes irreconcilable
goals are made possible by embedding the Ωmega logic in a type system based
on equality qualified types[6]. This design supports the construction, mainte-
nance, and propagation of semantic properties of programs using powerful old
ideas about types in novel ways.

For what kind of programming would a language like Ωmega be useful?
The rest of this paper describes one possibility.

Meta-programming in Ωmega

Meta-programs manipulate object-programs represented as data. Tradi-
tionally, object-language programs are represented with algebraic data-types
as syntactic objects. This representation preserves syntactic properties of
object-language programs (i.e., it is impossible to represent syntactically in-
correct object-language programs). In this paper, we explore the benefits of
representing object-language programs as data in a manner that preserve im-
portant semantic properties, in particular scoping and typing. Representing
typed object-languages in a way which preserves semantic properties can lead
to real benefits. By preserving typing and scoping properties, we gain as-
surance in the correctness of a particular language processor (e.g. compiler,
interpreter, or program analysis). Such semantics preserving representations
statically catch errors introduced by incorrect meta-language programs.

Contributions

The first contribution is an approach to manipulating strongly typed object
languages in a manner which is semantics preserving. This approach encodes
well-typed and statically scoped object-language programs as data-types which
embed the type of the object-language program in the type of its representa-
tion. While this can be done using only the standard extensions to the Haskell
98 type system (using equality types), we use Ωmega, an extension to Haskell
inspired by Cheney and Hinze’s work on phantom types [6].

The second contribution is an implementation of Cheney and Hinze’s ideas
that makes programming with well-typed object-language programs consider-
ably less tedious than using equality types in Haskell alone. Our implemen-
tation of Ωmega also supports several other features, such as extensible kinds
and staging, which we shall not discuss in this paper. This integration creates
a powerful meta-programming tool.

The third contribution is a demonstration that semantic properties of
meta-programs (i.e., preserving object-language types) can be encoded in the
type of the meta-program itself – the programmer need not resort to using an-
other meta-logic to (formally) assure himself that his substitution algorithm
preserves typing. We demonstrate this by implementing a type-preserving
substitution operation on the object-language of simply typed λ-calculus.

107

The last contribution is the demonstration that these techniques support
the embedding of logical frameworks style judgments into a programming
language such as Haskell. This is important because it moves logical style
reasoning about programs from the meta-logical level into the programming
language.

2 Ωmega: A Meta-language with Type Equality

Type Equality in Haskell. A key technique that inspired the work de-
scribed in this paper is the encoding of equality between types as a Haskell
type constructor (Equal a b). Thus a non-bottom value (p::Equal a b),
can be regarded as a proof of the proposition that a equals b.

The technique of encoding the equality between types a and b as a poly-
morphic function of type ∀ϕ. (ϕ a)→ (ϕ b) was proposed by both Baars &
Swierstra [2], and Cheney & Hinze [6] at about the same time, and is described
somewhat earlier in a different setting by Weirich [20]. We illustrate this by
the data-type Equal : *→ *→ *

data Equal a b = Equal (∀ϕ. (ϕ a)→ (ϕ b))

cast :: Equal a b→ (ϕ a)→ (ϕ b)

cast (Equal f) = f

The logical intuition behind this definition (also known as Leibniz equal-
ity [12]) is that two types are equal if, and only if, they are interchangeable
in any context. This context is represented by the arbitrary Haskell type con-
structor ϕ. Proofs are useful, since from a proof p :: Equal a b, we can
extract functions that cast values of type (C[a]) to type (C[b]) for type con-
texts C[]. For example, we can construct functions a2b::Equal a b→ a→
b and b2a::Equal a b→ b→ a which allow us to cast between the two types
a and b in the identity context. Furthermore, it is possible to construct com-
binators that manipulate equality proofs based on the standard properties of
equality (transitivity, reflexivity, congruence, and so on).

Equality types are described elsewhere [2], and we shall not belabor their
explanation any further. The essential characteristic of programming with
type equality in Haskell is the requirement that programmers manipulate
proofs of equalities between types using equality combinators. This has two
practical drawbacks. First, manipulation of proofs using combinators is te-
dious. Second, while present throughout a program, the equality proof manip-
ulations have no real computational content – they are used solely to leverage
the power of the Haskell type system to accept certain programs that are not
typable when written without the proofs. With all the clutter induced by
proof manipulation, it is sometimes difficult to discern the difference between
the truly important algorithmic part of the program and mere equality proof
manipulation. This, in turn, makes programs brittle and rather difficult to

108

change.

2.1 Type Equality in Ωmega

What if we could extend the type system of Haskell, in a relatively minor way,
to allow the type-checker itself to manipulate and propagate equality proofs?
Such a type system was proposed by Cheney and Hinze [6], and is one of
the ideas behind Ωmega [17]. In the remainder of this paper, we shall use
Ωmega, rather than pure Haskell to write our examples. We conjecture that,
in principle, whatever it is possible to do in Ωmega, it is also possible to do in
Haskell (plus the usual set of extensions), only in Ωmega it is expressed more
cleanly and succinctly.

The syntax and type-system of Ωmega has been designed to closely resem-
ble Haskell (with GHC extensions). For practical purposes, we could consider
(and use) it as a conservative extension to Haskell. In this section, we will
briefly outline the useful differences between Ωmega and Haskell.

In Ωmega, the equality between types is not encoded explicitly (as the type
constructor Equal). Instead, it is built into the type system, and is used im-
plicitly by the type-checker. Consider the following (fragmentary) data-type
definitions. (We adopt the GHC syntax for writing the existential types with
a universal quantifier that appears to the left of a data-constructor. We also
replace the keyword forall with the symbol ∀. We shall write explicitly uni-
versally or existentially quantified variables with Greek letters. Arrow types
(->) will be written as → , and so on.)

data Exp e t

= Lit Int where t=Int

| V (Var e t)

data Var e t

= ∀γ. Z where e = (γ,t)
| ∀γα. S (Var γ t) where e = (γ,α)

Each data-constructor in Ωmega may contain a where clause which con-
tains a list of equations between types in the scope of the constructor def-
inition. These equations play the same role as the Haskell type Equal in
Section 2, with one important difference. The user is not required to provide
any actual evidence of type equality – the Ωmega type checker keeps track of
equalities between types and proves and propagates them automatically.

The mechanism Ωmega uses to keep track of equalities between types is
very similar to the constraints that the Haskell type checker uses to resolve
class-based overloading. A special qualified type [8] is used to assert equal-
ity between types, and a constraint solving system is used to simplify and
discharge these assertions. When assigning a type to a type constructor,
the equations specified in the where clause just become predicates in a qual-

109

ified type. Thus, the constructor Lit is given the type ∀e t.(t=Int) =>

Int→ Exp e t. The equation t=Int is just another form of predicate, similar
to the class membership predicate in the Haskell type (for example, Ord a =>

a→ a→ Bool).

Tracking equality constraints. When type-checking an expression, the
Ωmega type checker keeps two sets of equality constraints: obligations and
assumptions.

Obligations. The first set of constraints is a set of obligations. Obligations
are generated by the type-checker either when (a) the program constructs
data-values with constructors that contain equality constraints; or (b) an ex-
plicit type signature in a definition is encountered.

For example, consider type-checking the expression (Lit 5). The con-
structor Lit is assigned the type ∀e t.(t=Int) => Int→ Exp e t. Since
Lit is polymorphic in e and t, the type variable t can be instantiated to Int.
Instantiating t to Int also makes the equality constraint obligation Int=Int,
which can be trivially discharged by the type checker.

Lit 5 :: Int→ Exp e Int with obligation Int = Int

One practical thing to note is that in this context, the data-constructors
of Exp and Var are given the following types:

Lit :: ∀e t.t=Int => Int→ Exp e t
Z :: ∀e e’ t.e=(e’,t) => Var e t
S :: ∀e t e’ t’. e=(e’,t’) => (Var e’ t)→ (Var e t)

It is important to note that the above qualified types can be instantiated
to the following types:

Lit :: Int→ Exp e Int

Z :: Var (e,t) t

S :: (Var e’ t)→ (Var (e’,t’) t)

We have already seen this for Lit. Consider the case for Z. First, the
type variable e can be instantiated to (e’,t). After this instantiation, the
obligation introduced by the constructor becomes (e’,t)=(e’,t), which can
be immediately discharged by the built-in equality solver. This leaves the
instantiated type (Var (e’,t) t).

Assumptions. The second set of constraints is a set of assumptions or
facts. Whenever, a constructor with a where clause is pattern-matched, the
type equalities in the where-clause are added to the current set of assumptions
in the scope of the pattern. These assumptions can be used to discharge
obligations. For example, consider the following partial definition:

evalList :: Exp e t→ e→ [t]

evalList exp env =

case exp of Lit n→ [n]

110

When the expression exp of type (Exp e t) is matched against the pat-
tern (Lit n), the equality t=Int from the definition of Lit is introduced as
an assumption. The type signature of evalList induces the obligation that
the body of the definition has the type [t]. The right-hand side of the case

expression, [n], has the type [Int]. The type checker now must discharge
(prove) the obligation [t]=[Int], while using the fact, introduced by the pat-
tern (Lit n) that t=Int. The Ωmega type-checker uses an algorithm based
on congruence-closure [11], to discharge equality obligations. It automatically
applies the laws of equality to solve such equations. In this case, the equation
is discharged easily using congruence.

3 Ωmega Example: Substitution

Now, we shall develop our main example, showcasing the meta-programming
facilities of Ωmega. First, we shall define a sample object-language of simply
typed λ-calculus judgments, and then implement a type-preserving substi-
tution function on those terms. While this object-language is quite simple,
useful perhaps only for didactic purposes, we have applied our techniques on
a wider range of meta-programs and object-languages (e.g., tagless staged in-
terpreters for typed imperative languages, object-languages with modal type
systems, and so on [13,14]).

This example demonstrates type-preserving syntax-to-syntax transforma-
tions between object-language programs. Substitution, which we shall develop
in the remainder of this paper, is one such transformation. Furthermore, a
correct implementation of substitution can be used to build more syntax-
to-syntax transformations: we shall provide an implementation of big-step
semantics that uses substitution.

The substitution operation we present preserves object-language typing.
As a meta-program, it not only analyzes object-language typing judgments,
but also builds new judgments based on the result of that analysis.

3.1 The Simply Typed λ-calculus with Typed Substitutions

Figures 1 and 2 define two sets of typed expressions. The first figure of ex-
pressions (Figure 1) is just the simply typed λ-calculus. The second figure
(Figure 2) defines a set of typed substitutions. The substitution expressions
are taken from the λυ-calculus [4]. There are several of other ways to repre-
sent substitutions explicitly as terms (see Kristoffer Rose’s excellent paper [16]
for a comprehensive survey), but we have chosen the notation of λυ for its
simplicity.

A substitution expression σ is intended to represent a mapping from de-
Bruijn indices to expressions (i.e., a substitution), the same way that λ-
expressions are intended to represent functions. As in λυ, we define three

111

Expressions and types

τ ∈ T ::= b | τ1 → τ2

Γ ∈ G ::= 〈〉 | Γ, τ

e ∈ E ::= Var n | λτe | e1 e2

Γ, τ ` 0 : τ
(Base)

Γ ` n : τ

Γ, τ ′ ` (n + 1) : τ
(Weak)

Γ ` n : τ

Γ ` Var n : τ
(Var)

Γ, τ1 ` e : τ2

Γ ` λτ1 .e : τ1 → τ2

(Abs)
Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2

(App)

Fig. 1. The simply typed λ-calculus fragment.

Substitutions à la λυ [4]

σ ∈ S ::= e/ | ⇑(σ) | ↑

Γ ` e : τ

Γ ` e/ : Γ, τ
(Slash)

Γ, τ `↑: Γ
(Shift)

Γ ` σ : Γ′

Γ, τ `⇑(σ) : Γ′, τ
(Lift)

Fig. 2. Explicit substitutions fragment.

e

0

<<zzzzzzzzz
Var 0

1

==zzzzzzzz
Var 1

2

==zzzzzzzz
Var 2

3

==zzzzzzzz
Var 3

.

..

??~~~~~~~~~ ...

0

!!D
DD

DD
DD

D Var 0

1

!!D
DD

DD
DD

D Var 1

2

!!D
DD

DD
DD

D Var 2

3

 @
@@

@@
@@

@@ Var 3

...
...

0 // Var 0

1 // ↑ (σ(0))

2 // ↑ (σ(1))

..

.
// ..
.

...
// ...

(a) Slash (e/) (b) Shift (↑) (c) Lift (⇑(σ))

Fig. 3. Substitutions

kinds of substitutions in Figure 2 (see Figure 3 for a graphical illustration):

(i) Slash (e/). Intuitively, the slash substitution maps the variable with the
index 0 to e, and any variable with the index n + 1 to Var n.

112

(ii) Shift (↑). The shift substitution adjusts all the variable indices in a
term by incrementing them by one. It maps each variable n to the term
Var (n + 1).

(iii) Lift (⇑ (σ)). The lift substitution (⇑ (σ)) is used to mark the fact that
the substitution σ is being applied to a term in a context in which index
0 is bound and should not be changed. Thus, it maps the variable with
the index 0 to Var 0. For any other variable index n+1, it maps it to the
term that σ maps to n, with the provision that the resulting term must
be adjusted with a shift: ((n + 1) 7→↑ (σ(n))).

Typing substitutions

The substitution expressions are typed. The typing judgments of substi-
tutions, written Γ1 ` σ : Γ2, indicate that the type of a substitution, in a
given type assignment, is another type assignment. The intuition behind the
substitution typing judgment is the following: given a term whose variables
are assigned types by Γ2, applying a the substitution σ yields an expression
whose variables are assigned types by Γ1.

Example. We describe a couple of example substitutions.

(i) Consider the substitution (True/). This substitution maps the variable
with the index 0 to the Boolean constant True. The type of this substi-
tution is Γ ` True/ : Γ, Bool. In other words, given any type assignment,
the substitution (True/) can be applied in any context where the variable
0 is assigned type Bool.

(ii) Consider the substitution σ = (⇑ (True/)). σ is the substitution that
replaces the variable with the index 1 with the constant True.

Recall that the type of any substitution θ under a type assignment Γ, is
a type assignment ∆ (written Γ ` θ : ∆), such that for any expression e′

to which the substitution θ is applied, the following must hold ∆ ` e′ : τ
and Γ ` θ(e′) : τ .

So, what type should we assign to σ? When applied to an expression,
a lift substitution (σ =⇑ (True/)) does not change the variable with the
index 0. Thus, when typing σ as Γ ` σ : ∆, we know something about
the shape of Γ and ∆. Namely, for some ∆′, we know that ∆ = (∆′, τ),
and for some Γ′, we know that Γ = (Γ′, τ). The type assignments ∆′ and
Γ′ are determined by the sub-substitution True/, yielding the following

113

typing derivation:

Γ ` True : Bool
Const

Γ ` Bool/ : Γ, Bool

Slash

Γ, τ `⇑(Bool/) : Γ, Bool, τ

Lift

There are three typing rules for the substitutions (Figure 2):

(i) Slash (e/). A slash substitution e/ replaces the 0-index variable in an
expression by e. Thus, in any context Γ, where e can be given type
τ , the typing rule requires the substitution to work only on expressions
in the type assignment Γ, τ , where the 0-index variable is assigned the
type τ . Since the slash substitution also decrements the indexes of the
remaining variables, they are all shifted to the right by one place, so that
the remaining free variables can be assigned their old types in Γ after the
substitution is applied.

Γ ` e : τ

Γ ` e/ : Γ, τ
(Slash)

(ii) Shift (↑). The shift substitution maps all variables n to Var (n + 1).
Thus, given a term whose variables are assigned type a by Γ, after per-
forming the shift substitution, the types in the type assignment must for
each variable must “move” to the left by one position. This is done by
appending an arbitrary type τ for the variable with the index 0, which
cannot occur free in the term after the substitution is performed.

Γ, τ `↑: Γ
(Shift)

(iii) Lift (⇑ (σ)). For any variable index (n + 1) in a term, the substitution
⇑(σ) applies σ to n and then shifts the resulting term. Thus, the 0-index
term in the type assignment remains untouched, and the rest of the type
assignment is as specified by σ:

Γ ` σ : Γ′

Γ, τ `⇑(σ) : Γ′, τ
(Lift)

Applying substitutions

In the remainder of this Section, we show how to implement a function (we
call it subst) that takes a substitution expression σ, a λ-expression e, and re-
turns an expression such that all the indices in e have been replaced according

114

Substitution on expressions
(·, ·) ⇒ · ⊂ S× E× E

2

(σ, e1) ⇒ e′1

(σ, e2) ⇒ e′2

(σ, (e1 e2)) ⇒ e′1 e′2
(⇑(σ), e) ⇒ e′

(σ, λ.e) ⇒ λe′

(σ, n) ⇒ e

(σ, Var n) ⇒ e

Substitution on variables
(·, ·) ⇒ · ⊂ S× N × E

(e/, 0) ⇒ e (e/, n + 1) ⇒ Var n (⇑(σ), 0) ⇒ Var 0

(σ, n) ⇒ e (↑, e) ⇒ e′

(⇑(σ), n + 1) ⇒ e′ (↑, n) ⇒ Var (n + 1)

Fig. 4. Applying substitutions to terms

the substitution. In the simply typed λ-calculus, substitution preserves typ-
ing, so we expect the following property to be true of the substitution function
subst: if Γ ` σ : ∆ and ∆ ` e : τ , then Γ ` subst σ e : τ .

How should subst work? Figure 4 presents two judgments, (σ, e1) ⇒ e2

and (σ, n) ⇒ e, which describe the action of substitutions on expressions
and variables, respectively. These judgments are derived from the reduction
relations of the λυ-calculus [4]. It is not difficult to show that this reduction
strategy indeed does implement capture avoiding substitution sufficient to
perform β reductions (see Benaissa, Lescanne & al. [4] for proofs).

4 Implementing Substitution in Ωmega

Next, we show how to implement this substitution operation in Ωmega, using
expression and substitution judgments instead of expressions and substitution
expressions.

4.1 Judgments

The expression and substitution judgments can be easily encoded in Ωmega.
The data-types Var and Exp encode expression and variable judgments pre-
sented in Figure 1.

data Var e t = ∀d. Z where e = (d,t)

| ∀d t2. S (Var d t) where e = (d,t2)

data Exp e t = V (Var e t)

115

| ∀t1 t2. Abs (Exp (e,t1) t2)

where t = t1→ t2

| ∀t1. App (Exp e (t1→ t))

(Exp e t1)

The judgment Var implements the lookup and weakening rules for vari-
ables. Just as in the judgment of Figure 1, there are two cases:

(i) First, there is the constructor Z. This constructor translates the definition
of Figure 1 directly: the where-clause requires the type system of Ωmega
to prove that there exists some environment γ such that the environment
t is equal to γ extended by t.

(ii) The second constructor, S takes a judgment of type (Var γ t), and a
requirement that the environment e is equal to the pair (γ, α), where
both γ and α are existentially quantified.

The names S and Z are chosen to show how the judgments for variable
are structurally the same as the natural number indices. Finally, the sub-
judgments for the variable case are “plugged” into the definition of Exp e t

using the constructor V.

The type of expression judgments (Exp e t) is constructed in a similar
fashion. We shall only explain the abstraction case in some detail. The con-
structor Abs takes as its argument a judgment of type (Exp (e,t1) t2): an
expression judgment of type t2 in the type assignment e, extended so that it
assigns the variable 0 the type t1. If this argument can be supplied, then the
result type of the Abs judgment is the function type (t1→ t2), as indicated
by the where-clause.

Next, we define a data-constructor Subst gamma delta that represents the
typing judgments for substitutions . The type constructor Subst gamma delta

represents the typing judgment Γ ` σ : ∆ presented in Figure 2.

data Subst gamma delta =

∀t1. Shift

where gamma = (delta,t1)

| ∀t1. Slash (Exp gamma t1)

where delta = (gamma,t1)

| ∀del1 gam1 t1. Lift (Subst gam1 del1)

where delta = (del1,t1),

gamma = (gam1,t1)

4.2 Substitution

Finally, we define the substitution function subst. It has the following
type:

subst :: Subst gamma delta→

116

1 subst :: Subst gamma delta→
2 Exp delta t→ Exp gamma t

3 subst s (App e1 e2) = App (subst s e1) (subst s e2)

4 subst s (Abs e) = Abs (subst (Lift s) e)

5 subst (Slash e) (V Z) = e

6 subst (Slash e) (V (S n)) = V n

7 subst (Lift s) (V Z) = V Z

8 subst (Lift s) (V (S n)) = subst Shift (subst s (V n))

9 subst (Shift) (V n) = V (S n)

Fig. 5. Substitution in simply typed λ-calculus.

Exp delta t→ Exp gamma t

It takes a substitution whose type is delta in some type assignment gamma, an
expression of type t that is typed in the type assignment delta, and produces
an expression of type t typable in the type assignment gamma.

We will discuss the implementation of the function subst (Figure 5) in
more detail. In several relevant cases, we shall describe the process by which
the Ωmega type-checker makes sure that the definitions are given correct types.
Recall that every pattern-match over one of the Exp or Subst judgments may
introduce zero or more equations between types, which are then available
to the type-checker in the body of a case (or function definition). The type
checker may use these equations to prove that two types are equal. In the text
below, we sometimes use the type variables gamma and delta for notational
convenience, but also Skolem constants like 1. These are an artifact of the
Ωmega type-checker (they appear when pattern-matching against values that
may contain existentially quantified variables) and should be regarded as type
constants.

(i) The application case (line 3) simply applies the substitution to the two
sub-expression judgments and then rebuilds the application judgment
from the results.

(ii) The abstraction case (line 4) pushes the substitution under the λ-abstraction.
It may be interesting to examine the types of the various subexpressions
in this definition.

Abs e : Exp delta t, where t=t1→ t2

e : Exp (delta,t1) t2

s : Subst gamma delta

Lift s : Subst (gamma,t1) (delta,t1)

subst (Lift s) e : Exp (gamma,t1) t2

The body of the abstraction, e has the type (delta,t1), where t1

117

is the type of the domain of the λ-abstraction. In order to apply the
substitution s to the body of the abstraction (e), we need a substitution
of type (Subst (gamma,t1) (delta,t1)). This substitution can be ob-
tained by applying Lift to s. Then, recursively applying subst with
the lifted substitution to the body e, we obtain an expression of type
(Exp (gamma,t1) t2), from which we can construct a λ-abstraction of
the (Exp gamma (t1→ t2)).

(iii) The variable-slash case (line 5-6). There are two cases when applying the
slash substitution to a variable expression:
(a) Variable 0. The substitution (Slash e) has the type

(Subst (gamma) (gamma,t)), and contains the expression
e :: Exp gamma t. The expression (V Z) has the type
(Exp (delta,t) t). Pattern matching introduces the equation
gamma=delta, and we can use e to replace (V Z).

Slash e :: (Subst (gamma) (gamma,t))

e :: Exp gamma t

(b) Variable n+1. Pattern matching on the substitution argument intro-
duces the equation delta=(gamma,t1). Pattern matching against the
expression (V (S n)) introduces the equation delta=(gamma’,t),
for some gamma’. The expression result expression (V n) has the
type (Exp gamma’ t). The type checker then uses the two equalities
to prove that it has the type (Exp gamma t). It does this by first
using congruence to prove that gamma=gamma’, and then by applying
this equality to obtain Exp gamma’ t = Exp gamma t.

Slash e :: Subst gamma (gamma,t)

(V (S n)) :: Exp delta t

(iv) The variable-lift case (lines 7-8). There are two cases when applying the
lift substitution to a variable expression.
(a) Variable 0. This case is easy because the lift substitution places makes

no changes to the variable with the index 0. We are able simply to
return (V Z) as a result.

(b) Variable n+1. The first pattern (Lift s :: Subst gamma delta),
on the substitution, introduces the following equations:

delta = (d’,_1),

gamma = (g’,_1)

The pattern on the variable (V(S n):: Var delta t) introduces
the equation

delta = (d2,_2)

The first step is to apply the substitution s of type (Subst g’

d’) to a decremented variable index (V n) which has the type n ::

118

Var d2 t. To do this, the type checker has to show that g’=d2, which
easily follows from the equations introduced by the pattern, yielding
a result of type (Exp g’ t). Applying the Shift substitution to
this result yields an expression of type (Exp (g’,a) t) (where a

is can be any type). Now, equations above can be used to prove
that this expression has the type (Exp gamma t) using the equation
gamma=(g’, 1).

(v) Variable-shift case (line 9). Pattern matching on the Shift substitution
introduces the equation gamma = (delta, 1). The expression has the
type (Exp delta t). Applying the successor to the variable results in
an expression (V (S n)) of type (Exp (delta,a) t). Immediately, the
type checker can use the equation introduced by the pattern to prove
that this type is equal to (Exp gamma t).

We have defined type-preserving substitution simply typed λ-calculus judg-
ments. Recall, that since equality proofs can be encoded in Haskell, it should
be possible (with certain caveats) to implement the function subst in Haskell
(with a couple of GHC extensions). It is worth noting that Ωmega has proven
very helpful in writing such complicated functions: explicitly manipulating
equality proofs for such a function in Haskell, would result in code that is
both verbose and difficult to understand.

5 A Big-step Evaluator

Finally, we implement a simple evaluator based on the big-step semantics for
the λ-calculus. The evaluation relation is given by the following judgment:

λe ⇒ λe x ⇒ x

e1 ⇒ λe′ (e2/, e
′) ⇒ e3 e3 ⇒ e′′

e1 e2 ⇒ e′′

Note that in the application case, we first use the substitution (e2/, e
′) ⇒ e3

to substitute the argument e2 for the variable with index 0 into the body of
the λ-abstraction.

The big-step evaluator is implemented as the function eval which takes
a well-typed expression judgment of type (Exp delta t), and returns judg-
ments of the same type. The evaluator reduces β-redices using a call-by-name
strategy, relying upon the substitution implemented above.

eval :: Exp delta t -> Exp delta t

eval (App e1 e2) =

case eval e1 of

Abs body -> eval (subst (Slash e2) body)

eval x = x

119

Note that the type of the function eval statically ensures that it preserves
the typing of the object language expressions it evaluates, with the usual
caveats that the Exps faithfully encode well-typed λ-expressions.

Finally, let us apply the big-step evaluator to a simple example. Consider
the expression, example.

example :: Exp gamma (a→ a)

example = (Abs (V Z)) ‘App‘ ((Abs (Abs (V Z)))

‘App‘ (Abs (V Z)))

-- example = (λ x.x) ((λ y. (λ z.z))) (λ x.x)

The expression example evaluates to the identity function. Applying eval

to it yields precisely that result:

evExample = eval example

-- evExample = (Abs (V Z)) : Exp gamma (a→ a)

6 Related Work

Implementations of simple interpreters that use equality proof objects imple-
mented as Haskell datatypes, have been given by Weirich [20] and Baars and
Swierstra [2]. Baars and Swierstra use an untyped syntax, but use equal-
ity proofs to encode dynamically typed values. Hinze and Cheney [5,6] have
recently resurrected the notion of “phantom type,” first introduced by Lei-
jen and Meijer [10]. Hinze and Cheney’s phantom types are designed to ad-
dress some of the problems that arise when using equality proofs to represent
type-indexed data. Their main motivation is to provide a language in which
polytypic programs, such as generic traversal operations, can be more easily
written. Cheney and Hinze’s system bears a strong similarity to Xi et al.’s
guarded recursive datatypes [21], although it seems to be a little more general.

We adapt Cheney and Hinze’s ideas to meta-programming and language
implementation. We incorporate their ideas into a Haskell-like programming
language. The value added in our work is additional type system features
(extensible kinds and rank-N polymorphism, not used in this paper) applying
these techniques to a wide variety of applications, including the use of typed
syntax, the specification of semantics for patterns, and its combination with
staging to obtain tagless interpreters, and the encoding of logical framework
style judgments as first class values within a programming language.

Simonet and Pottier [18] proposed a system of guarded algebraic data types,
which seem equivalent in expressiveness to phantom types, guarded recur-
sive datatype constructors, and Ωmega’s equality qualified (data)types. They
present a type system for guarded algebraic data types as an extension to the
HM(X) [19] type system, and describe a type inference algorithm. They prove
a number of important properties about the type system and the inference

120

algorithm (e.g., type soundness, correctness, and so on).

The technique of manipulating well-typedness judgments has been used
extensively in various logical frameworks [7,15]. We see the advantage of our
work here in translating this methodology into a more main-stream functional
programming idiom. Although our examples are given in Ωmega, most of our
techniques can be adapted to Haskell with some fairly common extensions.

In previous work, we have used the techniques and programming language
extensions described above to address the problem of tagless interpreters in
meta-programming [14]. Tagless interpreters can easily be constructed in de-
pendently typed languages such as Coq [3] and Cayenne [1]. These languages,
however, do not support staging, nor have they gained a wide audience in the
functional programming community. Programming with well-typed object-
language syntax, applied to the problem of constructing tagless staged in-
terpreters, has been shown possible in a meta-language (provisionally called
MetaD) with staging and dependent types [14]. The drawback of this ap-
proach is that there is no “industrial strength” implementation for such a
language. In fact, the judgment encoding technique presented in this paper
is basically the same, except that instead of using a dependently typed lan-
guage, we encode the necessary machinery in a language which is arguably
more recognizable to Haskell programmers. By using explicit equality types,
everything can be encoded using the standard GHC extensions to Haskell 98.
Ωmega adds further ease of use to these techniques, relieving the programmer
of the responsibility of explicitly manipulating equality proofs.

A technique using indexed type systems [22], a restricted and disciplined
form of dependent typing, has been used to write interpreters and source-to-
source transformations on typed terms [21]. The meta-language with guarded
recursive datatype constructors, used by Xi & al., seems to be roughly equiv-
alent in expressive power to Ωmega. Ωmega, however, is equipped with ad-
ditional features, such as staging, which may give it a wider range of useful
applications.

7 Discussion and Future Work

Meta-language Implementation. The meta-language used in this paper can
be seen as a (conservative) extension of Haskell, with built-in support for
equality types. It was largely inspired by the work of Cheney and Hinze. The
meta-language we have used in our examples in this papers is the functional
language Ωmega, a language designed to be as similar to Haskell. We have
implemented our own Ωmega interpreter, similar in spirit and capabilities to
the Hugs interpreter for Haskell [9].

Theoretical work demonstrating the consistency of type equality support
in a functional language has been carried out by Cheney and Hinze. We

121

have implemented these type system features into a type inference engine,
combining it with an equality decision procedure to manipulate type equalities.
The resulting implementation has seen a good deal of use in practice, but more
rigorous formal work on this type inference engine is required.

Polymorphism and Binding Constructs in Types. The object-language of
the example presented in this paper (Figure 1), is simply typed: there are no
binding constructs or structures in any index arguments to Exp. If, however,
we want to represent object languages with universal or existential types, we
will have to find a way of dealing with type constructors or type functions as
index arguments to judgments, which is difficult to do in Haskell or Ωmega.
We are currently working on extending the Ωmega type system to do just that.
This would allow us to apply our techniques to object languages with more
complex type systems (e.g., polymorphism, dependent types, and so on).

Logical Framework in Ωmega. The examples presented in this paper suc-
ceed because we manage to encode the usual logical-framework-style inductive
predicates into the type system of Ωmega. We have acquired considerable ex-
perience in doing this for typing judgments, lists with length, logical proposi-
tions, and so on. What is needed now is to come up with a formal and general
scheme of translating such predicates into Ωmega type constructors, as well as
to explore the range of expressiveness and the limitations of such an approach.
We intend to work on this in the future.

References

[1] Augustsson, L. and M. Carlsson, An exercise in dependent types: A well-typed
interpreter, in: Workshop on Dependent Types in Programming, Gothenburg,
1999, available online from
www.cs.chalmers.se/~augustss/cayenne/interp.ps.

[2] Baars, A. I. and S. D. Swierstra, Typing dynamic typing, in: Proceedings of the
Seventh ACM SIGPLAN International Conference on Functional Programming
(ICFP ’02), Pittsburgh, Pennsylvania, USA, October 4-6, 2002., SIGPLAN
Notices 37(9) (2002).

[3] Barras, B., S. Boutin, C. Cornes, J. Courant, J. Filliatre, E. Giménez,
H. Herbelin, G. Huet, C. Muñoz, C. Murthy, C. Parent, C. Paulin, A. Säıbi
and B. Werner, The Coq Proof Assistant Reference Manual – Version V6.1,
Technical Report 0203, INRIA (1997).

[4] Benaissa, Z.-E.-A., D. Briaud, P. Lescanne and J. Rouyer-Degli, λν, a calculus
of explicit substitutions which preserves strong normalisation, Journal of
Functional Programming 6 (1996), pp. 699–722.

[5] Cheney, J. and R. Hinze, A lightweight implementation of generics and
dynamics., in: Proc. of the workshop on Haskell (2002), pp. 90–104.

122

[6] Cheney, J. and R. Hinze, Phantom types (2003), available from
http://www.informatik.uni-bonn.de/~ralf/publications/Phantom.pdf.

[7] Harper, R., F. Honsell and G. Plotkin, A framework for defining logics, in:
Proceedings Symposium on Logic in Computer Science (1987), pp. 194–204, the
conference was held at Cornell University, Ithaca, New York.

[8] Jones, M. P., “Qualified types :–theory and practice,” Ph.D. thesis, Keble
College, Oxford University (1992).

[9] Jones, M. P., The hugs 98 user manual (200).

[10] Leijen, D. and E. Meijer, Domain-specific embedded compilers, in: Proceedings
of the 2nd Conference on Domain-Specific Languages (1999), pp. 109–122.

[11] Nelson, G. and D. C. Oppen, Fast decision procedures based on congruence
closure, Journal of the ACM 27 (1980), pp. 356–364.

[12] Nordström, B., K. Peterson and J. M. Smith, “Programming in Martin-Lof’s
Type Theory,” International Series of Monographs on Computer Science 7,
Oxford University Press, New York, NY, 1990, currently available online from
first authors homepage.

[13] Pašalić, E., “Heterogeneous Meta-programming,” Ph.D. thesis, Oregon Health
and Sciences University, OGI School of Science & Engineering (2004),
forthcoming.

[14] Pašalić, E., W. Taha and T. Sheard, Tagless staged interpreters for typed
languages, in: The International Conference on Functional Programming (ICFP
’02), ACM, Pittsburgh, USA, 2002.

[15] Pfenning, F. and C. Schürmann, System description: Twelf — A meta-logical
framework for deductive systems, in: H. Ganzinger, editor, Proceedings of the
16th International Conference on Automated Deduction (CADE-16), LNAI
1632 (1999), pp. 202–206.

[16] Rose, K. H., Explicit substitution – tutorial & survey, Technical Report LS-96-3,
BRICS, Universitty of Århus (1996), bRICS Lecture Series.

[17] Sheard, T., E. Pasalic and R. N. Linger, The ωmega implementation., Available
on request from the author. (2003).

[18] Simonet, V. and F. Pottier, Constraint-based type inference for guarded algebraic
data types (2003), submitted for publication.

[19] Sulzmann, M., M. Odersky and M. Wehr, Type inference with constrained types,
in: FOOL4: 4th. Int. Workshop on Foundations of Object-oriented programming
Languages, 1997.

[20] Weirich, S., Type-safe cast: functional pearl., in: Proceedings of the ACM Sigplan
International Conference on Functional Programming (ICFP-00), ACM Sigplan
Notices 35.9 (2000), pp. 58–67.

123

[21] Xi, H., C. Chen and G. Chen, Guarded recursive datatype constructors, in:
C. Norris and J. J. B. Fenwick, editors, Proceedings of the 30th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages (POPL-03), ACM
SIGPLAN Notices 38, 1 (2003), pp. 224–235.

[22] Xi, H. and F. Pfenning, Dependent types in practical programming, in:
Conference Record of POPL 99: The 26th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, San Antonio, Texas,
ACM, New York, NY, 1999, pp. 214–227.

8 Acknowledgment

The work described in this paper is supported by the National Science Foun-
dation under the grant CCR-0098126.

124

LFM 2004 Preliminary Version

Imperative LF Meta-Programming

Aaron Stump

Dept. of Computer Science and Engineering Washington University in St. Louis
St. Louis, Missouri, USA Web: http://cl.cse.wustl.edu/

Abstract

Logical frameworks have enjoyed wide adoption as meta-languages for describing
deductive systems. While the techniques for representing object languages in logi-
cal frameworks are relatively well understood, languages and techniques for meta-
programming with them are much less so. This paper presents work in progress on
a programming language called Rogue-Sigma-Pi (RSP), in which general programs
can be written for soundly manipulating objects represented in the Edinburgh Log-
ical Framework (LF). The manipulation is sound in the sense that, in the absence
of runtime errors, any putative LF object produced by a well-typed RSP program
is guaranteed to type check in LF. An important contribution is an approach for
soundly combining imperative features with higher-order abstract syntax. The focus
of the paper is on demonstrating RSP through representative LF meta-programs.

Key words: Meta-Programming, Logical Frameworks, Rewriting
Calculus

1 Introduction

Applications using a logical framework such as the Edinburgh Logical Frame-
work (LF) [7] very frequently need meta-programs which produce or manip-
ulate LF encodings of derivations. For example, proof-producing decision
procedures like the CVC (“Cooperating Validity Checker”) system or the
Touchstone theorem prover from Necula’s PCC system emit proof objects
for formulas they report valid [18,10]. The Princeton and Yale Foundational
Proof-Carrying Code (FPCC) projects both rely on tools that automatically
generate LF derivations [21,6].

The present work contributes to the study of sound meta-programming for
LF. A meta-programming language for LF is described called Rogue-Sigma-Pi
(RSP). RSP extends LF in a type-safe way with convenient meta-programming
constructs: pattern-matching, general recursion, a limited form of dependent
records, and expression attributes (for mutable state). The combination of
mutable state with higher-order abstract syntax (HOAS) [12] is quite delicate.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

125

An important contribution of the present work in progress is a (currently just
conjectured) sound approach supporting this combination.

The meta-theoretic properties of RSP necessary for its intended use are
type safety and conservativity with respect to LF. Due to the inclusion of
dependent records (as also happens with the inclusion of pairs: see, e.g., [16]),
unicity of types fails in LF and hence in RSP. The approach adopted here is to
rely on bottom-up type computation, but add support for explicit ascriptions
to guide the type computation to a desired type. Conservativity with respect
to LF has one qualification. In RSP, run-time errors like failure of pattern
matching can occur, which result in an RSP term’s evaluating to Null. The
statement of conservativity is this: any RSP value of LF type is guaranteed to
be an LF object, as long as it contains no Nulls. This form of conservativity
together with type safety guarantees the property mentioned above: in the
absence of run-time errors, any putative LF object produced by evaluation of
an RSP term is truly an LF object.

The paper informally introduces RSP (Section 3), and then shows how the
language is used in practice on several example meta-programs (Section 4).
While it is not hard to formalize the basic idea of RSP’s type system, the exact
formalization needed to achieve the meta-theoretic results is work in progress.
The paper presupposes knowledge of LF (see, e.g., [11]).

2 Related Work

LF meta-programming plays a crucial role in several application domains. In
the CVC project, a cooperating validity checker was instrumented to produce
proofs in a variant of LF [18]. It was originally hoped that producing proofs
would help catch bugs in CVC. This was actually quite rare, since most bugs
were failures of completeness, where validity proofs are of no obvious rele-
vance. Nevertheless, there were constantly bugs in CVC’s proof-producing
code. Given a straightforward implementation in C++, it is easy to write
code which erroneously generates malformed proofs. Such an error is caught
only when a malformed proof is produced for some input formula and then
run through a proof checker. Tracking down the causes of such failed proofs
is extremely time consuming.

Several approaches have been proposed for writing type-safe LF meta-
programs. Appel and Felty use Twelf to implement partially correct tactics
and decision procedures [1]. In Twelf, sets of LF types receive a computational
interpretation as logic programs [13]. LF’s typing establishes that any proof
produced by a successful computation is guaranteed to check. The program
may still fail due to run-time errors such as non-termination or match fail-
ure. The Delphin language of Schürmann is a pure functional language for
meta-programming with LF encodings [17]. Delphin carefully places pattern-
matching and recursion over LF for type safe manipulation for LF encodings.
Other less closely related systems include Cayenne and Alf [2,9].

126

3 Overview of RSP

RSP is a proper extension of LF. We adopt the following notation for LF. We
write x:A => B for dependent product type Πx A : B. , and x:A -> M for λ x :
A. M . We call the latter representational abstractions, since they will be used
in RSP solely for representation using HOAS. Another kind of abstraction will
be used for computation. In RSP’s operational semantics, computation occurs
in the bodies of representational abstractions, although not in the bodies of
computational abstractions. Insofar as a representational abstraction is simply
a parameterization of its body, evaluating that body without any argument
given is not unreasonable. Notationally, if x does not occur in B, we write A

=> B instead of x:A => B. Application is written explicitly with infix @, and
x @ y is sometimes written x(y) when x is a variable or constant.

The features RSP adds to LF are briefly these. RSP has dependently
typed expression attributes, which can be read (X.a) and written (X.a :=

Y). The type of an attribute is just like a dependent function type, except with
=a> instead of =>. Types of attribute reads are computed as for applications.
The type system restricts attributes in attribute reads and attribute writes
to be just constant symbols. Using such attributes, we support recursion by
writing recursive equations: a functional expression containing attribute read
a.b, say, is written into the b attribute of a.

The computational abstractions mentioned above are dependently typed
pattern abstractions, typed with yet another arrow, =c>. These are of the
form x\P\∆ -> M. Here, x is a name for the whole input to the abstraction,
P is the pattern the input should match, ∆ is a context for pattern variables
in P, and M is the body of the abstraction. If ∆ is empty we write null for it.
Pattern abstractions are applied to target expressions by matching the pattern
against the target. The notion of matching used in RSP is just syntactic first-
order matching. Deterministic choice allows pattern abstractions of the
same type to be combined: we write M|N for deterministic choice between M and
N. An application of a |-expression is evaluated by using the first abstraction
(from left to right) whose pattern matches the target expression. RSP uses
Null(A) for match failure and also for reads of uninitialized attributes, for
every type A.

RSP’s pattern abstractions are inspired by those of Pure Pattern Type
Systems (P2TS) [3], with an important difference. In P2TS, the range type of
a pattern abstraction is allowed to depend on the pattern variables. Hence,
the pattern and its context must become part of the domain type of the
abstraction, and pattern abstractions receive types ΠP : ∆ . B, where P is the
pattern, ∆ is the context for pattern variables, and B is the type of the body.
Abstractions can still only be connected by choice if they have exactly the
same type. Since patterns are part of types, this leads to the following serious
drawback of the P2TS approach: abstractions can only be connected if they
are attempting to match the same pattern. This is a severe restriction, since

127

(c-arrow-I)

pattern Γ ∆ P

Γ, ∆ ` P :: A Γ, ∆, x = P ` M :: B Γ ` x : A =c> B :: ∗

Γ ` x\P\∆ → M :: x : A =c> B

(rec-I)
Γ ` M : A Γ, y = M ` N :: B Γ ` x : A, B :: ∗

Γ ` (x = M, y.N) :: x : A, B

Fig. 1. Selected RSP typing rules

it means programs cannot use case analysis to take different action based
on the form of expressions. The present approach solves this problem by
not including patterns as part of the domain types of abstractions. But this
requires the range type not to depend on pattern variables. The range type
can still depend, however, on the name x for the entire target expression to
which the pattern abstraction is being applied.

This approach to dependent pattern abstractions is enforced by the typing
rule (c-arrow-I) in Figure 1. As mentioned above, the exact formalization of
RSP is not yet complete, so this is just the essential idea: note that things
like the definition of pattern used in the first premise must be formulated with
great care. The third premise adds an equation to the context, which is used
when checking convertibility. The fourth premise ensures that the pattern
variables from ∆ are not used in B.

Finally, it turns out to be a practical necessity to have some kind of pairing
mechanism. This is mainly to allow pattern abstractions to perform simulta-
neous pattern matching on a dependently typed bundle of objects. Initially,
RSP adopted dependent sum types, following [16]. It has become clear, how-
ever, that a limited form of dependent record types would lead to more
readable meta-programs. This is because in some applications, it becomes
necessary to manipulate rather large bundles, and it is easier to read code
which refers to elements of a large bundle by name instead of by a sequence
of projections. Fortunately, the uses of bundles in RSP does not seem to re-
quire some of the features which complicate record types. We do not need
subtyping on record types, nor, apparently, manifest fields in record types.
We adopt right-associating records as in [14]. We write {x : A, B} for the
right-associating record with leftmost field x and remaining fields B. Then (x

= M, y.N) denotes the dependent record with leftmost field x storing element
M, and remaining fields N, where N is allowed to use y as another name for M.
This follows the approach originally proposed in [8], where each field has a
label and an associated bound variable (to avoid variable capture during sub-
stitution). We often elide the binding and write just (x = M, N). By using x

128

O : type.

IMP : (O => O => O).

FALSE : O.

Pf : (O => type).

Dn : (P : O => Pf(IMP @ (IMP @ (IMP @ P @ FALSE) @ FALSE) @ P)).

K : (P : O => Q : O => Pf(IMP @ P @ (IMP @ Q @ P))).

S : (P : O => Q : O => R : O =>

Pf(IMP @ (IMP @ P @ (IMP @ Q @ R))

@ (IMP @ (IMP @ P @ Q) @ (IMP @ P @ R)))).

MP : (P : O => Q : O => Pf(IMP @ P @ Q) => Pf(P) => Pf(Q)).

I : type.

EQUALS : (I => I => O).

Eqrefl : (x : I => Pf(EQUALS @ x @ x)).

Eqsymm : (x : I => y : I => Pf(EQUALS @ x @ y) =>

Pf(EQUALS @ y @ x)).

Eqtrans : (x : I => y : I => z : I => Pf(EQUALS @ x @ y) =>

Pf(EQUALS @ y @ z) => Pf(EQUALS @ x @ z)).

Fig. 2. LF signature: classical logic with equality (no quantifiers)

as an alias for M in N (which is discussed but not supported in [14]), we can
often guide bottom-up type computation to some desired type for M. In some
cases, however, we still need explicit ascriptions M:A. The typing rule should
be essentially the (rec-I) rule of Figure 1.

RSP terms are parsed with the following precedences from tightest to loos-
est binding: attribute read and projections, application, record formation, ar-
rows, and deterministic choice. So the first term below is fully parenthesized
as the second (and evaluates to whatever value is stored for attribute b of
expression a)

(x\a\null -> x.b | x\y\y:I -> x.c) @ a

((x\a\null -> (x.b)) | (x\y\y:I -> (x.c))) @ a.

4 Meta-Programming Examples

We consider two example meta-programs that manipulate LF encodings of
proofs in classical first-order logic with equality. All the code has been type
checked and run on sample inputs using a prototype implementation of RSP 1 .
This prototype is written in Rogue, a version of the untyped Rewriting Calcu-

1 This implementation does not support all the features of records yet, in particular field
accesses. Versions of the examples using projections instead of field accesses have been
checked and run on sample inputs.

129

1. rank : (I =a> Int).

2. findp : (x : I =a> {y:I, Pf(Equals @ x @ y)}).

3. find : (base =a> x : I =c> {y:I, d:Pf(Equals @ x @ y)}).

4.

5. uf.find := x \ y \ y : I ->

6. Let(fx, x.findp,

7. Ite(fx,

8. Let(ffx, uf.find @ fx.1,

9. x.findp := (y = ffx.1,

10. d = Eqtrans @ x @ fx.1 @ y @ fx.2 @ ffx.2)),

11. Drop1(x.rank := 0, (y = x,

12. d = Eqrefl(x) : Pf(Equals @ x @ y))))).

Fig. 3. The RSP code for find

lus [19], which is essentially an untyped version of RSP. We encode our logic
in a standard way as the LF signature of Figure 2. Our examples do not deal
with quantifiers, so they are omitted for space reasons. Also, constructs to
form first-order logic terms are omitted. The examples also make use of the
following non-logical LF declarations, whose role is further explained below:

base : type.

uf : base.

dt : base.

4.1 Proof-Producing Union-Find

The first example is a proof-producing version of the well-known union-find
algorithm (see, e.g., [4, Chapter 22]). Recall that this algorithm maintains
disjoint sets of elements in balanced lazily path-compressed trees. The union

operation takes two elements and merges their trees by making the root of the
shallower one (as bounded by its rank) point to the root of the deeper one.
The find operation takes an element x and returns the root of its tree. It
modifies the pointers (called find pointers) encountered along the path from
x to the root so that they all point directly to the root. Proof-producing
union additionally takes in (the LF encoding of) a proof that the two given
elements are equal. Proof-producing find additionally returns a proof that x
= r where x is the input element and r is the root element which find returns.
The underlying data structure is augmented so that every find pointer from a
node x to a node x.findp has associated with it a proof that x = x.findp.

Figure 3 shows typing declarations and the code just for find. Lines
are numbered for reference. The typing declarations declare attributes rank

and findp, as well as find (lines 1-3). The latter is just so we can write a
recursive definition, which occupies the rest of the Figure (lines 5-12). We
implement find pointers using the findp attribute. The idea is that x.findp
will store a dependent record of type y:I, Pf(Equals @ x @ y). That is,

130

Let(x,M,N) ≡ (x \ q \ q : type(M) -> N) @ M

Ite(M,N,N’) ≡ (Null(type(M)) -> N’ |

q \ q2 \ q2 : type(M) -> N) @ M

Drop1(M,N) ≡ Let(ignore, M, N)

Fig. 4. RSP abbreviations used in the examples

a record consisting of an individual y together with a proof that x equals
y. Such a record is also what uf.find returns. We set uf.find to be a
pattern abstraction taking in an individual x matching a pattern which is a
single variable y (line 5). Since a variable matches anything, this pattern does
not constrain the input to the abstraction at all (and syntactic sugar can be
introduced to omit it). We first put x’s find pointer in temporary variable fx

using a Let statement (line 6). We then use an Ite statement (if-then-else)
to check (line 7) whether or not x’s find pointer is Null (at the appropriate
type). This relies on the fact, mentioned above, that attributes without a
stored value default to Null. Let and Ite forms (as well as Drop1, used on
line 11) are abbreviations, given in Figure 4, where we write type(M) for the
type in the current context of M.

Consider then the first case of the if-then-else statement (lines 8-10). We
make a recursive call to uf.find on the first component of fx, which is the
individual pointed to by x’s find pointer, and put the result in temporary
ffx (line 8). Then we set x’s find pointer to be a new record, consisting of
ffx.1 (line 9), which by induction is the top element of the chain of find
pointers from fx.1; and the appropriate transitivity proof (line 10). Note the
careful use of y as the third argument to Eqtrans. This ensures that the type
computed bottom-up for the record (i.e., the one being stored in x.findp)
is y:I, d:Pf(Equals @ x @ y), as required by the stated return type for
uf.find. The “else” branch of the Ite expression (lines 11-12) sets x’s rank
to 0 (for the benefit of uf.union), and then returns a record consisting of
x and a reflexivity proof. Bottom-up type computation for Eqrefl(x) will
compute the type Pf(Equals @ x @ x). In order for the two branches of the
Ite expression to have the same type, an ascription must be used (line 12) so
that the reflexivity proof will be viewed as having type Pf(Equals @ x @ y).
Since y is an alias for x at this point, this ascription is legal.

4.2 Imperative Deduction Theorem

The union-find example constructs proofs but never applies a pattern ab-
straction to a proof to analyze it. In this second example, we consider a
meta-program that does analyze proofs using pattern abstractions. For the
Hilbert-style formulation of classical logic we have adopted (Figure 2), it is
standard to prove the so-called Deduction Theorem by induction on the struc-
ture of proofs (cf. [20, Chapter 2]) with case analysis:

131

dedthm : (base =a> A : O =c> B : O =c>

(Pf(A) => Pf(B)) =c> Pf(IMP @ A @ B)).

dedthm_h : (base =a> bridge : (u:O => Pf(u)) =>

bundle : {A : O, B : O, d : Pf(B)} =c>

Pf(IMP @ bundle.A @ bundle.B)).

dedthm_cached : (bundle : {A : O, B : O, d : Pf(B)} =a>

Pf(IMP @ bundle.A @ bundle.B)).

Fig. 5. Declarations for the Deduction Theorem

1. dt.dedthm := A:O \ null -> B:O \ null ->

2. D : (Pf(A) => Pf(B)) \ null ->

3. (bridge : (u:O => Pf(u)) ->

4. dt.dedthm_h @ bridge @

5. (q = A, p = B, d = D @ bridge(A) : Pf(p))

6. : Pf(IMP @ A @ B))

7. @ Null(u:O => Pf(u))

Fig. 6. Deduction Theorem, outer routine

Theorem 1 (Deduction Theorem) If formula B is derivable possibly us-
ing assumption u of formula A, then the formula “A implies B” is derivable
without assumption u.

The inductive proof corresponds exactly to a certain recursive program,
where case analysis is implemented by pattern matching. Such a program is a
standard example for meta-programming in Twelf [11]. The Twelf program
implementing the Deduction Theorem uses HOAS to represent the hypothet-
ical judgment that B is derivable from assumption A as a representational
(i.e., λ-) abstraction. Careful use of higher-order pattern unification enables
computation to proceed beneath such abstractions.

We develop here an implementation of the Deduction Theorem in RSP.
Since RSP supports imperative programming using attributes, we will actu-
ally be able to write an imperative version of this function, which caches inter-
mediate results. Caching intermediate results is a simple but highly effective
optimization in automated reasoning systems. In the case of the Deduction
Theorem, we will cache intermediate proofs using an attribute dedthm cached.
Since the type of the cached proof, IMP @ A @ B, depends on both formulas A
and B, we have to store cached results in the dedthm cached attribute of de-
pendent records of type A:O, B:O, d:Pf(B). This explains the declared type
for dedthm cached in Figure 5.

Just as in Twelf, it will be necessary to compute under representational
abstractions. RSP is able to achieve this using just first-order matching. We
borrow a technique of Fegaras and Sheard, developed for implementing cata-

132

1. dt.dedthm_h := bridge : (u:O => Pf(u)) ->

2. bundle : {A:O, B : O, d:Pf(B)} \ null ->

3. Ite(bundle.dedthm_cached, bundle.dedthm_cached,

4. bundle.dedthm_cached := ((A : O ->

5. (B \ A \ null -> F \ bridge @ B \ null -> IMP_REFL |

6.

7. B:O \ null ->

8. (F \ MP @ P @ B @ d1 @ d2

9. \ (P : O, d1 : Pf(IMP @ P @ B), d2 : Pf(P)) ->

10. MP @ (IMP @ A @ P) @ (IMP @ A @ B)

11. @ (MP @ (IMP @ A @ (IMP(P) @ B))

12. @ (IMP @ (IMP @ A @ P) @ (IMP @ A @ B))

13. @ (S @ A @ P @ B)

14. @ (dt.dedthm_h @ bridge @

15. (x \ A, y \ (IMP @ P @ B), d1 : Pf(y))))

16. @ (dt.dedthm_h @ bridge @ (x \ A, y \ P, d2 : Pf(y))) |

17. D : Pf(B) \ null -> MP @ B @ (IMP @ A @ B) @

18. (K @ B @ A) @ D))) @

19. bundle.A @ bundle.B @ bundle.d)).

Fig. 7. Deduction Theorem, main routine

morphisms over datatypes with embedded functions, to program with HOAS
in RSP [5]. The function dt.dedthm of Figure 6 takes in the function from
Pf(A) to Pf(B) representing the hypothetical judgment. It calls this function
on a placeholder term bridge(A), thus replacing (representations of) uses
of the assumption A in the proof with the placeholder. The helper routine
dt.dedthm h of Figure 7 then operates on objects of type Pf(B) which may
contain occurrences of the placeholder. Enountering the placeholder signals
that the assumption is being used, and the appropriate action may be taken.
One nice twist here is that unlike in [5], the placeholder does not need to be
built in (either to our LF signature or to RSP). We simply introduce it using
a representational abstraction (Figure 6, line 3). Since we compute in the
bodies of representational abstractions, we will then call the helper (line 4)
with the placeholder deployed in the term (line 5). Finally, the placeholder is
eliminated after the helper is done computing by applying the representational
abstraction to Null at the appropriate type (line 7). Bugs in our implemen-
tation might lead to occurrences of Null appearing in the resulting proof, but
this is consistent with our statement of conservativity with respect to LF.

The main routine of the Deduction Theorem (Figure 7) has few surprises.
The code begins by checking to see if there is a cached result, and uses it if
so (line 3). Otherwise (lines 4-19), it sets the cached result to the appropriate
proof, computed by applying cases to the parts of the input bundle. Recursive
calls are needed (line 14 and line 16) just when the input proof is an application
of MP. For typographic reasons the proof IMP REFL for one of the cases (in line

133

MP @ (IMP @ A @ (IMP @ B @ B)) @ (IMP @ A @ B)

@ (MP @ (IMP @ A @ (IMP(IMP @ B @ B) @ B))

@ (IMP @ (IMP @ A @ (IMP @ B @ B)) @ (IMP @ A @ B))

@ (S @ A @ (IMP @ B @ B) @ B)

@ (K @ A @ (IMP @ B @ B))) @ (K @ A @ B)

Fig. 8. IMP REFL (reflexivity of implication, where A = B)

5) appears in Figure 8. Note that this proof is in terms of A and B, but it
is supposed to prove IMP @ A @ A. This is indeed what it proves, because at
the point in Figure 7 where IMP REFL is used (line 5), it is known that A and
B are identical. This is because in line 5, the pattern abstraction matches iff
the argument given for B matches pattern A. Bottom-up type computation for
the proof of Figure 8 will, however, compute type IMP @ A @ B, which is just
what we need to match the return type of dt.dedthm h.

5 Mutable State and HOAS

The above examples combine mutable state and HOAS. Without some restric-
tions, this would quickly lead to failure of type preservation. For example,
consider the term

x:I -> (a.b := x)

Since this is a representational abstraction, evaluation will occur in the body,
causing variable x to be stored in attribute b of expression a. Reading this
attribute subsequently returns an open term, which is hardly typable!

Our solution to this problem is based on the following very simple obser-
vation. Suppose that instead of the above term we had something like

x:I -> (x.b := x)

Then there would be no unsoundness, because outside the scope of this binding
for x, we cannot reference x. Hence, we cannot attempt to read its b attribute.

We generalize this observation as follows. In an attribute write expression
x.a := y, if the set of free variables FV(x) is a superset of FV(y), then we
know that it cannot happen that a variable of y goes out of scope while x.a

could still be evaluated. The above examples all are safe in this regard. For
instance, take the attribute write in uf.find (Figure 3, lines 9-10). Assume by
induction that terms t cannot evaluate to terms t’ such that FV(t’)) FV(t).
Then no term in the body of uf.find can evaluate to a term containing more
than the free variables of x. Hence, the attribute write is safe. A similar
observation applies to the attribute write in dt.dedthm h (Figure 7, line 4).
A suitable analysis can enforce this approach; in some cases, it appears some
annotations may need to be supplied relating the free variables sets of different
arguments to a function. This is the case with the union function of union-
find, for example, whose code we omit for space reasons.

134

6 Conclusion and Future Work

This paper has presented work in progress on imperative LF meta-programming
in Rogue-Sigma-Pi (RSP). RSP overlays LF with standard programming con-
structs, including syntactic pattern matching and unrestricted recursion. Im-
perative programming is supported through dependently typed attributes,
which are very convenient for numerous examples, including those of proof-
producing union-find and the imperative Deduction Theorem which were con-
sidered here. It is well-known that great care is required to combine program-
ming constructs with LF. Imperative features pose special problems, particu-
larly due to the interaction with HOAS. A conservative solution was proposed:
we can store values with free variables in attributes as long as we know that
the attribute read expressions become inaccessible at least as soon as the val-
ues do. The main future work is proving the meta-theoretic properties of type
safety and conservativity with respect to LF for a formalization of the system.

References

[1] A. Appel and A. Felty. Dependent Types Ensure Partial Correctness of
Theorem Provers. Journal of Functional Programming, 2002. to appear.

[2] Lennart Augustsson. Cayenne – a language with dependent types. In
Proceedings of the third ACM SIGPLAN international conference on Functional
programming, pages 239–250. ACM Press, 1998.

[3] G. Barthe, H. Cirstea, C. Kirchner, and L. Liquori. Pure patterns type systems.
In Principles of Programming Languages. ACM, 2003.

[4] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT
Press, 1992.

[5] Leonidas Fegaras and Tim Sheard. Revisiting catamorphisms over datatypes
with embedded functions (or, programs from outer space). In Proceedings of
the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 284–294. ACM Press, 1996.

[6] N. Hamid, Z. Shao, V. Trifonov, S. Monnier, and Z. Ni. A Syntactic Approach to
Foundational Proof Carrying-Code. In IEEE Symposium on Logic in Computer
Science, 2002.

[7] R. Harper, F. Honsell, and G. Plotkin. A Framework for Defining Logics.
Journal of the Association for Computing Machinery, 40(1):143–184, January
1993.

[8] Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-
order modules with sharing. In 21st Symposium on Principles of Programming
Languages, pages 123–137, 1994.

135

[9] Lena Magnusson. The Implementation of ALF—a Proof Editor Based on
Martin-Löf ’s Monomorphic Type Theory with Explicit Substitution. PhD thesis,
Chalmers University of Technology and Göteborg University, 1995.

[10] G. Necula and P. Lee. Proof Generation in the Touchstone Theorem Prover.
In David McAllester, editor, 17th International Conference on Automated
Deduction, 2000.

[11] F. Pfenning. Logical Frameworks, chapter 21. Volume 2 of Robinson and
Voronkov [15], 2001.

[12] F. Pfenning and C. Elliott. Higher-order abstract syntax. In ACM SIGPLAN
Symposium on Language Design and Implementation, 1988.

[13] F. Pfenning and Carsten Schürmann. System Description: Twelf — A Meta-
Logical Framework for Deductive Systems. In 16th International Conference
on Automated Deduction, 1999.

[14] Robert Pollack. Dependently typed records in type theory. Formal Aspects of
Computing, 13:386–402, 2002.

[15] A. Robinson and A. Voronkov, editors. Handbook of Automated Reasoning.
Elsevier and MIT Press, 2001.

[16] J. Sarnat. LF-Sigma: The Metatheory of LF with Sigma types. Technical
Report 1268, Yale CS department, 2004.

[17] C. Schürmann. Recursion for higher-order encodings. In Proceedings of
Computer Science Logic, number 2142 in LNCS, pages 585–599, 2001.

[18] A. Stump, C. Barrett, and D. Dill. CVC: a Cooperating Validity Checker. In
14th International Conference on Computer-Aided Verification, 2002.

[19] A. Stump, R. Besand, J. Brodman, J. Hseu, and B. Kinnersley. From Rogue to
MicroRogue. In International Workshop on Rewriting Logic and Applications,
2004.

[20] A. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge University
Press, 2nd edition, 2000.

[21] D. Wu, A. Appel, and A. Stump. Foundational Proof Checkers with Small
Witnesses. In D. Miller, editor, 5th ACM-SIGPLAN International Conference
on Principles and Practice of Declarative Programming, 2003.

136

LFM 2004 Preliminary Version

A Meta Linear Logical Framework

Andrew McCreight and Carsten Schürmann1,2

Yale University
New Haven, CT, USA

Abstract

Logical frameworks serve as meta-languages to represent deductive systems, sometimes
requiring special purpose meta logics to reason about the representations. In this work, we
describeL+

ω , meta logic for the linear logical framework LLF [CP96] and illustrate its use
via a proof of the admissibility of cut in the sequent calculus for the tensor fragment of
linear logic.L+

ω is first-order, intuitionistic, and not linear. The soundness ofL+
ω is shown.

1 Introduction

Logical frameworks are meta languages designed for representing various formal
systems prevalent in programming language semantics, logics, and protocol design.
By design, a logical framework is foundationally uncommitted, meaning that it is
primarily concerned with the way formal systems are represented and not with rea-
soning about their properties. Logical frameworks have, in this spirit, undergone
significant extensions, leaving the design of meta logics far behind. Modern logi-
cal frameworks incorporate linear types to model resource awareness (useful when
designing programming languages with effects), ordered types (to model formal
systems that access resources in a particular order), and even monadic types that
capture concurrency.

By separating meta languages from meta logics, we get a quite substantial de-
sign space for special purpose meta logics. Each meta logic is tailored toward
a particular logical framework, responding to its requirements, expressiveness and
idiosyncrasies, with the sole purpose of formalizing meta theoretic arguments about
encodings in the logical framework. A logical framework together with a meta logic
defines a meta logical framework. One example of a meta logic isM+

ω [Sch00],

1 This research is based on work supported in part by DARPA OASIS grant F30602-99-1-0519 and
NFS grant CCR-0325808. Any opinions, findings, and conclusions contained in this document are
those of the authors and do not reflect the views of this agency.
2 Email:{aem,carsten }@cs.yale.edu

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

137

designed specifically for the logical framework LF [HHP93]. Conversely, McDow-
ell and Miller [MM97], have chosen a fixed meta logic and to study how to encode
and reason about various meta languages in their system. However, their design is
also not immune to change. Non-standard extensions of their first-order meta logic
with definitions and natural number induction have become necessary to facilitate
reasoning about terms with open parameters [MT03].

The absence of well-understood meta logics has often been interpreted as a
severe impediment to the deployment and acceptance of the technology among
researchers and scientists as well as developers and industry. Consequently, the
prevalent use of logical framework technology is as a representation language for
one particular logic that is then used to describe and reason about the object systems
in question. Higher-order logic is a popular candidate used in Isabelle/HOL [Pau94]
and Twelf/HOL [App01] which have been instrumental in the formal study of pro-
gramming languages, such as Java [NvO98], hardware verification [Har97], and
protocol verification [Pau97], among other things. Higher-order logic is well-
understood, clean, expressive, and when enriched with induction principles a good
choice for many applications. However, it limits the ways in which deductive sys-
tems can be encoded, and therefore cannot take advantage of the advanced repre-
sentation technology provided by modern logical frameworks.

In this work, we propose a special purpose meta logic for the linear logical
framework LLF [CP96] which plays the role of a linear meta logical framework.
LLF’s distinguishing feature over LF is a set of linear operators capable of handling
depletable resources. LLF has been successfully employed in representing and
experimenting with a variety of security and authentication protocols [CDL+99].
Although the theory behind LLF is well-understood, our work is to our knowledge
the first research towards a sound meta logic for LLF.

L+
ω extends the meta logicM+

ω for LF developed by the second author [Sch00]
into the LLF setting.L+

ω is first-order, intuitionistic, and not linear. Aside from>,
it does not define any logical constant symbols. It does however inherit proofs by
induction over arbitrary higher-order types without the restrictive positivity condi-
tion, including those that take advantage of both linear and intuitionistic assump-
tions. Furthermore, it supports quantification over LLF contexts.

The paper is organized in the following way: in Section2 we review the linear
logical framework LLF and illustrate its representational expressiveness in terms of
a sequent calculus for the tensor fragment of linear logic. In Section3, we present
a formal meta logicL+

ω that serves as the formalization of theorems as well as meta
theoretic proofs. We start by describing the interface between the meta logic and the
logic, first by giving extensions to LLF, before describing the meta logic proper and
its proof theory. Next, in Section4, we use as an example the proof of the theorem
that cuts are admissible in the previously defined sequent calculus encoding. Then
L+

ω ’s soundness is shown in Section5, before we conclude in Section6 and assess
results.

138

(Kinds) K ::= type | Πu :A. K

(Types) A, B ::= a | A M | Πu :A. B | A−◦ B | A & B | >

(Objects) M, N ::= c | u | λu :A. M | M N | λ̂u :A. M | MˆN
| 〈M, N〉 | π1M | π2M | 〈〉

(Signatures) Σ ::= · | Σ, a : K | Σ, c : A

(Contexts) Γ, ∆ ::= · | Γ, u : A

(Substitution) ρ ::= · | ρ, M/u

Fig. 1. LLF syntax

2 The Linear Logical Framework LLF

The linear logical framework LLF [CP96] extends the the logical framework LF [HHP93]
with linear resources that may be created, used, or modified. Its feature set super-
sedes that of LF, supporting dependent types. Every term in LLF reduces to a
canonical form. LLF has established itself as an elegant tool for adequate encod-
ings of judgments as types, derivations as objects, and hypothetical judgments as
(linear) functions including an elegant treatment of depletable resources.

For example, the well-known derivability judgment for linear classical logic of
the formA1, . . . , An =⇒ B1, . . . , Bn can be represented in LLF as a function of
the form

negA1 . . . −◦ negAn−◦posB1 . . . −◦posBm → #.

neg and pos are families of types, representing assumptions to the left and right of
the=⇒ symbol, respectively, while# is a type that stands for the empty sequent.
Encoding lists of assumptions as linear functions instead of making them explicit
as lists has several advantages, namely that lookup, consumption, and substitu-
tion are directly supported by LLF through variables names, linear application, and
β-reduction, which renders encodings of resource oriented formal systems brief,
concise, and readable.

LLF borrows its linear operators from linear logic [Gir87] and usesβη as the
underlying notion of definitional equality [Coq91]. Furthermore, it conservatively
extends LF. LLF does not provide a dependent linear function space. The syntax
for standard LLF [CP96] is given in Figure1.

Kindscan either be the kind for types or a dependent product.Typescan either
be a type constant, an application, a dependent function type, the linear function
type, the additive product type, or the additive unit.Objectscan either be an object
constant, a variable, an intuitionistic function or application, a linear function or
application, a linear additive pair or projection, or the constructor for the additive
unit. A signaturebinds type and object constants. An LLFcontextis either empty,
or a smaller context extended with an object binding.

We write LLF judgments using. to separate assumptions from the rest of

139

Ψ; Γ; · . c : Σ(c) Ψ; Γ; · . u : Γ(u) Ψ; Γ; u : A . u : A

Ψ; Γ, u : A; ∆ . M : B

Ψ; Γ; ∆ . λu :A. M : Πu :A. B

Ψ; Γ; ∆ . M : Πu :A. B Ψ; Γ; · . N : A

Ψ; Γ; ∆ . M N : [idΓ;∆, N/u]B

Ψ; Γ; ∆, u : A . M : B

Ψ; Γ; ∆ . λ̂u :A. M : A−◦ B

Ψ; Γ; ∆1 . M : A−◦ B Ψ; Γ; ∆2 . N : A

Ψ; Γ; ∆1, ∆2 . MˆN : B

Ψ; Γ; ∆ . M : A Ψ; Γ; ∆ . N : B

Ψ; Γ; ∆ . 〈M, N〉 : A & B

Ψ; Γ; ∆ . M : A & B
Ψ; Γ; ∆ . π1M : A

Ψ; Γ; ∆ . M : A & B
Ψ; Γ; ∆ . π2M : B Ψ; Γ; ∆ . 〈〉 : >

Fig. 2. Typing rules of LLF.

ax
A =⇒ A

Γ1 =⇒ C, ∆1 Γ2, C =⇒ ∆2
cut

Γ1, Γ2 =⇒ ∆1, ∆2

Γ, A,B =⇒ ∆
⊗L

Γ, A⊗B =⇒ ∆

Γ1 =⇒ A, ∆1 Γ2 =⇒ B, ∆2
⊗R

Γ1, Γ2 =⇒ A⊗B, ∆1, ∆2

Fig. 3. Tensor fragment of linear logic

the judgment. The meta contextΨ, yet unused, holds meta-level assumptions,
which we will discuss in Section3. The form for the object typing judgment is
Ψ; Γ; ∆ . M : A, which states that under the meta assumptions inΨ, the intu-
itionistic assumptions inΓ and the linear assumptions in∆, the objectM has type
A. Figure2 defines the static semantics of LLF. Kinds and types must be linearly
closed, and thus the judgments that define their validity (Ψ; Γ . K : kind and
Ψ; Γ . A : K), given in Appendix??, are declared without a linear context.

Throughout the paper we use simultaneous substitutionsρ that are defined si-
multaneously on the intuitionistic and the linear variables. Out of notational con-
venience, we write idΓ;∆ for the identity substitution onΓ; ∆.

As an example, consider the representation of the tensor fragment of classical
linear logic depicted in Figure3. The rulescut and⊗R illustrate how resources
on either side of the sequent symbol are distributed as resources to either of the
two premisses. A derivation can only then be closed byax if the left and the right
context contain a single formulaA. Each inference rule is represented as a constant
in LLF as shown in Figure4. As usual, we omit the leadingΠ-quantifiers for
inferable types. LLF’s meta theory guarantees the existence ofβ-normal,η-long
canonical forms [VC02] used in order to establish the adequacy of this encoding.

140

ax : negA−◦posA−◦#.

cut : (posC −◦#)−◦ (negC −◦#)−◦#.

tensorL : (negA−◦negB−◦#)−◦ (neg(A⊗B)−◦#).

tensorR: (posA−◦#)−◦ (posB−◦#)−◦ (pos(A⊗B)−◦#).

Fig. 4. Encoding of Figure3 in LLF

(Objects) M, N ::= ... | n[ρ] | πpm

(Modules) m ::= α | πmm

(Contexts) Γ, ∆ ::= ... | Γ, πpm : A | Γ, γ ∈ Φ

(Substitution) ρ ::= ... | ρ, M/πpm

Fig. 5. LLF extensions

3 The Meta LogicL+
ω

The meta logicL+
ω provides the syntactic and proof-theoretic means to express

properties about encodings in LLF and their respective proofs, should they exist.
Following the general philosophy underlying this and other meta logical frame-
works [Sch00,BCM00], the elegance and scalability of our approach emerges from
the clear distinction between the language of representation and the language for
reasoning. The meta logicL+

ω ’s noteworthy properties include that it is first-order,
i.e. only a universal and an existential quantifier are available, minimal, i.e. no
other propositional constants but truth can be defined, and non-linear, i.e.L+

ω is an
intuitionistic logic designed to reason about linearity.

We first present extensions to LLF that allow our meta logicL+
ω to express

properties about LLF objects in Section3.1. Next, we describe how the meta level
deals with LLF contexts, and how the interface there works. The necessary vo-
cabulary having been built, we then discuss the meta logic proper, starting with its
syntax and semantics, then moving to the proof theory. The running example will
be continued to illustrate the concepts in question.

3.1 Extensions to LLF

In a meta logic, we wish to reason abstractly about the existence and form of hypo-
thetical LLF objects. LLF must be extended to allow the inclusion of these objects
bound at the meta-level. In a closed meta level context, any LLF objects will be
standard, as described in the previous section. Figure5 gives an exact account of
these extensions, which are discussed in detail in the following paragraphs. All
of LLF’s fundamental properties, including conservative extension over LF, type
soundness, and the existence of canonical forms remain unchanged under these
extensions.

141

Meta variables
LLF objects may refer to other hypothetical LLF objects whose existence is

postulated by the meta logic, usually in form of a universally quantified variable.
Thosemeta variables, denoted byn, are bound on the meta level and visible from
within LLF terms.

Since meta variables are bound outside of any LLF context, they are given an
explicit fixed context (of linear and intuitionistic variables). Consequently, each
occurrence of a meta variablen requires an explicit mediating substitutionρ that
casts an occurrence ofn into the appropriate ambient context. This combination of
meta variable and explicit substitution is written asn[ρ]. 3

Context variables
To control the flow of resources inside a meta-theoretic proof, the meta level

has to communicate to LLF how many resources are available, how many are to
be consumed, and which hypothetical objects are consuming which ones. Context
variablesγ that are declared as part of LLF contexts in Figure5 communicate this
information and stand for slices of LLF contexts (including the intuitionistic and
linear part). Within LLF, context variables are virtually invisible. For example,
they can neither be consumed, substituted into, nor can they occur inside LLF ob-
jects or types. In fact, the only places where they may occur are in the contexts
to other hypothetical objects, characterized by the previously described meta vari-
ables. Context variables are declared in the contextΨ that is part of the LLF typing
judgment described in Figure2.

Module variables
Meta variables and context variables form the basic interface between LLF and

the meta level. This would be sufficient if we only wanted to reason about closed
LLF terms. But the goal of the paper is significantly more ambitious than this, i.e.
to reason about all higher-order LLF encodings, including those that may very well
be open. The meta theoretic view of openness inevitably impacts the LLF level.
For reasons that have not been discussed so far (but will be in the next section),
the open parameters are grouped into modules, made visible to LLF in the form
of module projections(such asπp(α), πp(πm(α)), andπp(πm(πm(α)))) of module
variablesα. These projections behave like any other LLF variables, and are thus
subject to declaration in an LLF context and to instantiation by a substitution, as
described in Figure5.

3.2 Module contexts and worlds

We have thus far discussed the required extensions to LLF from the point of view
of LLF. For the remainder of this section, we switch our point of view to that of the

3 Our extension of LLF with meta variables is similar to a system developed for a different pur-
pose [PP03], from which we take the syntax for meta variable binders.

142

(Module Kinds) k ::= sig | Πu :A. k

(Module Sigs) s ::= ε | ∃u :A. s | λu :A.s

(Worlds) Φ ::= s | Φ∗ | Φ1 + Φ2

(Module Contexts) χ ::= · | χ1, χ2 | γ∈Φ | α : s

(Meta Contexts) Ψ ::= · | Ψ, n :: (χ.A) | Ψ, γ∈(χ.Φ) | Ψ, α :: (χ . s)

Fig. 6. Module context syntax

bb·cc = ·

bbχ, χ′cc = bbχcc, bbχ′cc

bbγ∈Φcc = γ∈Φ

bbm : εcc = ·

bbm : ∃u :A. scc = πpm : A, bbπmm : [πpm/u]scc

Fig. 7. Flattening

b·cP
A = ·

bΓ, u : BcP
A =

 bΓcP
A, u : B if P (B, A)

bΓcP
A otherwise

bΓ, πpm : BcP
A =

 bΓcP
A, πpm : B if P (B, A)

bΓcP
A otherwise

bΓ, γ ∈ ΦcP
A = bΓcP

A, γ ∈ bΦcP
A

bεcP
A = ε

b∃u :B. scP
A = ∃u :B. bscP

A if P (B, A)

b∃u :B. scP
A = bscP

A if not P (B, A)

bλu : A.wcP
A = λu : A.bwcP

A

bΦ∗cP
A = (bΦcP

A)∗

bΦ1 + Φ2cP
A = bΦ1cP

A + bΦ2cP
A

Fig. 8. Filtering moduloP

meta level. In the full generality of higher-order encodings, inductive arguments
often require reasoning underλ-binders, which is tantamount to reasoning about
open objects. The argument often calls for more than one hypothesis that seem un-

143

related at first sight. It is the simultaneous presence of these hypotheses that make
a base case go through, or justify the application of a previously proved lemma.

Thus, instead of dealing with individual parameters, the meta level deals with
collections of related LF parameters calledmodules. Modules are classified by
module signaturess. A module is either empty (classified by the signatureε) or a
pair, where the first element is an LLF parameter and the second element is another
module (classified by the signature∃u : A. s). The final possible classification,
λu : A.s, denotes a module of signatures parameterized by an LLF object of type
A. Module kindsk are used to keep track of whether a module is fully instantiated
(sig) or parameterized (Πu :A. k).

Modules themselves remain abstract, so no concrete module constructors are
needed. Instead, a module can consist of a variable (α), or the second element of
some other modulem (πmm), with them subscript indicating this is the module
subcomponent. The typing rules for modules are standard, as they are simply an
instance of dot notation [CL90].

The meta logic’s view of LLF (intuitionistic and linear) contextsΓ; ∆ is called
a module context, defined in Figure6 by the syntactic categoryχ. Informally, the
meta level does not distinguish between the intuitionistic and linear contexts, it
merely stipulates the existence of particular modulesα (of module signatures), or
slicesγ whose linear part is known to be consumed by a quantified LLF object
(expressed as a meta variable).

Module contextsχ must not be thought of as a collection of meta level bindings
of γ andα variables, but rather as an abstract description of LLF level bindings.
The actual meta level binding takes place in meta contextsΨ (Figure6), that we
have already used (however not defined) in Figure2. Meta variables, context vari-
ables, and module variables are declared inΨ, and each declaration is indexed by a
module context (denoted by the leadingχ B) describing its free variables.

The colorful collection ofα’s and γ’s fully describes a hypothetical pair of
valid LLF contexts. The precise relation between the two is discussed in the next
subsection. It is important to note, however, that the particular order of declarations
in χ is irrelevant and does not reflect the order or declarations withinΓ; ∆. For
example, the module contextγ, γ′ stands for an arbitrary valid interleaving of two
valid contextsΓ; ∆ andΓ′; ∆′.

The type of a module context is defined byworld Φ, that, intuitively speaking,
describes the shape of a context in the form of a regular expression built from
module signatures, repetition and alternation. Worlds have been extensively studied
in prior work by the second author [Sch01]. Module contexts may contain only
modules valid inΦ. We writeΨ; χ′ ` χ : Φ for the judgment that decides when
(χ′, χ) is a valid module context, andχ is in worldΦ. For space reasons it is defined
in Appendix??.

144

3.3 Context conversion

Module contextsχ, while useful at the meta level, cannot directly be used by LLF.
For instance, the aggregation of parameters into modules complicates the splitting
of contexts required to type linear application (M ˆN). Additionally, we want to
be able to relate the intuitionistic and linear LLF contexts, so we must derive them
both from a singleχ.

A module contextχ is converted to an LLF contextΓ in a two step process.
First,χ is flattenedinto an LLF contextbbχcc, as defined in Figure7. This process
simply breaks apart each modulem in χ into its individual parameters.

Flattening keeps all parameters, which leads to unwanted parameter duplication
if used to produce both theΓ and the∆ from a singleχ. Furthermore, in the case
of the linear context, we must cull extra variables that may occur inχ that simply
cannot occur in an LLF object of a certain type.

We solve both of these problems byfiltering. Filtering, given bybΓcP
A, elim-

inates from an LLF context any variables of typeB that do not match the binary
predicateP (B, A). It is defined in Figure8. Similarly, in the case of context vari-
ables, we apply filtering to the world annotationbΦcP

A and remove all references to
module projections that do not match the predicate, creating a narrower view ofγ.
Our notion of filtering is very general because we permit two seemingly unrelated
predicates to transformχ into the intuitionistic and linear context. We require that
the resultingΓ; ∆ always forms a valid LLF context.

A good choice for eachP is one based on the subordination relation [Vir99].
In LLF, all types must be linearly closed. Therefore for the linear context, we use
the predicateA ≺̂ B, which holds when objects of typeA can occur in objects of
typeB, but not at the type level. For the intuitionistic context, we use the predicate
A ≺: B, which holds if some object of typeA can occur in an object of typeB,
possibly at the type level. This pair of predicates makes as many things as possible
linear. If instead the predicate used for the intuitionistic context holds for all pairs
of LLF types and the predicate for the linear context holds for none,L+

ω reduces to
a meta logic of the logical framework LF [HHP93].

We write the composition of filtering with flattening asbbχccP
A. This composition

is used any time we are transitioning from the meta logic level to the logic level.

3.4 LLF typing rules revisited

The additional typing rules of our extension to LLF in Figure9 can now be ex-
plained in detail. The two bottom rules for the intuitionistic and linear use of mod-
ule parameters follow the axiom rule of LLF. The top rule in that figure is the
typing rule for meta variablen of typeA in contextχ declared inΨ. The judgment
Ψ; Γ′; ∆′ . ρ : Γ; ∆, defined in Appendix??, ensures that the substitutionρ will,
when applied to an object well-typed underΨ; Γ; ∆, produce an object well-typed
underΨ; Γ′; ∆′. The second premiss of the typing rule for meta variables therefore
checks that the substitution associated with the meta variable will correctly map an
object substituted forn into the ambient context.

145

Ψ(n) = (χ . A) Ψ; Γ; ∆ . ρ : bbχcc≺:
A ; bbχcc≺̂A

Ψ; Γ; ∆ . n[ρ] : [ρ]A

Ψ; Γ; · . πpm : Γ(πpm) Ψ; Γ; πpm : A . πpm : A

Fig. 9. Typing rules of extended LLF.

(Formulas) F ::= ∀n :: (χ.A). F | ∀γ∈(χ.Φ). F | ∃n :: (χ.A). F | >>

(Programs) P ::= Λn :: (χ.A). P | Λγ∈(χ.Φ). P | P M | P χ
| 〈〈χ.M ; P 〉〉 | 〈〈〉〉 | x | case Ω | µ x ∈ F. P
| ν α :: (χ . s). P

(Cases) Ω ::= · | Ω, (Ψ`σ 7→ P)

(Meta Contexts) Ψ ::= . . . | Ψ, x∈F

(Substitutions) σ ::= · | σ, M/n | σ, χ/γ | σ, P/x | σ, α/α

Fig. 10.L+
ω syntax

3.5 Formulas and their semantics

L+
ω itself is a first-order meta logic custom designed for LLF. Similar toM+

ω [Sch00]
its syntactic categories consist of formulas, programs, and cases, given in Figure10.

The universal quantifiers ofL+
ω range over meta-variablesn and context vari-

ablesγ, whereχ is the aforementioned module context that describes all free vari-
ables of the term in question. There are no quantifiers for module variablesα. We
do not include existential quantification over module contexts because it does not
seem to serve any useful purpose, as opposed to universal quantification, which is
required for induction.>> stands for the only propositional constant truth express-
ible inL+

ω .
The semantic entailment forL+

ω is written in terms of|=, a relation that is
defined as follows (in terms of the flattening and filtering operationbbχccP

A described
in Section3.3):

|= ∀γ∈(χ.Φ). F iff |= [χ′/γ]F for all · ; χ ` χ′ : Φ

|= ∀n :: (χ.A). F iff |= [M/x]F for all ·; bbχcc≺:
A ; bbχcc≺̂A . M : A

|= ∃n :: (χ.A). F iff |= [M/x]F for some·; bbχcc≺:
A ; bbχcc≺̂A . M : A

|= >>

The existential is the dual to the universal quantifier, and true is always valid.

146

3.6 Programs

The semantics ofL+
ω portrays its intended use as a meta logic to reason about LLF

encodings. Any proof within this meta logic should convince a critical observer of
the validity of the statement, lemma, or theorem. It is almost certainly possible to
give a categorical or model theoretic explanation of proof. We have instead chosen
to view proofs astotal programsvia a realizability interpretation. A proof hence
acts as a transformation in between LLF encodings. Its input/output behavior is
fixed by the formula, its type.

Figure10 describes the syntactic category forprograms. Λn :: (χ.A). P and
Λγ∈(χ.Φ). P are the two binding constructs ofL+

ω for LLF objectsn and module
contextsγ, respectively. Symmetrically, two forms of applicationP M andP χ
serve as the respective elimination forms.〈〈χ.M ; P 〉〉 is a proof term for an exis-
tential formula, pairing an LLF term with a program. Next, the Figure shows the
familiar unit 〈〈〉〉 and program variablesx and three more constructs that we will
explain next: the case construct with casesΩ, the recursion operatorµ, and finally
the new operatorν.

Case and recursion are necessary to express inductive proofs as programs. The
formulation of case (case Ω), the elimination form for LLF objects, looks peculiar,
but is in fact quite natural. There is no explicit case subject, because implicitly, case
matches against the ambient context in which a “case” may occur. This choice will
prove useful in the meta theoretic investigation in Section5, because dependencies
render matching a non-local operation. Each individual case inΩ, (Ψ ` σ 7→ P),
consists of a substitutionσ that serves as the pattern for that particular case. Each
free variable that occurs in a pattern must be declared inΨ and the bodyP may
not refer to any other variables other than the ones declared inΨ. The fixed point
operatorµ x ∈ F. P provides the most general form of the induction hypotheses.

Unbounded recursion and case with an emptyΩ illustrate, that without further
side condition,L+

ω programs may be partial and hence non-total. The following
three side conditions tocase Ω andµ x ∈ F. P , respectively, remedy that problem
and enforce totality.

Strictness. Eachx ∈ Ψ must have at least one occurrence in the pattern that leads
to an unambiguous solution of the higher-order matching algorithm to be used.

Coverage. For all patternsσ within Ω, and or all ambient environmentsη, there
exists a new ambient environmentη′, such that[η′]σ = η.

Termination. For all argumentsM1 . . . Mn to P it holds that for allx that occur in
P and argumentsN1 . . . Nn to x, it holds that(N1 . . . Nn) < (M1 . . . Mn) with
respect to some well-founded order<.

Finally, ν α :: (χ . s). P introduces a new module variable during runtime.
Often, for proofs about higher-order encodings the corresponding program has to
recurse under an LLFλ binder, be it linear or intuitionistic. Afterwards modules
can always be discharged via the mediating substitutions attached to meta variables.
There are no other elimination forms for modules.

147

Ψ; · ` χ : Φ Ψ; bbχcc≺:
A . A : type Ψ, n :: (χ.A) ` P ∈ F

Ψ ` Λn :: (χ.A). P ∈ ∀n :: (χ.A). F

Ψ ` P ∈ ∀n :: (χ.A). F Ψ; bbχcc≺:
A ; bbχcc≺̂A . M : A

Ψ ` P M ∈ [idΨ, M/n]F

Ψ; · ` χ : Φ Ψ, γ ∈ (χ . Φ) ` P ∈ F

Ψ ` Λγ∈(χ.Φ). P ∈ ∀γ∈(χ.Φ). F

Ψ ` P ∈ ∀γ∈(χ.Φ). F Ψ; χ ` χ′ : Φ

Ψ ` P χ′ ∈ [idΨ, χ′/γ]F

Ψ; · ` χ : Φ Ψ ` P ∈ [idΨ, M/n]F Ψ; bbχcc≺:
A ; bbχcc≺̂A . M : A

Ψ ` 〈〈χ.M ; P 〉〉 ∈ ∃n :: (χ.A). F

Ψ ` 〈〈〉〉 ∈ >>
Ψ ` Ω ∈ F

Ψ ` case Ω ∈ F Ψ ` x ∈ Ψ(x)

Ψ, x ∈ F ` P ∈ F

Ψ ` µ x ∈ F. P ∈ F
(∗∗)

Ψ; · ` χ : Φ Ψ; bbχcc . s : sig Ψ, α :: (χ . s) ` P ∈ F Ψ ` F ok

Ψ ` ν α :: (χ . s). P ∈ F

. .

Ψ ` · ∈ F

Ψ ` Ω ∈ F Ψ′ . σ : Ψ Ψ′ ` P ∈ [σ]F

Ψ ` Ω, (Ψ′`σ 7→ P) ∈ F
(∗)

Fig. 11. Derivability inL+
ω

3.7 Proof theory forL+
ω

L+
ω ’s design is based on the realizability interpretation of total programs as proof.

The type system for programs that is described in this section plays the role of a
meta logic, whose soundness is shown in Section5. Our approach to developing
the meta logic follows closely [Sch00] and differs significantly from [MT03], who
show the soundness of their design by a cut-elimination argument.

L+
ω ’s type theory is defined in Figure11 in terms of two mutually dependent

typing judgments:Ψ ` P ∈ F for programs andΨ ` Ω ∈ F for cases, using three
auxiliary judgments. Two of those judgmentsΨ; Γ B s : sig andΨ ` F : ok en-
sure the respective validity of module signatures and formulas but do not contribute
much to the understanding of the rules. Their definition is given in Appendix??.
The other judgmentΨ′ B σ : Ψ ensures the validity of substitutions, that play the
role of patterns. Patterns are important for the understandingL+

ω and given in Fig-
ure12. The first rule exhibits the need for flattening and filtering when instantiating
meta variables.

All of the rules in Figure11 lend themselves to two complementary interpre-
tations. Type-theoretically speaking, the first four rules account for well-typed ab-

148

Ψ′ . σ : Ψ Ψ′; bb[σ]χcc≺:
[σ]A; bb[σ]χcc≺̂[σ]A . M : [σ]A

Ψ′ . (σ, M/n) : (Ψ, n :: (χ.A))

Ψ . · : ·
Ψ′ . σ : Ψ Ψ′; [σ]χ ` χ′ : Φ

Ψ′ . (σ, χ′/γ) : (Ψ, γ ∈ (χ . Φ))

Ψ′ . σ : Ψ Ψ′ ` P ∈ [σ]F

Ψ′ . (σ, P/x) : Ψ, x ∈ F
Ψ′ . σ : Ψ α ∈ Ψ′

Ψ′ . (σ, α/α) : Ψ, α

Fig. 12. Typing rules for patterns

stractions and applications, and logically speaking, they are merely introduction
and elimination rules for the universal quantifiers, albeit ones using the flattening
and filtering operationbbχccP

A described in Section3.3. The fifth rule is the typing
rule for pairs, and simultaneously an introduction rule for the existential quantifier.
The corresponding elimination rule is subsumed by the case rules defined in below
the dotted line [Sch01], and thus need not be considered separately. The typing rule
for unit is standard.Ω, the argument to case, is a list of all of the cases (which must
all have the same type). The type of a variablex can be inferred from the meta con-
text, and recursion is standard. The rule forν extendsΨ by a new module constant.
The typing rule ensures thatα does not escape during evaluation by requiring that
the type of the body not containα.

4 Example

We have considered a few examples from programming language and logic de-
sign to exercise and experiment with the meta logicL+

ω for LLF. Our case studies
include stateful computations (we managed to represent all meta theoretic proofs
about Mini-ML with references in the original LLF paper [CP96]), linear lambda
calculi and of linear logic itself. We found that the proof of the admissibility of
cut for the tensor fragment of linear logic (see Figure3), illustratesL+

ω ’s unique
characteristics the best. Of course, there is a certain risk of confusing the reader
with two conceptually different yet linear logics.

Theorem 4.1 (Admissibility of cut) If P :: Γ1 =⇒ C, ∆1 andQ :: Γ2, C =⇒ ∆2

thenΓ1, Γ2 =⇒ ∆1, ∆2.

Proof. By lexicographic structural induction on the subformulaA and simultane-
ously onP andQ [Pfe94]. We show only the essential case between⊗R and⊗L.
The remaining cases can be found in Appendix??.

P :: Γ′
1, Γ

′′
1 =⇒ A⊗B, ∆′

1, ∆
′′
1 (by assumption)

P1 :: Γ′
1 =⇒ A, ∆′

1 (by assumption)
P2 :: Γ′′

1 =⇒ B, ∆′′
1 (by assumption)

149

Q :: Γ2, A⊗B =⇒ ∆2 (by assumption)
Q1 :: Γ2, A,B =⇒ ∆2 (by assumption)
R1 :: Γ′

1, Γ2, B =⇒ ∆′
1, ∆2 (by ind. hyp. onP1,Q1)

R :: Γ′
1, Γ

′′
1, Γ2 =⇒ ∆′

1, ∆
′′
1, ∆2 (by ind. hyp. onP2,R1)

2

Theorem4.1corresponds to the following formula inL+
ω .

∀γ1 ∈ (· . Φ).∀γ2 ∈ (γ1 . Φ).∀C : (· . o).(1)
∀P : (γ1 . posC → #).∀Q : (γ2 . negC → #).

∃R : (γ1, γ2 . #).>
where

Φ = ((λA : o.∃n : negA. ε)(2)
+(λA : o.∃p : posA. ε))∗.

The first two quantifiers in (1) range over module contextsγ1 (valid in the empty
context·) andγ2 (valid in γ1). γ1 represents the list of hypotheses of bothΓ1 and
∆1, while γ2 representsΓ2 and∆2. Φ is the world of these contexts, ensuring that
γ1 andγ2 only contain assumptions of the form “posA” and “negA”. For example,

p1 : posA1, p2 : posA2, n3 : negA3 ∈ Φ.

In (1), C ranges over closed formulas,P over sequent derivations inγ1 with for-
mula C on the left, andQ over sequent derivations inγ2 with formula C on the
right. R stands for the result derivation, necessarily valid in the union ofγ1 andγ2.

The proof Formula (1), on the other hand is a total program that maps contexts
∆1, ∆2, and LLF objectsC, P andQ such that·; · ` C : o, ·; ∆1 ` P : posC → #,
and·; ∆2 ` Q : negC → # into an LLF objectR such that·; ∆1, ∆2 ` R : #. In
the interest of clarity, the surface language used in Figure13 that depicts only the
essential case of the proof above, making use of a significant amount of syntactic
sugar. The remaining cases of “ca” are given in the Appendix??.

fun defines the recursive program “ca” by cases. “ca” expects five arguments,
including two contexts, all in the form of patterns.Γ′

1, Γ
′′
1, Γ2, A,B, P1, P2 andQ2

occur free in the pattern and in the body of that case. Thusfun is a shorthand for
a leadingµ, followed by severalΛ binders and a case expression. For uniformity
reasons, we writenew. . .in . . .end for ν α :: (χ . s). P . And finally, thelet . . .in
. . .end is the standard local binding construct that can be directly expressed using
L+

ω programs by combining nested program application with implicit case analysis.
Figure 13 illustrates the novel and distinct features ofL+

ω including pattern-
matching against linear patterns, hypothetical reasoning, and context splitting. We
describe the program in greater detail in the rest of this section, in the context of an
analysis of ca’s properties regarding strictness, coverage, and termination.

Strictness.
Upon application, matching will always instantiate all free variables in the pat-

tern of “ca”. The claim follows directly forΓ2, A, B, P1, P2, andQ1, which leaves

150

fun ca(Γ′
1, Γ

′′
1) Γ2 (A⊗B)

(λ̂p :pos(A⊗B). tensorR̂ (Γ′
1 . P1)ˆ(Γ′′

1 . P2)ˆp)

(λ̂n :neg(A⊗B). tensorL̂

(Γ2 . (λ̂n1 :negA. λ̂n2 :negB. Q1ˆn1ˆn2))ˆn) =

newα :: (Γ′
1, Γ2 . ∃n : negB. ε) in

let

val 〈R1, 〈〉〉 = ca Γ′
1 (Γ2, α : ∃n : negB. ε) A P1

(λ̂n1 :negA. Q1ˆn1ˆπp(α)])

val 〈R, 〈〉〉 = ca Γ′′
1 (Γ′

1, Γ2) B P2 (λ̂n :negB. R1[n/πp(α)])

in

〈R, 〈〉〉

end

end

Fig. 13. Admissibility of cut, essential case

Γ′
1 and Γ′′

1 to be explained. InL+
ω , every object carries its own context, which

means that any instantiation ofP1 andP2 decides the instantiations forΓ′
1 andΓ′′

1,
respective, rendering matching a deterministic operation.

Coverage.
The first two arguments to “ca” are the context patterns(γ′

1, γ
′′
1) andγ2. How

the context is split intoγ′
1 andγ′′

1 is determined by how the two contexts are used.
This is fixed by ascribing context information to the two variablesP1 andP2 bound
in the fourth argument to “ca”:(λ̂p :pos(A⊗B). tensorR̂ (γ′

1 .P1)ˆ(γ′′
1 .P2)ˆp).

Context and type ascription are features of the syntax we have chosen to present
proofs inL+

ω in, with counterparts in the formal development ofL+
ω in Section3.

The challenge is to verify that “ca” covers all cases. Canonical forms are pat-
terns and in the interest of completeness, two additional cases (described in Ap-
pendix??) related to “tensorR” must be considered, depending on ifp is consumed
in P1 or P2.

Termination.
“ca” must be total in order to be considered a proof. Therefore any evaluation

of “ca”, independent of what arguments are applied, must terminate. Consider the
body of “ca” in Figure13. The two recursive calls to “ca” correspond to appeals
to the induction hypothesis in the proof of Theorem4.1, yielding result objectsR1

andR, respectively.

151

The first instruction is thenew instruction that introduces a new hypotheses of
type negB. Recall from the proof of Theorem4.1thatR1 is the result of the induc-
tion hypothesis applied toP1 andQ1, which is parametric inB. Since hypothetical
arguments are encoded via higher-order functions, “ca” can only execute a recur-
sive call after traversing the binder(λ̂n2 :negB). In general one can only do this
by applying it to a new parametern2 : negB, in form of the module declaration

α :: (γ′
1, γ2 . ∃n : negB. ε).(3)

α is a new variable, that ranges over groups of new parameters, and is similar tox
in [Sch01]. Intuitively, one can think of a module as a temporary list of new con-
stant symbols that act as placeholders within the body ofnew. Theγ′

1, γ2 resolve
all ambiguities related to the naming ofα. We writeπp to project the head of the
list, andπm for the tail.πp(α), for example, is a new name for the newly introduced
parameter, and should be used instead ofn2.

The first recursive call cutsP1 and Q1 with cut-formulaA. Eventually, the
computation will finish and the resulting derivationR1 will use all resources of
the setγ′

1, γ2, α : ∃n : negB. ε, which corresponds directly to the informal proof.
Recall thatγ′

1 represents assumption listsΓ′
1 and∆′

1, γ2 the assumption listsΓ2 and
∆2, andα to the additional hypothesisB that occurs to the left of the sequence
arrow.

The other recursive call for cuttingP2 andR1 is similar to the first except that
this time the cut formula isB. R1 is parametric inπp(α), which is subsequently
replaced by a linear variablen beforethe second recursive call is invoked. Replace-
ments of this kind are supported inL+

ω , expressed by substitutingn for πp(α). The
resultingR is valid inγ′

1, γ
′′
1 , γ2, and does therefore not depend onα. Hence, it can

safely escape the scope ofnew.
“ca” terminates because the arguments that correspond to derivationsP andQ

are smaller with respect to a well-founded lexicographical order on the cut formula
and simultaneously onP andQ. In this work, we consider only lexicographic and
simultaneous extensions of the subterm ordering. In particular the first recursive
call terminates becauseA andB are subterms ofA⊗B.

5 Meta Theory ofL+
ω

The totality of every program inL+
ω is a sufficient and necessary condition for the

soundness ofL+
ω . The argument relies on a small-step operational semantics given

in Appendix??. We define a evaluation meta contextE to be a meta contextΨ
binding only module variablesα. For the purposes of the operational semantics,
we extend the set of programs with a closure{σ; P}, in which σ is a substitution
that mapsP from whatever meta context it is well-typed under into the outer meta
context. The evaluation judgmentE ` P → P ′ relates a programP to the outcome
of a single evaluation stepP ′. For a sequence of zero or more evaluation steps, we
write E ` P →∗ P ′. The set of values isV .

V ::= Λn :: (χ.A). P | Λγ∈(χ.Φ). P | 〈〈χ.M ; V 〉〉 | 〈〈〉〉

152

For functions, applications, existentials and fixed points, evaluation proceeds
in the standard fashion. The evaluation of a closure{σ; P} is essentially carrying
out a single step of lazily applying the substitutionσ to P . This is done because
eager substitution is not sound in the presence of case. Evaluation of(case Ω, (Ψ`
σ′ 7→ P)) in a closure proceeds by attempting to generate a substitutionσ′′ that,
when composed withσ′, is equivalent to theσ of the closure. If one is found, then
evaluation ofP continues in a closure underσ′′. The evaluation ofν α :: (χ . s). P
proceeds by evaluatingP until it becomes a value. When it finally becomes a value,
theν binding is pushed into any non-values (as occur in a function) that may exist in
the value. In addition to the usual weakening and exchange lemmas, the following
properties hold:

Lemma 5.1 (LLF module variable strengthening) If Ψ; · ` χ : Φ and Ψ, α ::
(χ′ . s); bbχcc≺:

A ; bbχcc≺̂A . M : A thenΨ; bbχcc≺:
A ; bbχcc≺̂A . M : A.

Proof. If χ does not containα, then the LLF context produced by flattening and
filtering χ cannot contain any projections fromα, and thus neither canM . 2 2

Theorem 5.2 (Type preservation)If E ` P ∈ F and E ` P → P ′ thenE `
P ′ ∈ F .

Proof. By induction on the structure of the evaluation relation. The cases forν rely
on the fact that the type of the body of theν must not use the bound module variable,
and on Lemma5.1. This allows theν to be pushed inward while preserving the
type. The substitution cases rely on the soundness of the substitution ofσ into χ,
A, M andx. 2 2

Theorem 5.3 (Progress)If E ` P ∈ F then eitherP is a value orE ` P → P ′.

Proof. By induction on the structure of the typing derivation. The progress proof
uses the fact thatE binds only module variables, and on the usual canonical forms
lemma. It also relies on the coverage condition holding, which ensures that the
program(case ·) is never evaluated. 2 2

Theorem 5.4 (Termination) If E ` P ∈ F thenE ` P →∗ V .

Proof. By induction on the typing derivation, keeping track of the instantiations of
the values bound by reductions ofµ, using the termination condition. 2 2

Theorem 5.5 (Soundness)If · ` P ∈ F then|= F .

Proof. By induction onF , using Theorems5.2, 5.3and5.4. 2 2

6 Conclusion

We have described the meta logicL+
ω for the linear logical framework LLF. LLF

is useful for the representation of formal systems that rely on a notion of deletable
resource. Surprisingly, many such systems can be represented in LLF, among them
programming languages with effects, state transition systems, such as the infamous

153

blocks world often used in AI, and of course resource oriented logics such as linear
logic itself.

The meta logicL+
ω is custom-made for LLF, which means that it incorporates

knowledge about linear assumptions, how they are consumed, split in the multi-
plicative, and duplicated in the additive fragment. It enables the formalization of
meta theoretic properties, the mechanization of reasoning about LLF encodings,
and leads to relatively short proof terms. The soundness ofL+

ω follows from a re-
alizability argument that shows that every function inL+

ω is total, i.e. it terminates
and covers all cases.

In future work, we plan to implement a proof checker and an automated theorem
prover forL+

ω , and consider extensions to the ordered logical framework and the
concurrent logical framework.

References

[App01] Andrew W. Appel. Foundational proof-carrying code. In16th Annual IEEE
Symposium on Logic in Computer Science (LICS ’01), pages 247–258, Boston,
USA, June 2001.

[BCM00] David Basin, Manuel Clavel, and Jos Meseguer. Rewriting logic as
a metalogical framework. InFoundations of Software Technology and
Theoretical Computer Science (FSTTCS), pages 55–80. Springer-Verlag LNCS
1974, 2000.

[CDL+99] Iliano Cervesato, Nancy Durgin, Patrick D. Lincoln, John C. Mitchell, and
Andre Scedrov. A Meta-Notation for Protocol Analysis. In12th Computer
Security Foundations Workshop — CSFW-12, pages 55–69, Mordano, Italy, 28–
30 June 1999. IEEE Computer Society Press.

[CL90] Luca Cardelli and Xavier Leroy. Abstract types and the dot notation. InProc.
Programming Concepts and Methods, pages 479–504. North Holland, 1990.

[Coq91]Thierry Coquand. An algorithm for testing conversion in type theory. In
Gérard Huet and Gordon Plotkin, editors,Logical Frameworks, pages 255–279.
Cambridge University Press, 1991.

[CP96] Iliano Cervesato and Frank Pfenning. A linear logical framework. In
E. Clarke, editor,Proceedings of the Eleventh Annual Symposium on Logic in
Computer Science, pages 264–275, New Brunswick, New Jersey, July 1996.
IEEE Computer Society Press.

[Gir87] J.-Y. Girard. Linear logic.Theoretical Computer Science, 50:1–102, 1987.

[Har97] John Harrison. Floating point verification in HOL Light: The exponential
function. Technical Report 428, University of Cambridge Computer
Laboratory, 1997.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining
logics. Journal of the Association for Computing Machinery, 40(1):143–184,
January 1993.

154

[MM97] Raymond McDowell and Dale Miller. A logic for reasoning with higher-order
abstract syntax: An extended abstract. In Glynn Winskel, editor,Proceedings of
the Twelfth Annual Symposium on Logic in Computer Science, pages 434–445,
Warsaw, Poland, June 1997.

[MT03] Dale Miller and Alwen Tiu. A proof theory for generic judgments. In
Proceedings of LICS 2003, pages 118–127, Ottawa, July 2003.

[NvO98] Tobias Nipkow and David von Oheimb. Java-light is type-safe — definitely. In
L. Cardelli, editor,Conference Record of the 25th Symposium on Principles of
Programming Languages (POPL’98), pages 161–170, San Diego, California,
January 1998. ACM Press.

[Pau94]Lawrence C. Paulson.Isabelle: A Generic Theorem Prover. Springer-Verlag
LNCS 828, 1994.

[Pau97]Lawrence C. Paulson. Proving properties of security protocols by induction.
In Proceedings of the 10th Computer Security Foundations Workshop, pages
70–83. IEEE Computer Society Press, June 1997.

[Pfe94]Frank Pfenning. A structural proof of cut elimination and its representation
in a logical framework. Technical Report CMU-CS-94-218, Department of
Computer Science, Carnegie Mellon University, November 1994.

[PP03]Brigitte Pientka and Frank Pfenning. Optimizing higher-order pattern
unification. InCADE-19, pages 473–487, Miami Beach, Florida, July 2003.

[Sch00]Carsten Scḧurmann.Automating the Meta-Theory of Deductive Systems. PhD
thesis, Carnegie Mellon University, 2000. CMU-CS-00-146.

[Sch01]Carsten Scḧurmann. Recursion for higher-order encodings. In Laurent
Fribourg, editor,Proceedings of the Conference on Computer Science Logic
(CSL 2001), pages 585–599, Paris, France, August 2001. Springer Verlag LNCS
2142.

[VC02] Joseph C. Vanderwaart and Karl Crary. A simplified account of the metatheory
of linear lf. Electronic Notes in Theoretical Computer Science, 70(2), 2002.

[Vir99] Roberto Virga. Higher-Order Rewriting with Dependent Types. PhD thesis,
Department of Mathematical Sciences, Carnegie Mellon University, 1999.
Forthcoming.

155

	lfm-papers.pdf
	lfm-papers.pdf
	1.pdf
	Introduction
	Twelf
	Representation of Syntactic Objects
	Representation of Judgements and Relations
	Representation of Theorems and Proofs
	External Properties: Termination and Coverage

	A Formalized Proof of Weak Normalization
	Inductive Characterization of Weak Normalization
	Closure under Application and Substitution
	Soundness of Inductive Characterization

	On Proof-Theoretical Limitations of Twelf
	Conclusion and Related Work
	References

	2.pdf
	Introduction
	Type Theory
	Substitutions
	Strictness
	Type Checking
	Typing
	Spines: Definitional Typing
	Algorithmic Typing
	Correctness

	Equivalence
	Conclusion
	References

	3.pdf
	Introduction
	Problem
	Approach
	Related Work
	Contribution
	Outline

	The system H
	Correspondence to P
	An analogue of subject reduction
	Conversion reduction
	Discussion
	Future work
	Avoiding ill-typed terms

	References

	4.pdf
	Introduction
	The asynchronous -calculus with correspondence assertions
	Syntax

	The static semantics
	The operational semantics
	Traces and abstraction
	Related work
	Conclusions
	References
	-calculus encoding summarized
	CLF type theory summarized

	5.pdf
	Introduction
	Modeling Language
	Syntax Encoding
	Operational Semantics Encoding

	Specification Language
	Encoding of the Fairness Assumption
	Available Formulas

	Collection of Lemmas
	Confluence Properties
	Library Overview

	Case Study
	Conclusion
	References

	6.pdf
	Introduction
	Dynamic Logic

	Taclets
	Outline of Bootstrapping Taclets
	Meaning Formulas of Taclets
	Construction of Proof Obligations
	Skolem symbols
	From Meaning Formula to Proof Obligation
	Decomposition Rules

	Main Result
	Treatment of Taclets
	Treatment of Decomposition Rules

	Conclusions

	7.pdf
	Introduction
	mega: A Meta-language with Type Equality
	Type Equality in mega

	mega Example: Substitution
	The Simply Typed -calculus with Typed Substitutions

	Implementing Substitution in mega
	Judgments
	Substitution

	A Big-step Evaluator
	Related Work
	Discussion and Future Work
	References
	Acknowledgment

	8.pdf
	Introduction
	Related Work
	Overview of RSP
	Meta-Programming Examples
	Proof-Producing Union-Find
	Imperative Deduction Theorem

	Mutable State and HOAS
	Conclusion and Future Work
	References

	9.pdf
	Introduction
	The Linear Logical Framework LLF
	The Meta Logic L+
	Extensions to LLF
	Module contexts and worlds
	Context conversion
	LLF typing rules revisited
	Formulas and their semantics
	Programs
	Proof theory for L+

	Example
	Meta Theory of L+
	Conclusion
	References

