LFM 2004 Preliminary Version

Weak Normalization for the Simply-Typed
Lambda-Calculus in Twelf

Andreas Abel!

Department of Computer Science, Chalmers University of Technology
Rdnnvdgen 6, SWE-41296 Goteborg, Sweden

Abstract

Weak normalization for the simply-typed A-calculus is proven in Twelf, an imple-
mentation of the Edinburgh Logical Framework. Since due to proof-theoretical
restrictions Twelf Tait’s computability method does not seem to be directly usable,
a combinatorical proof is adapted and formalized instead.

Key words: FEdinburgh Logical Framework, HOAS, Mechanized
Proof, Normalization, Twelf

1 Introduction

Twelf is an implementation of the Edinburgh Logical Framework which sup-
ports reasoning in full higher-order abstract syntax (HOAS); therefore it is an
ideal candidate for reasoning comfortably about properties of prototypical pro-
gramming languages with binding. Previous work has focused on properties
like subject reduction, confluence, compiler correctness. Even cut elimination
for various sequent calculi has been proven successfully. But until recently,
there were no formalized proofs of normalization ? in Twelf. The reason might
be that normalization is typically proven by Tait’s method, which cannot be
applied directly in Twelf. This work explains why Tait’s method is at least not
directly applicable and provides a combinatorical proof for the simply-typed
lambda-calculus.

1 Research supported by the Graduiertenkolleg Logik in der Informatik of the Deutsche
Forschungsgemeinschaft, the thematic networks TYPES (IST-1999-29001) and Applied Se-
mantics IT (IST-2001-38957) of the European Union and the project CoVer of the Swedish
Foundation of Strategic Research.

2 There have been normalization proofs in logical frameworks with inductive definitions, for
instance, Altenkirch’s proof of strong normalization for System F in LEGO [2]. Since HOAS
is not available in a framework like LEGO, he represents terms using de Bruijn indices.

This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

ABEL

K ::= type kind of types
| {X:A}K dependent function kind

A ==TFM,...M, base type
| {X:A}A dependent function type

| A — A non-dependent function type
M :=C term constant

| X term variable

| [X:A]M term abstraction

| MM term application

Fig. 1. Syntactic classes of LF.
2 Twelf

The Edinburgh Logical Framework (LF %) [6,7] is a dependently-typed lambda-
calculus with type families and n-equality, but neither polymorphism, induc-
tive data types nor recursion. Expressions are divided into three syntactic
classes: kinds, types and terms, generated by the grammar in Fig. 1. Herein,
the meta variable X ranges over a countably infinte set of variable identi-
fiers, while F resp. C range over type-family resp. term constants provided in
a signature Y. Note that neither a type nor a kind can depend on a type;
consequently, abstraction is missing on the type level [10, p. 1124].

Syntax.

r,s,t,u = x| Avt|rs untyped terms

A, B,C = x|A—B simple types

r n= oI x:A contexts
Type assignment I' -t : A. (x:A) el .

Tra:A 70
I'z:A+t: B £ r-r:A—- B 'Fs: A c
of lam of _a
'FXxt:A— B I'krs: B PP

Weak head reduction ¢t —,, t'.

b s LA,
eta ————— a

(A\x.t) s — [s/x]t rs—wr's PP

Fig. 2. Simply-typed A-calculus and weak head reduction.

The framework comes with judgements for typing, M : A, kinding, A : K,

3 This is not to be confused with Martin-Lof’s framework for dependent type theory, which
is also abbreviated by LF.

ABEL

and wellformedness of kinds, K kind, plus fn-equality on for terms, types, and
kinds [7]. An object theory can be described in the framework by providing a
suitable signature ¥ which adds kinded type family constants F : K and typed
term constants C : A.

Twelf [11] is an implementation of LF whose most fundamental task is to
check typing (and kinding) of a user given signature 3, usually provided as a
set of ASCII files. Symbols reserved for the framework are the following.

() [T {2} > type

All others can be used to denote entities in the object theories. In the remain-
der of this section, we show how to represent the simply-typed A-calculus with
weak head reduction, as specified in Fig. 2, in Twelf.

2.1 Representation of Syntactic Objects

Untyped lambda terms ¢ can be represented by one type family constant tm
and two term constants:

tm . type.
lam : (tm -> tm) -> tm.
app ctm -> tm -> tm.

The lack of a construct for variables is due to the use of HOAS: object variables
are represented by variables of the framework, e. g., in the code for the twice
function:

twice = lam [f:tm] lam [x:tm] app f (app f x).

A more detailed explanation of higher-order encodings has been given by
Schiirmann [14, p. 20ff]. Simple types A can be generated from a nullary
constant * for some base type and a binary constant =>, used infix, for func-
tion type formation.

ty . type.
. ty.
=> Dty > ty > ty.

2.2 Representation of Judgements and Relations

Type assignment for untyped terms, I' - ¢ : A, can be represented by two
constants as well: one for function introduction and one for function elimina-
tion. Note that in Twelf syntax, the types of new constants may contain free
variables (captial letters), which are regarded as universally quantified on the
outside.

of : tm -> ty -> type.
of _lam : ({x:tm} x of A -> (T x) of B)
-> (lam [x:tm] T x) of (A => B).
of_app : R of (A =>B) -> S of A -> (app R S) of B.

3

ABEL

Again, there is no separate rule for the typing of variables, instead it is part
of the rule for abstraction. The premise of rule of _lam is to be read as:

Consider a temporary extension of the signature by a fresh constant x:tm
and assume x of A. Then (T x) of B holds.

This adds a dynamical typing rule x of A for each new variable x instead of
inserting a typing hypothesis x : A into the typing context I'. Hence, we do
not explicitely encode I', but let the framework handle the typing hypotheses.

Similar to the typing relation, we can represent weak head reduction t —,,
t'; which eliminates the head (resp. key) redex in term ¢ but does not step
under a binding.

-=>w . tm -> tm -> type.
beta : app (lam T) S -->w T S.
appl : R -->w R’ -> app R S -—>w app R’ S.

One advantage of HOAS is that substitution does not have to be defined, but
can be inherited from the framework. Since in rule beta, term T : tm -> tm
is A-function, substitution [u/ylt is simply expressed as application T U.

Lemma 2.1 Ift —, t' then [u/y]t — [u/y]t.

Proof. By induction on the derivation of t —, t'.

o Case (\x.t)s —, [s/x]t. W.lLo.g. # y and z not free in u. Then,
[w/yl(Azt)s) = (Aa[u/y]t) fu/yls
—w [[u/yls/allu/ylt = [u/y]ls/z]t.
e Casers —, r's with r —,, /. By ind. hyp., [u/y]r —, [u/y]r’. Hence,

[w/yl(rs) = ([u/ylr) ([u/yls)
—w ([u/ylr") ([u/yls) = [u/y](r"s)

Fig. 3. Weak head reduction is closed under substitution.

2.3 Representation of Theorems and Proofs

Fig. 3 shows the first lemma of our object theory. How do we represent it?
Twelf’s internal logic is constructive, therefore the lemma must be interpreted
constructively: Given a derivation P of t —, t’ and a term u, we can con-
struct a derivation P’ of [u/y]t —, [u/y]t". In type theories with inductive
types and recursion, like Agda, Coq [8] and LEGO [13], the lemma would be

4

ABEL

represented as a recursive function of the dependent type
Ot tm. Ot tm TPt —, t'. Tu: tm. My :var. [u/ylt —., [u/y]t'.

In Twelf, however, with no recursive functions at hand, the lemma is repre-
sented as a relation between input and output derivations, and, thus, via the
propositions-as-types paradigm, as just another type family.

subst_red : {U:tm} ({y:tm} Ty -—>w T’ y)
> TU-->w T U -> type.
%mode subst_red +U +P -P’.

The %mode statement marks the first two arguments of type family subst_red
as inputs (+) and the third as output (—). Thus, the lemma is a functional
relation, and its proof is a logic program with two clauses, one for each case
in the proof.

subst_red_beta: subst_red U ([y] beta) beta.

subst_red_appl: subst_red U ([y] appl (P y)) (appl P’)
<- subst_red U P P’.

Jsterminates P (subst_red _ P _).

The base case of the induction is given by the constant subst_red_beta, and
the step case, which appeals to the induction hypothesis, by subst_red_appl.
The types of these constants are the actual program and correspond to PRO-
LOG clauses. Note that in the second type a reversed arrow “<-", which
resembles PROLOG’s “:-” has been used to encourage an operational read-
ing:

Substitution in a derivation whose last rule is appl, and the remainder, P,
may mention y, results in a derivation P’ extended by an application of rule
appl. Herein, P’ is constructed from P recursively.

Since it is a logic program, we can even “execute” the lemma. Execution in
Twelf is search: Given a type with free variables, find an inhabitant of the
type and solutions for the free variables. For example:

P : {y} app (app (lam [x] x) y) y -—>w app y ¥
= [y] appl beta.

%define P’ = X

%solve K : subst_red (lam [z] z) P X.

This defines a 2-rule derivation P which witnesses that (A\x.x)yy —w yv.
The %solve statement asks Twelf for a derivation P’ which arises from P by
substituting Az.z for y, according to the lemma. The answer is:

P’ : app (app (lam [x] x) (lam [z] z)) (lam [z] z)
-->w app (lam [z] z) (lam [z] z)

appl beta.

K : subst_red (lam [z] z) P (appl beta)

subst_red_appl subst_red_beta.

b}

ABEL

Since the value of P’ equals P, the shape of the derivation has not changed,
only its result: the type of P’. The value of K gives an execution trace of
logic program subst_red: First, clause subst_red_appl has fired, then clause
subst_red_beta has concluded the search.

2.4 External Properties: Termination and Coverage

A logic program in Twelf corresponds to a partial function from inputs to
outputs as specified by the mode declaration. Since only total functions cor-
respond to valid inductive proofs we must ensure that the defined function
terminates on all inputs and covers all possible cases. Both properties cannot
be shown within the framework, e. g., we cannot give a proof that subst_red
is terminating. Instead, totality of a function needs external reasoning and
can be ensured by built-in tactics.

Brigitte Pientka [12] contributed a termination checker which is invoked
by the %terminates pragma. In our case, the second argument P decreases
structurally in each recursive call. Case coverage is ensured by an algorithm
by Pfenning and Schiirmann [15]. Both termination and coverage checking
are necessarily undecidable. For the proof developed in the remainder of this
article, we found the implemented termination checker powerful enough to
pass our code, whereas the coverage checker could not “see” that indeed all
cases are handled. Thus, coverage had to be established manually, but for
lack of space we will not detail on it.

3 A Formalized Proof of Weak Normalization

In this section, we present a combinatorial proof of weak normalization for the
simply-typed lambda-calculus. It is similar to the textbook proof in Girard,
Lafont and Taylor [4, Ch. 4], but we avoid reasoning with numbers altogether.
In fact, we follow closely the very syntactical presentation of Joachimski and
Matthes [9], which has also been implemented in Isabelle/Isar by Nipkow and
Berghofer [3]. The main obstacle to a direct formalization in Twelf is the
use of a vector notation for terms by Joachimski and Matthes, which allows
them to reason on a high level in some cases. In this section, we will see a
“de-vectorized” version of their proof which can be outlined as follows:

(i) Define an inductive relation ¢} A.
(ii) Prove that for every term ¢ : A the relation ¢ |} A holds.

(iii) Show that every term in the relation is weakly normalizing.

3.1 Inductive Characterization of Weak Normalization

Inductive characterizations of normalization go back to Goguen [5] and van
Raamsdonk and Severi [16,17]. We introduce a relation I' F ¢ || A which
stipulates that ¢ is weakly normalizing of type A, and an auxiliary relation

6

ABEL

I' =t |* A which additionally claims that ¢ = x s for some sequence of terms
s, i.e., t is neutral and head-redex free.

(z:A) el Trkrl*A—B TrslA Tkrl|® A
TFal* A TFrs|*B e T pa T
e:A-t| B r—w 'Er" A
TF il Ao B m-ten TFr{A 1R-exP

The Twelf representation is similar to the typing relation: Again, I' and the
hypothesis rule are indirectly represented in rule wn_lam.

wne D tm -> ty -> tm -> type.
wn tm -> ty -> type.

wne_app : wne R (A =>B) X -> wn S A -> wne (app R S) B X.

wn_ne : {X:tm} wne R A X -> wn R A.

wn_lam : ({x:tm} wne x A x -> wn (T x) B)
-> wn (lam T) (A => B).

wn_exp : R -->wR’” ->wn R A->wnRA.

3.2 Closure under Application and Substitution

To show that each typed term ¢ : A is in the relation ¢ |} A, we will proceed by
induction on the typing derivation. Difficult is the case for an application of
the form (Az.r)s. It can only be shown to be in the relation by rule wn_exp,
which requires us to prove that [s/z]r is in the relation. If x is head variable
of r, substitution might create new redexes. In this case, however, we can
argue that the type of r is a smaller type than the one of s. These preliminary
thoughts lead to the following lemma.

Lemma 3.1 (Application and Substitution) Let D:: T+ s A.
i) If E2TFryA—CthenTtFrs C.
(i) If E=:T,x: Aty C, then T F [s/z]t || C.
(i) If E=T,x: ARt]|*C, then Tk [s/z]t | C and C is a part of A.
(iv) If E=T,a:AFt Y C withx #y, then T' - [s/x]t |Y C.
In Twelf, the lemma is represented by four type families. The invariant
that C is a subexpression of A will be expressed via a jreduces statement

later, which makes is necessary to make type C' an explicit argument to type
family subst_x.

app_wn : {A:ty} wn S A ->
wn R (A =>C) -> wn (app R S) C -> type.

subst_wn: {A:ty} wn S A >
({x:tm} wne x Ax >wn (Tx)C) ->wn (TS)C ->type.

7

ABEL

subst_x : {A:ty} wn S A -> {C:ty}
({x:tm} wne x A x -> wne (Tx) Cx) >wn (TS)C ->type.

subst_y : {A:ty} wn S A ->
({x:tm} wne x A x -> wne (T x) CY) -> wne (T S) CY -> type.

%mode app_wn +A +D +E -F.
Jmode subst_wn +A +D +E -F.
Jmode subst_x +A +D +C +E -F.
Jmode subst_y +A +D +E -F.

Proof of Lemma 3.1 Simultaneously by main induction on type A and side
induction on the derivation £.

(i) Show I' F rs || C. If the last rule of £ was wn_ne, hence, r is neutral,

(i)

then r s is also neutral by rule wne_app, thus, it is in the relation. If the
last rule was wn_exp, we can apply the side ind. hyp. The interesting case
is 7 = Ax.t and

Iz ARty C
TF i Ao ot
Here, we proceed by side ind. hyp. ii.
app_wn_ne : app_wn A D (wn_ne X E) (wn_ne X (wne_app E D)).

app_wn_exp : app_wn A D (wn_exp P E) (wn_exp (appl P) F)
<- app_wn A D EF.

app_wn_lam : app_wn A D (wn_lam E) (wn_exp beta F)
<- subst_wn A D E F.

Show T'+ [s/z|t |} C for T,z: Akt | C. If t is not neutral, we conclude
by ind. hyp. and possibly Lemma 2.1. Otherwise, we distinguish on the
head variable of ¢: is it z, then we proceed by side ind. hyp. iii, otherwise
by side ind. hyp. iv.
subst_wn_lam: subst_wn A D
([x] [dx] wn_lam ([y]l[dy] E y dy x dx)) (wn_lam F)
<- {y}{dy} subst_wn A D (E y dy) (F y dy).

subst_wn_exp: subst_wn A (D : wn S A)

([x][dx] wn_exp (P x) (E x dx)) (wn_exp P’ E’)
<- subst_wn A D E E’
<- subst_red S P P’.

subst_wn_x : subst_wn A D
([x][dx] (wn_ne x (E xdx) : wn (T x) C)) F
<- subst_x ADCEF.

subst_wn_y : subst_wn A D

(iii)

(iv)

ABEL

([x][dx] wn_ne Y (E x dx)) (wn_ne Y F)
<- subst_y ADEF.
Show T' + [s/z]t |} C for T F ¢ |* C with TV :=T,z: A. In case t = x,
the type C is trivially a part of A = C and we conclude by assumption
I'Fs | C. Otherwise, t = ru and the last rule in £ was

I'tr]*"B—C I"-u{ B
I"Frul=C

wne_app.

By side ind. hyp. iii we know that B — C'is a part of A and I" - 7/ ||
B — C where ' := [s/z|r. Similarly I" - «' || B for ' := [s/x]u by
side ind. hyp. ii. Since B is a strict part of A, we can apply the main
ind. hyp. i and obtain I' + "4’ |} C.

subst_x_x : subst_x A D A ([x][dx]dx) D.
subst_x_app : subst_x A D C ([x][dx] wne_app
(E x dx)

(Fxdx : wn (Ux) B)) EF
<- subst_x AD (B =>C) EE’
<- subst_wn ADF F’
<- app_wn B F’ E’ EF.
%reduces C <= A (subst_x ADCE F).

The Y%reduces declaration states that the type expression C' is a subex-
pression of A. Twelf checks that this invariant is preserved in all pos-
sibilities of introducing subst_x A D C E F. In case subst_x_x it holds
because C is instantiated to A. In case subst_x_app it follows from the
ind. hyp. which states that already B => C is a subexpression of A.

Show I' - [s/x]t |Y C for I',x: A F t |Y C. There a two cases. t =y,
which holds immediately, and ¢ = r u, which follows from side ind. hyp.s
ii and iv. In our Twelf representation, we cannot distinguish variable y
from any other term, so we widen the first case to cover all ¢ such that z
is not free in ¢. This is expressed by letting E not refer to x or dx.

subst_y_y : subst_y A D ([x][dx] E) E.
subst_y_app : subst_y A D ([x][dx] wne_app (E x dx) (F x dx))
(wne_app E’ F’)
<- subst_y AD E E’
<- subst_wn A D F F’.
O

To justify the appeals to the ind. hyp.s we invoke the Twelf termination checker
with the following termination order.

hterminates {(Ax Ay As Aa) (Ex Ey Es Ea)}

(subst_x Ax _ _ Ex _)
(subst_y Ay _ Ey _)
(subst_wn As _ Es _)

ABEL

(app_wn Aa _ Ea _).

It expresses that the four type families are mutually recursive and terminate
w.r. t. the lexicographic order on pairs (A, £) of types A and typing derivations
&. This corresponds on a main induction on A and a side induction on &£. To
verify termination, T'welf makes use of the jreduces declaration.

3.3 Soundness of Inductive Characterization

To complete our proof of weak normalization, we need to show that for each
term ¢ in the relation ¢t || A or t |* A there exists a normal form v such
that t —* v. After formulating full reduction — with the usual closure
properties, the proof is a simple induction on the derivation &£ :: t || A resp.
£t |" A. For lack of space we exclude the details, an implementation of the
proof is available online [1].

4 On Proof-Theoretical Limitations of Twelf

Having successfully completed the proof of weak normalization we are in-
terested whether it could be extended to strong normalization and stronger
object theories, like Godel’s T. In this section, we touch these questions, but
our answers are speculative and preliminary.

Joachimski and Matthes [9] extend their proof to Godel’s T, using the
infinitary w-rule to state when a recursive function over natural numbers is
weakly normalizing. Their proof is not directly transferable since only finitary
rules can be represented in Twelf.

For the same reason, Tait’s proof cannot be formalized in Twelf. Its key
part is the definition

Vs. sl A = rs{ B
ry{A— B

with an infinitary premise. Its literal translation into Twelf

wn_arr : ({S:tm} wn S A -> wn (app R S) B) -> wn R (A => B)

means something else, namely “if for a fresh term S for which we assume
wn S Ait holds that wn (app R S) B,thenwn R (A => B)”. Translating this
back into mathematical language, we obtain the rule

tJA = raz|B
ry{A— B

for a fresh variable z.

Since variables x are weakly normalizing anyway, we can simplify the premise
further to rx || B, obtaining clearly something we did not want in the first
place.

Due to the interpretation of quantification in Twelf, infinitary rules cannot
be represented, which also obstructs the definition of the predicate strongly

10

ABEL

normalizing sn by the inductive rule

V.t — t' = snt/
snt

?

expressing that the set of strongly normalizing terms is the accessible part of
the reduction relation.

Concluding, one might say that normalization of Godel’s T and proofs of
strong normalization are at least difficult to express in Twelf. To see whether
they are feasible at all, a detailed proof-theoretic analysis of Twelf would be
required.

5 Conclusion and Related Work

We have presented a formalization of Joachimski and Matthes’ version of
an elementary proof of weak normalization of the simply-typed A-calculus in
Twelf. We further have outlined some problems with direct proofs of strong
normalization and Tait style proofs.

In the 1990s, Filinski has investigated feasibility of logical relation proofs
in the Edinburgh LF, but his findings remained unpublished. According to
Pfenning, a possible way is to first define a logic in LF, and then within this
logic investigate normalization of A-calculi. This path is taken in the Isabelle
system whose framework is similar to LF but only simply-typed instead of
dependently typed. On top of core Isabelle, higher-order logic (HOL) is im-
plemented which serves as the meta language in which, in turn, object theories
are considered. Rich tactics for HOL make up for the loss of framework mech-
anism due to the extra indirection level. In Twelf, one could follow this path
as well, with the drawback that the built-in facilities like termination checker
and automated prover [14] would be rendered inapplicable.

Independently of the author, Watkins and Crary have formalized a normal-
ization algorithm and proof in Twelf, namely for Watkins’ concurrent logical
framework. It is said to follow the principle of our Lemma 3.1, namely showing
that canonical forms (=normal forms) are closed under eliminations.

Acknowledgments.

The author likes to thank Ralph Matthes, Frank Pfenning, Brigitte Pien-
tka, Carsten Schiirmann and Kevin Watkins for discussions on the topic in
the years 2000-2004. He is indebted to Thierry Coquand for comments on the
draft of this paper.

References

[1] Abel, A., A Twelf proof of weak normalization for the simply-typed \-calculus,
Twelf code, available on the author’s homepage (2004).

11

ABEL

[2] Altenkirch, T., A formalization of the strong normalization proof for System F
i LEGO, in: M. Bezem and J. F. Groote, editors, Typed Lambda Calculi and
Applications, TLCA’93, Lecture Notes in Computer Science 664 (1993), pp.
13-28.

[3] Berghofer, S., “Proofs, Programs and Executable Specifications in Higher-Order
Logic,” Ph.D. thesis, Technische Universitdt Miinchen (2003).

[4] Girard, J.-Y., Y. Lafont and P. Taylor, “Proofs and Types,” Cambridge Tracts
in Theoretical Computer Science 7, Cambridge University Press, 1989.

[5] Goguen, H., Typed operational semantics, in: M. Deziani-Ciancaglini and

G. D. Plotkin, editors, Typed Lambda Calculi and Applications (TLCA 1995),
Proceedings, Lecture Notes in Computer Science 902 (1995), pp. 186-200.

[6] Harper, R., F. Honsell and G. Plotkin, A Framework for Defining Logics,
Journal of the Association of Computing Machinery 40 (1993), pp. 143-184.

[7] Harper, R. and F. Pfenning, On equivalence and canonical forms in the LF type
theory, ACM Transactions on Computational Logic (2004), (To appear).

[8] INRIA, “The Coq Proof Assistant Reference Manual,” Version 8.0 edition
(2004), http://coq.inria.fr/doc/main.html.

[9] Joachimski, F. and R. Matthes, Short proofs of normalization, Archive of
Mathematical Logic 42 (2003), pp. 59-87.

[10] Pfenning, F., Logical frameworks, , 2 (2001), pp. 1063-1147.

[11] Pfenning, F. and C. Schiirmann, System description: Twelf - a meta-logical
framework for deductive systems, in: H. Ganzinger, editor, Proceedings of the
16th International Conference on Automated Deduction (CADE-16), Lecture
Notes in Artificial Intelligence 1632 (1999), pp. 202-206.

[12] Pientka, B., Termination and reduction checking for higher-order logic
programs, in: R. Goré, A. Leitsch and T. Nipkow, editors, Automated Reasoning,
First International Joint Conference, IJCAR 2001, Lecture Notes in Artificial
Intelligence 2083 (2001), pp. 401-415.

[13] Pollack, R., “The Theory of LEGO,” Ph.D. thesis, University of Edinburgh
(1994).

[14] Schiirmann, C., “Automating the Meta-Theory of Deductive Systems,” Ph.D.
thesis, Carnegie-Mellon University (2000).

[15] Schiirmann, C. and F. Pfenning, A coverage checking algorithm for LF, in:
D. Basin and B. Wolff, editors, Proceedings of the 16th International Conference
on Theorem Proving in Higher Order Logics (TPHOLs 2003), Lecture Notes in
Computer Science 2758 (2003), pp. 120-135.

[16] van Raamsdonk, F. and P. Severi, On normalisation, Technical Report CS-
R9545, CWT (1995).

[17] van Raamsdonk, F., P. Severi, M. H. Sgrensen and H. Xi, Perpetual reductions
in lambda calculus, Information and Computation 149 (1999), pp. 173-225.

12

	Introduction
	Twelf
	Representation of Syntactic Objects
	Representation of Judgements and Relations
	Representation of Theorems and Proofs
	External Properties: Termination and Coverage

	A Formalized Proof of Weak Normalization
	Inductive Characterization of Weak Normalization
	Closure under Application and Substitution
	Soundness of Inductive Characterization

	On Proof-Theoretical Limitations of Twelf
	Conclusion and Related Work
	References

