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Abstract

Logical frameworks serve as meta-languages to represent deductive systems, sometimes
requiring special purpose meta logics to reason about the representations. In this work, we
describeL+

ω , meta logic for the linear logical framework LLF [CP96] and illustrate its use
via a proof of the admissibility of cut in the sequent calculus for the tensor fragment of
linear logic.L+

ω is first-order, intuitionistic, and not linear. The soundness ofL+
ω is shown.

1 Introduction

Logical frameworks are meta languages designed for representing various formal
systems prevalent in programming language semantics, logics, and protocol design.
By design, a logical framework is foundationally uncommitted, meaning that it is
primarily concerned with the way formal systems are represented and not with rea-
soning about their properties. Logical frameworks have, in this spirit, undergone
significant extensions, leaving the design of meta logics far behind. Modern logi-
cal frameworks incorporate linear types to model resource awareness (useful when
designing programming languages with effects), ordered types (to model formal
systems that access resources in a particular order), and even monadic types that
capture concurrency.

By separating meta languages from meta logics, we get a quite substantial de-
sign space for special purpose meta logics. Each meta logic is tailored toward
a particular logical framework, responding to its requirements, expressiveness and
idiosyncrasies, with the sole purpose of formalizing meta theoretic arguments about
encodings in the logical framework. A logical framework together with a meta logic
defines a meta logical framework. One example of a meta logic isM+

ω [Sch00],
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designed specifically for the logical framework LF [HHP93]. Conversely, McDow-
ell and Miller [MM97], have chosen a fixed meta logic and to study how to encode
and reason about various meta languages in their system. However, their design is
also not immune to change. Non-standard extensions of their first-order meta logic
with definitions and natural number induction have become necessary to facilitate
reasoning about terms with open parameters [MT03].

The absence of well-understood meta logics has often been interpreted as a
severe impediment to the deployment and acceptance of the technology among
researchers and scientists as well as developers and industry. Consequently, the
prevalent use of logical framework technology is as a representation language for
one particular logic that is then used to describe and reason about the object systems
in question. Higher-order logic is a popular candidate used in Isabelle/HOL [Pau94]
and Twelf/HOL [App01] which have been instrumental in the formal study of pro-
gramming languages, such as Java [NvO98], hardware verification [Har97], and
protocol verification [Pau97], among other things. Higher-order logic is well-
understood, clean, expressive, and when enriched with induction principles a good
choice for many applications. However, it limits the ways in which deductive sys-
tems can be encoded, and therefore cannot take advantage of the advanced repre-
sentation technology provided by modern logical frameworks.

In this work, we propose a special purpose meta logic for the linear logical
framework LLF [CP96] which plays the role of a linear meta logical framework.
LLF’s distinguishing feature over LF is a set of linear operators capable of handling
depletable resources. LLF has been successfully employed in representing and
experimenting with a variety of security and authentication protocols [CDL+99].
Although the theory behind LLF is well-understood, our work is to our knowledge
the first research towards a sound meta logic for LLF.

L+
ω extends the meta logicM+

ω for LF developed by the second author [Sch00]
into the LLF setting.L+

ω is first-order, intuitionistic, and not linear. Aside from>,
it does not define any logical constant symbols. It does however inherit proofs by
induction over arbitrary higher-order types without the restrictive positivity condi-
tion, including those that take advantage of both linear and intuitionistic assump-
tions. Furthermore, it supports quantification over LLF contexts.

The paper is organized in the following way: in Section2 we review the linear
logical framework LLF and illustrate its representational expressiveness in terms of
a sequent calculus for the tensor fragment of linear logic. In Section3, we present
a formal meta logicL+

ω that serves as the formalization of theorems as well as meta
theoretic proofs. We start by describing the interface between the meta logic and the
logic, first by giving extensions to LLF, before describing the meta logic proper and
its proof theory. Next, in Section4, we use as an example the proof of the theorem
that cuts are admissible in the previously defined sequent calculus encoding. Then
L+

ω ’s soundness is shown in Section5, before we conclude in Section6 and assess
results.
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(Kinds) K ::= type | Πu :A. K

(Types) A, B ::= a | A M | Πu :A. B | A−◦ B | A & B | >

(Objects) M, N ::= c | u | λu :A. M | M N | λ̂u :A. M | MˆN
| 〈M, N〉 | π1M | π2M | 〈〉

(Signatures) Σ ::= · | Σ, a : K | Σ, c : A

(Contexts) Γ, ∆ ::= · | Γ, u : A

(Substitution) ρ ::= · | ρ, M/u

Fig. 1. LLF syntax

2 The Linear Logical Framework LLF

The linear logical framework LLF [CP96] extends the the logical framework LF [HHP93]
with linear resources that may be created, used, or modified. Its feature set super-
sedes that of LF, supporting dependent types. Every term in LLF reduces to a
canonical form. LLF has established itself as an elegant tool for adequate encod-
ings of judgments as types, derivations as objects, and hypothetical judgments as
(linear) functions including an elegant treatment of depletable resources.

For example, the well-known derivability judgment for linear classical logic of
the formA1, . . . , An =⇒ B1, . . . , Bn can be represented in LLF as a function of
the form

negA1 . . . −◦ negAn−◦posB1 . . . −◦posBm → #.

neg and pos are families of types, representing assumptions to the left and right of
the=⇒ symbol, respectively, while# is a type that stands for the empty sequent.
Encoding lists of assumptions as linear functions instead of making them explicit
as lists has several advantages, namely that lookup, consumption, and substitu-
tion are directly supported by LLF through variables names, linear application, and
β-reduction, which renders encodings of resource oriented formal systems brief,
concise, and readable.

LLF borrows its linear operators from linear logic [Gir87] and usesβη as the
underlying notion of definitional equality [Coq91]. Furthermore, it conservatively
extends LF. LLF does not provide a dependent linear function space. The syntax
for standard LLF [CP96] is given in Figure1.

Kindscan either be the kind for types or a dependent product.Typescan either
be a type constant, an application, a dependent function type, the linear function
type, the additive product type, or the additive unit.Objectscan either be an object
constant, a variable, an intuitionistic function or application, a linear function or
application, a linear additive pair or projection, or the constructor for the additive
unit. A signaturebinds type and object constants. An LLFcontextis either empty,
or a smaller context extended with an object binding.

We write LLF judgments using. to separate assumptions from the rest of
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Ψ; Γ; · . c : Σ(c) Ψ; Γ; · . u : Γ(u) Ψ; Γ; u : A . u : A

Ψ; Γ, u : A; ∆ . M : B

Ψ; Γ; ∆ . λu :A. M : Πu :A. B

Ψ; Γ; ∆ . M : Πu :A. B Ψ; Γ; · . N : A

Ψ; Γ; ∆ . M N : [idΓ;∆, N/u]B

Ψ; Γ; ∆, u : A . M : B

Ψ; Γ; ∆ . λ̂u :A. M : A−◦ B

Ψ; Γ; ∆1 . M : A−◦ B Ψ; Γ; ∆2 . N : A

Ψ; Γ; ∆1, ∆2 . MˆN : B

Ψ; Γ; ∆ . M : A Ψ; Γ; ∆ . N : B

Ψ; Γ; ∆ . 〈M, N〉 : A & B

Ψ; Γ; ∆ . M : A & B
Ψ; Γ; ∆ . π1M : A

Ψ; Γ; ∆ . M : A & B
Ψ; Γ; ∆ . π2M : B Ψ; Γ; ∆ . 〈〉 : >

Fig. 2. Typing rules of LLF.

ax
A =⇒ A

Γ1 =⇒ C, ∆1 Γ2, C =⇒ ∆2
cut

Γ1, Γ2 =⇒ ∆1, ∆2

Γ, A,B =⇒ ∆
⊗L

Γ, A⊗B =⇒ ∆

Γ1 =⇒ A, ∆1 Γ2 =⇒ B, ∆2
⊗R

Γ1, Γ2 =⇒ A⊗B, ∆1, ∆2

Fig. 3. Tensor fragment of linear logic

the judgment. The meta contextΨ, yet unused, holds meta-level assumptions,
which we will discuss in Section3. The form for the object typing judgment is
Ψ; Γ; ∆ . M : A, which states that under the meta assumptions inΨ, the intu-
itionistic assumptions inΓ and the linear assumptions in∆, the objectM has type
A. Figure2 defines the static semantics of LLF. Kinds and types must be linearly
closed, and thus the judgments that define their validity (Ψ; Γ . K : kind and
Ψ; Γ . A : K), given in Appendix??, are declared without a linear context.

Throughout the paper we use simultaneous substitutionsρ that are defined si-
multaneously on the intuitionistic and the linear variables. Out of notational con-
venience, we write idΓ;∆ for the identity substitution onΓ; ∆.

As an example, consider the representation of the tensor fragment of classical
linear logic depicted in Figure3. The rulescut and⊗R illustrate how resources
on either side of the sequent symbol are distributed as resources to either of the
two premisses. A derivation can only then be closed byax if the left and the right
context contain a single formulaA. Each inference rule is represented as a constant
in LLF as shown in Figure4. As usual, we omit the leadingΠ-quantifiers for
inferable types. LLF’s meta theory guarantees the existence ofβ-normal,η-long
canonical forms [VC02] used in order to establish the adequacy of this encoding.
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ax : negA−◦posA−◦#.

cut : (posC −◦#)−◦ (negC −◦#)−◦#.

tensorL : (negA−◦negB−◦#)−◦ (neg(A⊗B)−◦#).

tensorR: (posA−◦#)−◦ (posB−◦#)−◦ (pos(A⊗B)−◦#).

Fig. 4. Encoding of Figure3 in LLF

(Objects) M, N ::= ... | n[ρ] | πpm

(Modules) m ::= α | πmm

(Contexts) Γ, ∆ ::= ... | Γ, πpm : A | Γ, γ ∈ Φ

(Substitution) ρ ::= ... | ρ, M/πpm

Fig. 5. LLF extensions

3 The Meta LogicL+
ω

The meta logicL+
ω provides the syntactic and proof-theoretic means to express

properties about encodings in LLF and their respective proofs, should they exist.
Following the general philosophy underlying this and other meta logical frame-
works [Sch00,BCM00], the elegance and scalability of our approach emerges from
the clear distinction between the language of representation and the language for
reasoning. The meta logicL+

ω ’s noteworthy properties include that it is first-order,
i.e. only a universal and an existential quantifier are available, minimal, i.e. no
other propositional constants but truth can be defined, and non-linear, i.e.L+

ω is an
intuitionistic logic designed to reason about linearity.

We first present extensions to LLF that allow our meta logicL+
ω to express

properties about LLF objects in Section3.1. Next, we describe how the meta level
deals with LLF contexts, and how the interface there works. The necessary vo-
cabulary having been built, we then discuss the meta logic proper, starting with its
syntax and semantics, then moving to the proof theory. The running example will
be continued to illustrate the concepts in question.

3.1 Extensions to LLF

In a meta logic, we wish to reason abstractly about the existence and form of hypo-
thetical LLF objects. LLF must be extended to allow the inclusion of these objects
bound at the meta-level. In a closed meta level context, any LLF objects will be
standard, as described in the previous section. Figure5 gives an exact account of
these extensions, which are discussed in detail in the following paragraphs. All
of LLF’s fundamental properties, including conservative extension over LF, type
soundness, and the existence of canonical forms remain unchanged under these
extensions.
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Meta variables
LLF objects may refer to other hypothetical LLF objects whose existence is

postulated by the meta logic, usually in form of a universally quantified variable.
Thosemeta variables, denoted byn, are bound on the meta level and visible from
within LLF terms.

Since meta variables are bound outside of any LLF context, they are given an
explicit fixed context (of linear and intuitionistic variables). Consequently, each
occurrence of a meta variablen requires an explicit mediating substitutionρ that
casts an occurrence ofn into the appropriate ambient context. This combination of
meta variable and explicit substitution is written asn[ρ]. 3

Context variables
To control the flow of resources inside a meta-theoretic proof, the meta level

has to communicate to LLF how many resources are available, how many are to
be consumed, and which hypothetical objects are consuming which ones. Context
variablesγ that are declared as part of LLF contexts in Figure5 communicate this
information and stand for slices of LLF contexts (including the intuitionistic and
linear part). Within LLF, context variables are virtually invisible. For example,
they can neither be consumed, substituted into, nor can they occur inside LLF ob-
jects or types. In fact, the only places where they may occur are in the contexts
to other hypothetical objects, characterized by the previously described meta vari-
ables. Context variables are declared in the contextΨ that is part of the LLF typing
judgment described in Figure2.

Module variables
Meta variables and context variables form the basic interface between LLF and

the meta level. This would be sufficient if we only wanted to reason about closed
LLF terms. But the goal of the paper is significantly more ambitious than this, i.e.
to reason about all higher-order LLF encodings, including those that may very well
be open. The meta theoretic view of openness inevitably impacts the LLF level.
For reasons that have not been discussed so far (but will be in the next section),
the open parameters are grouped into modules, made visible to LLF in the form
of module projections(such asπp(α), πp(πm(α)), andπp(πm(πm(α)))) of module
variablesα. These projections behave like any other LLF variables, and are thus
subject to declaration in an LLF context and to instantiation by a substitution, as
described in Figure5.

3.2 Module contexts and worlds

We have thus far discussed the required extensions to LLF from the point of view
of LLF. For the remainder of this section, we switch our point of view to that of the

3 Our extension of LLF with meta variables is similar to a system developed for a different pur-
pose [PP03], from which we take the syntax for meta variable binders.
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(Module Kinds) k ::= sig | Πu :A. k

(Module Sigs) s ::= ε | ∃u :A. s | λu :A.s

(Worlds) Φ ::= s | Φ∗ | Φ1 + Φ2

(Module Contexts) χ ::= · | χ1, χ2 | γ∈Φ | α : s

(Meta Contexts) Ψ ::= · | Ψ, n :: (χ.A) | Ψ, γ∈(χ.Φ) | Ψ, α :: (χ . s)

Fig. 6. Module context syntax

bb·cc = ·

bbχ, χ′cc = bbχcc, bbχ′cc

bbγ∈Φcc = γ∈Φ

bbm : εcc = ·

bbm : ∃u :A. scc = πpm : A, bbπmm : [πpm/u]scc

Fig. 7. Flattening

b·cP
A = ·

bΓ, u : BcP
A =

 bΓcP
A, u : B if P (B, A)

bΓcP
A otherwise

bΓ, πpm : BcP
A =

 bΓcP
A, πpm : B if P (B, A)

bΓcP
A otherwise

bΓ, γ ∈ ΦcP
A = bΓcP

A, γ ∈ bΦcP
A

bεcP
A = ε

b∃u :B. scP
A = ∃u :B. bscP

A if P (B, A)

b∃u :B. scP
A = bscP

A if not P (B, A)

bλu : A.wcP
A = λu : A.bwcP

A

bΦ∗cP
A = (bΦcP

A)∗

bΦ1 + Φ2cP
A = bΦ1cP

A + bΦ2cP
A

Fig. 8. Filtering moduloP

meta level. In the full generality of higher-order encodings, inductive arguments
often require reasoning underλ-binders, which is tantamount to reasoning about
open objects. The argument often calls for more than one hypothesis that seem un-
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related at first sight. It is the simultaneous presence of these hypotheses that make
a base case go through, or justify the application of a previously proved lemma.

Thus, instead of dealing with individual parameters, the meta level deals with
collections of related LF parameters calledmodules. Modules are classified by
module signaturess. A module is either empty (classified by the signatureε) or a
pair, where the first element is an LLF parameter and the second element is another
module (classified by the signature∃u : A. s). The final possible classification,
λu : A.s, denotes a module of signatures parameterized by an LLF object of type
A. Module kindsk are used to keep track of whether a module is fully instantiated
(sig) or parameterized (Πu :A. k).

Modules themselves remain abstract, so no concrete module constructors are
needed. Instead, a module can consist of a variable (α), or the second element of
some other modulem (πmm), with them subscript indicating this is the module
subcomponent. The typing rules for modules are standard, as they are simply an
instance of dot notation [CL90].

The meta logic’s view of LLF (intuitionistic and linear) contextsΓ; ∆ is called
a module context, defined in Figure6 by the syntactic categoryχ. Informally, the
meta level does not distinguish between the intuitionistic and linear contexts, it
merely stipulates the existence of particular modulesα (of module signatures), or
slicesγ whose linear part is known to be consumed by a quantified LLF object
(expressed as a meta variable).

Module contextsχ must not be thought of as a collection of meta level bindings
of γ andα variables, but rather as an abstract description of LLF level bindings.
The actual meta level binding takes place in meta contextsΨ (Figure6), that we
have already used (however not defined) in Figure2. Meta variables, context vari-
ables, and module variables are declared inΨ, and each declaration is indexed by a
module context (denoted by the leadingχ B) describing its free variables.

The colorful collection ofα’s and γ’s fully describes a hypothetical pair of
valid LLF contexts. The precise relation between the two is discussed in the next
subsection. It is important to note, however, that the particular order of declarations
in χ is irrelevant and does not reflect the order or declarations withinΓ; ∆. For
example, the module contextγ, γ′ stands for an arbitrary valid interleaving of two
valid contextsΓ; ∆ andΓ′; ∆′.

The type of a module context is defined byworld Φ, that, intuitively speaking,
describes the shape of a context in the form of a regular expression built from
module signatures, repetition and alternation. Worlds have been extensively studied
in prior work by the second author [Sch01]. Module contexts may contain only
modules valid inΦ. We writeΨ; χ′ ` χ : Φ for the judgment that decides when
(χ′, χ) is a valid module context, andχ is in worldΦ. For space reasons it is defined
in Appendix??.
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3.3 Context conversion

Module contextsχ, while useful at the meta level, cannot directly be used by LLF.
For instance, the aggregation of parameters into modules complicates the splitting
of contexts required to type linear application (M ˆN ). Additionally, we want to
be able to relate the intuitionistic and linear LLF contexts, so we must derive them
both from a singleχ.

A module contextχ is converted to an LLF contextΓ in a two step process.
First,χ is flattenedinto an LLF contextbbχcc, as defined in Figure7. This process
simply breaks apart each modulem in χ into its individual parameters.

Flattening keeps all parameters, which leads to unwanted parameter duplication
if used to produce both theΓ and the∆ from a singleχ. Furthermore, in the case
of the linear context, we must cull extra variables that may occur inχ that simply
cannot occur in an LLF object of a certain type.

We solve both of these problems byfiltering. Filtering, given bybΓcP
A, elim-

inates from an LLF context any variables of typeB that do not match the binary
predicateP (B, A). It is defined in Figure8. Similarly, in the case of context vari-
ables, we apply filtering to the world annotationbΦcP

A and remove all references to
module projections that do not match the predicate, creating a narrower view ofγ.
Our notion of filtering is very general because we permit two seemingly unrelated
predicates to transformχ into the intuitionistic and linear context. We require that
the resultingΓ; ∆ always forms a valid LLF context.

A good choice for eachP is one based on the subordination relation [Vir99].
In LLF, all types must be linearly closed. Therefore for the linear context, we use
the predicateA ≺̂ B, which holds when objects of typeA can occur in objects of
typeB, but not at the type level. For the intuitionistic context, we use the predicate
A ≺: B, which holds if some object of typeA can occur in an object of typeB,
possibly at the type level. This pair of predicates makes as many things as possible
linear. If instead the predicate used for the intuitionistic context holds for all pairs
of LLF types and the predicate for the linear context holds for none,L+

ω reduces to
a meta logic of the logical framework LF [HHP93].

We write the composition of filtering with flattening asbbχccP
A. This composition

is used any time we are transitioning from the meta logic level to the logic level.

3.4 LLF typing rules revisited

The additional typing rules of our extension to LLF in Figure9 can now be ex-
plained in detail. The two bottom rules for the intuitionistic and linear use of mod-
ule parameters follow the axiom rule of LLF. The top rule in that figure is the
typing rule for meta variablen of typeA in contextχ declared inΨ. The judgment
Ψ; Γ′; ∆′ . ρ : Γ; ∆, defined in Appendix??, ensures that the substitutionρ will,
when applied to an object well-typed underΨ; Γ; ∆, produce an object well-typed
underΨ; Γ′; ∆′. The second premiss of the typing rule for meta variables therefore
checks that the substitution associated with the meta variable will correctly map an
object substituted forn into the ambient context.
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Ψ(n) = (χ . A) Ψ; Γ; ∆ . ρ : bbχcc≺:
A ; bbχcc≺̂A

Ψ; Γ; ∆ . n[ρ] : [ρ]A

Ψ; Γ; · . πpm : Γ(πpm) Ψ; Γ; πpm : A . πpm : A

Fig. 9. Typing rules of extended LLF.

(Formulas) F ::= ∀n :: (χ.A). F | ∀γ∈(χ.Φ). F | ∃n :: (χ.A). F | >>

(Programs) P ::= Λn :: (χ.A). P | Λγ∈(χ.Φ). P | P M | P χ
| 〈〈χ.M ; P 〉〉 | 〈〈〉〉 | x | case Ω | µ x ∈ F. P
| ν α :: (χ . s). P

(Cases) Ω ::= · | Ω, (Ψ`σ 7→ P )

(Meta Contexts) Ψ ::= . . . | Ψ, x∈F

(Substitutions) σ ::= · | σ, M/n | σ, χ/γ | σ, P/x | σ, α/α

Fig. 10.L+
ω syntax

3.5 Formulas and their semantics

L+
ω itself is a first-order meta logic custom designed for LLF. Similar toM+

ω [Sch00]
its syntactic categories consist of formulas, programs, and cases, given in Figure10.

The universal quantifiers ofL+
ω range over meta-variablesn and context vari-

ablesγ, whereχ is the aforementioned module context that describes all free vari-
ables of the term in question. There are no quantifiers for module variablesα. We
do not include existential quantification over module contexts because it does not
seem to serve any useful purpose, as opposed to universal quantification, which is
required for induction.>> stands for the only propositional constant truth express-
ible inL+

ω .
The semantic entailment forL+

ω is written in terms of|=, a relation that is
defined as follows (in terms of the flattening and filtering operationbbχccP

A described
in Section3.3):

|= ∀γ∈(χ.Φ). F iff |= [χ′/γ]F for all · ; χ ` χ′ : Φ

|= ∀n :: (χ.A). F iff |= [M/x]F for all ·; bbχcc≺:
A ; bbχcc≺̂A . M : A

|= ∃n :: (χ.A). F iff |= [M/x]F for some·; bbχcc≺:
A ; bbχcc≺̂A . M : A

|= >>

The existential is the dual to the universal quantifier, and true is always valid.
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3.6 Programs

The semantics ofL+
ω portrays its intended use as a meta logic to reason about LLF

encodings. Any proof within this meta logic should convince a critical observer of
the validity of the statement, lemma, or theorem. It is almost certainly possible to
give a categorical or model theoretic explanation of proof. We have instead chosen
to view proofs astotal programsvia a realizability interpretation. A proof hence
acts as a transformation in between LLF encodings. Its input/output behavior is
fixed by the formula, its type.

Figure10 describes the syntactic category forprograms. Λn :: (χ.A). P and
Λγ∈(χ.Φ). P are the two binding constructs ofL+

ω for LLF objectsn and module
contextsγ, respectively. Symmetrically, two forms of applicationP M andP χ
serve as the respective elimination forms.〈〈χ.M ; P 〉〉 is a proof term for an exis-
tential formula, pairing an LLF term with a program. Next, the Figure shows the
familiar unit 〈〈〉〉 and program variablesx and three more constructs that we will
explain next: the case construct with casesΩ, the recursion operatorµ, and finally
the new operatorν.

Case and recursion are necessary to express inductive proofs as programs. The
formulation of case (case Ω), the elimination form for LLF objects, looks peculiar,
but is in fact quite natural. There is no explicit case subject, because implicitly, case
matches against the ambient context in which a “case” may occur. This choice will
prove useful in the meta theoretic investigation in Section5, because dependencies
render matching a non-local operation. Each individual case inΩ, (Ψ ` σ 7→ P ),
consists of a substitutionσ that serves as the pattern for that particular case. Each
free variable that occurs in a pattern must be declared inΨ and the bodyP may
not refer to any other variables other than the ones declared inΨ. The fixed point
operatorµ x ∈ F. P provides the most general form of the induction hypotheses.

Unbounded recursion and case with an emptyΩ illustrate, that without further
side condition,L+

ω programs may be partial and hence non-total. The following
three side conditions tocase Ω andµ x ∈ F. P , respectively, remedy that problem
and enforce totality.

Strictness. Eachx ∈ Ψ must have at least one occurrence in the pattern that leads
to an unambiguous solution of the higher-order matching algorithm to be used.

Coverage. For all patternsσ within Ω, and or all ambient environmentsη, there
exists a new ambient environmentη′, such that[η′]σ = η.

Termination. For all argumentsM1 . . . Mn to P it holds that for allx that occur in
P and argumentsN1 . . . Nn to x, it holds that(N1 . . . Nn) < (M1 . . . Mn) with
respect to some well-founded order<.

Finally, ν α :: (χ . s). P introduces a new module variable during runtime.
Often, for proofs about higher-order encodings the corresponding program has to
recurse under an LLFλ binder, be it linear or intuitionistic. Afterwards modules
can always be discharged via the mediating substitutions attached to meta variables.
There are no other elimination forms for modules.
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Ψ; · ` χ : Φ Ψ; bbχcc≺:
A . A : type Ψ, n :: (χ.A) ` P ∈ F

Ψ ` Λn :: (χ.A). P ∈ ∀n :: (χ.A). F

Ψ ` P ∈ ∀n :: (χ.A). F Ψ; bbχcc≺:
A ; bbχcc≺̂A . M : A

Ψ ` P M ∈ [idΨ, M/n]F

Ψ; · ` χ : Φ Ψ, γ ∈ (χ . Φ) ` P ∈ F

Ψ ` Λγ∈(χ.Φ). P ∈ ∀γ∈(χ.Φ). F

Ψ ` P ∈ ∀γ∈(χ.Φ). F Ψ; χ ` χ′ : Φ

Ψ ` P χ′ ∈ [idΨ, χ′/γ]F

Ψ; · ` χ : Φ Ψ ` P ∈ [idΨ, M/n]F Ψ; bbχcc≺:
A ; bbχcc≺̂A . M : A

Ψ ` 〈〈χ.M ; P 〉〉 ∈ ∃n :: (χ.A). F

Ψ ` 〈〈〉〉 ∈ >>
Ψ ` Ω ∈ F

Ψ ` case Ω ∈ F Ψ ` x ∈ Ψ(x)

Ψ, x ∈ F ` P ∈ F

Ψ ` µ x ∈ F. P ∈ F
(∗∗)

Ψ; · ` χ : Φ Ψ; bbχcc . s : sig Ψ, α :: (χ . s) ` P ∈ F Ψ ` F ok

Ψ ` ν α :: (χ . s). P ∈ F

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ψ ` · ∈ F

Ψ ` Ω ∈ F Ψ′ . σ : Ψ Ψ′ ` P ∈ [σ]F

Ψ ` Ω, (Ψ′`σ 7→ P ) ∈ F
(∗)

Fig. 11. Derivability inL+
ω

3.7 Proof theory forL+
ω

L+
ω ’s design is based on the realizability interpretation of total programs as proof.

The type system for programs that is described in this section plays the role of a
meta logic, whose soundness is shown in Section5. Our approach to developing
the meta logic follows closely [Sch00] and differs significantly from [MT03], who
show the soundness of their design by a cut-elimination argument.

L+
ω ’s type theory is defined in Figure11 in terms of two mutually dependent

typing judgments:Ψ ` P ∈ F for programs andΨ ` Ω ∈ F for cases, using three
auxiliary judgments. Two of those judgmentsΨ; Γ B s : sig andΨ ` F : ok en-
sure the respective validity of module signatures and formulas but do not contribute
much to the understanding of the rules. Their definition is given in Appendix??.
The other judgmentΨ′ B σ : Ψ ensures the validity of substitutions, that play the
role of patterns. Patterns are important for the understandingL+

ω and given in Fig-
ure12. The first rule exhibits the need for flattening and filtering when instantiating
meta variables.

All of the rules in Figure11 lend themselves to two complementary interpre-
tations. Type-theoretically speaking, the first four rules account for well-typed ab-

12



McCreight, Schürmann

Ψ′ . σ : Ψ Ψ′; bb[σ]χcc≺:
[σ]A; bb[σ]χcc≺̂[σ]A . M : [σ]A

Ψ′ . (σ, M/n) : (Ψ, n :: (χ.A))

Ψ . · : ·
Ψ′ . σ : Ψ Ψ′; [σ]χ ` χ′ : Φ

Ψ′ . (σ, χ′/γ) : (Ψ, γ ∈ (χ . Φ))

Ψ′ . σ : Ψ Ψ′ ` P ∈ [σ]F

Ψ′ . (σ, P/x) : Ψ, x ∈ F
Ψ′ . σ : Ψ α ∈ Ψ′

Ψ′ . (σ, α/α) : Ψ, α

Fig. 12. Typing rules for patterns

stractions and applications, and logically speaking, they are merely introduction
and elimination rules for the universal quantifiers, albeit ones using the flattening
and filtering operationbbχccP

A described in Section3.3. The fifth rule is the typing
rule for pairs, and simultaneously an introduction rule for the existential quantifier.
The corresponding elimination rule is subsumed by the case rules defined in below
the dotted line [Sch01], and thus need not be considered separately. The typing rule
for unit is standard.Ω, the argument to case, is a list of all of the cases (which must
all have the same type). The type of a variablex can be inferred from the meta con-
text, and recursion is standard. The rule forν extendsΨ by a new module constant.
The typing rule ensures thatα does not escape during evaluation by requiring that
the type of the body not containα.

4 Example

We have considered a few examples from programming language and logic de-
sign to exercise and experiment with the meta logicL+

ω for LLF. Our case studies
include stateful computations (we managed to represent all meta theoretic proofs
about Mini-ML with references in the original LLF paper [CP96]), linear lambda
calculi and of linear logic itself. We found that the proof of the admissibility of
cut for the tensor fragment of linear logic (see Figure3), illustratesL+

ω ’s unique
characteristics the best. Of course, there is a certain risk of confusing the reader
with two conceptually different yet linear logics.

Theorem 4.1 (Admissibility of cut) If P :: Γ1 =⇒ C, ∆1 andQ :: Γ2, C =⇒ ∆2

thenΓ1, Γ2 =⇒ ∆1, ∆2.

Proof. By lexicographic structural induction on the subformulaA and simultane-
ously onP andQ [Pfe94]. We show only the essential case between⊗R and⊗L.
The remaining cases can be found in Appendix??.

P :: Γ′
1, Γ

′′
1 =⇒ A⊗B, ∆′

1, ∆
′′
1 (by assumption)

P1 :: Γ′
1 =⇒ A, ∆′

1 (by assumption)
P2 :: Γ′′

1 =⇒ B, ∆′′
1 (by assumption)

13
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Q :: Γ2, A⊗B =⇒ ∆2 (by assumption)
Q1 :: Γ2, A,B =⇒ ∆2 (by assumption)
R1 :: Γ′

1, Γ2, B =⇒ ∆′
1, ∆2 (by ind. hyp. onP1,Q1)

R :: Γ′
1, Γ

′′
1, Γ2 =⇒ ∆′

1, ∆
′′
1, ∆2 (by ind. hyp. onP2,R1)

2

Theorem4.1corresponds to the following formula inL+
ω .

∀γ1 ∈ (· . Φ).∀γ2 ∈ (γ1 . Φ).∀C : (· . o).(1)
∀P : (γ1 . posC → #).∀Q : (γ2 . negC → #).

∃R : (γ1, γ2 . #).>
where

Φ = ((λA : o.∃n : negA. ε)(2)
+(λA : o.∃p : posA. ε))∗.

The first two quantifiers in (1) range over module contextsγ1 (valid in the empty
context·) andγ2 (valid in γ1). γ1 represents the list of hypotheses of bothΓ1 and
∆1, while γ2 representsΓ2 and∆2. Φ is the world of these contexts, ensuring that
γ1 andγ2 only contain assumptions of the form “posA” and “negA”. For example,

p1 : posA1, p2 : posA2, n3 : negA3 ∈ Φ.

In (1), C ranges over closed formulas,P over sequent derivations inγ1 with for-
mula C on the left, andQ over sequent derivations inγ2 with formula C on the
right. R stands for the result derivation, necessarily valid in the union ofγ1 andγ2.

The proof Formula (1), on the other hand is a total program that maps contexts
∆1, ∆2, and LLF objectsC, P andQ such that·; · ` C : o, ·; ∆1 ` P : posC → #,
and·; ∆2 ` Q : negC → # into an LLF objectR such that·; ∆1, ∆2 ` R : #. In
the interest of clarity, the surface language used in Figure13 that depicts only the
essential case of the proof above, making use of a significant amount of syntactic
sugar. The remaining cases of “ca” are given in the Appendix??.

fun defines the recursive program “ca” by cases. “ca” expects five arguments,
including two contexts, all in the form of patterns.Γ′

1, Γ
′′
1, Γ2, A,B, P1, P2 andQ2

occur free in the pattern and in the body of that case. Thusfun is a shorthand for
a leadingµ, followed by severalΛ binders and a case expression. For uniformity
reasons, we writenew. . .in . . .end for ν α :: (χ . s). P . And finally, thelet . . .in
. . .end is the standard local binding construct that can be directly expressed using
L+

ω programs by combining nested program application with implicit case analysis.
Figure 13 illustrates the novel and distinct features ofL+

ω including pattern-
matching against linear patterns, hypothetical reasoning, and context splitting. We
describe the program in greater detail in the rest of this section, in the context of an
analysis of ca’s properties regarding strictness, coverage, and termination.

Strictness.
Upon application, matching will always instantiate all free variables in the pat-

tern of “ca”. The claim follows directly forΓ2, A, B, P1, P2, andQ1, which leaves

14
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fun ca(Γ′
1, Γ

′′
1) Γ2 (A⊗B)

(λ̂p :pos(A⊗B). tensorR̂ (Γ′
1 . P1)ˆ(Γ′′

1 . P2)ˆp)

(λ̂n :neg(A⊗B). tensorL̂

(Γ2 . (λ̂n1 :negA. λ̂n2 :negB. Q1ˆn1ˆn2))ˆn) =

newα :: (Γ′
1, Γ2 . ∃n : negB. ε) in

let

val 〈R1, 〈〉〉 = ca Γ′
1 (Γ2, α : ∃n : negB. ε) A P1

(λ̂n1 :negA. Q1ˆn1ˆπp(α)])

val 〈R, 〈〉〉 = ca Γ′′
1 (Γ′

1, Γ2) B P2 (λ̂n :negB. R1[n/πp(α)])

in

〈R, 〈〉〉

end

end

Fig. 13. Admissibility of cut, essential case

Γ′
1 and Γ′′

1 to be explained. InL+
ω , every object carries its own context, which

means that any instantiation ofP1 andP2 decides the instantiations forΓ′
1 andΓ′′

1,
respective, rendering matching a deterministic operation.

Coverage.
The first two arguments to “ca” are the context patterns(γ′

1, γ
′′
1 ) andγ2. How

the context is split intoγ′
1 andγ′′

1 is determined by how the two contexts are used.
This is fixed by ascribing context information to the two variablesP1 andP2 bound
in the fourth argument to “ca”:(λ̂p :pos(A⊗B). tensorR̂ (γ′

1 .P1)ˆ(γ′′
1 .P2)ˆp).

Context and type ascription are features of the syntax we have chosen to present
proofs inL+

ω in, with counterparts in the formal development ofL+
ω in Section3.

The challenge is to verify that “ca” covers all cases. Canonical forms are pat-
terns and in the interest of completeness, two additional cases (described in Ap-
pendix??) related to “tensorR” must be considered, depending on ifp is consumed
in P1 or P2.

Termination.
“ca” must be total in order to be considered a proof. Therefore any evaluation

of “ca”, independent of what arguments are applied, must terminate. Consider the
body of “ca” in Figure13. The two recursive calls to “ca” correspond to appeals
to the induction hypothesis in the proof of Theorem4.1, yielding result objectsR1

andR, respectively.
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The first instruction is thenew instruction that introduces a new hypotheses of
type negB. Recall from the proof of Theorem4.1thatR1 is the result of the induc-
tion hypothesis applied toP1 andQ1, which is parametric inB. Since hypothetical
arguments are encoded via higher-order functions, “ca” can only execute a recur-
sive call after traversing the binder(λ̂n2 :negB). In general one can only do this
by applying it to a new parametern2 : negB, in form of the module declaration

α :: (γ′
1, γ2 . ∃n : negB. ε).(3)

α is a new variable, that ranges over groups of new parameters, and is similar tox
in [Sch01]. Intuitively, one can think of a module as a temporary list of new con-
stant symbols that act as placeholders within the body ofnew. Theγ′

1, γ2 resolve
all ambiguities related to the naming ofα. We writeπp to project the head of the
list, andπm for the tail.πp(α), for example, is a new name for the newly introduced
parameter, and should be used instead ofn2.

The first recursive call cutsP1 and Q1 with cut-formulaA. Eventually, the
computation will finish and the resulting derivationR1 will use all resources of
the setγ′

1, γ2, α : ∃n : negB. ε, which corresponds directly to the informal proof.
Recall thatγ′

1 represents assumption listsΓ′
1 and∆′

1, γ2 the assumption listsΓ2 and
∆2, andα to the additional hypothesisB that occurs to the left of the sequence
arrow.

The other recursive call for cuttingP2 andR1 is similar to the first except that
this time the cut formula isB. R1 is parametric inπp(α), which is subsequently
replaced by a linear variablen beforethe second recursive call is invoked. Replace-
ments of this kind are supported inL+

ω , expressed by substitutingn for πp(α). The
resultingR is valid inγ′

1, γ
′′
1 , γ2, and does therefore not depend onα. Hence, it can

safely escape the scope ofnew.
“ca” terminates because the arguments that correspond to derivationsP andQ

are smaller with respect to a well-founded lexicographical order on the cut formula
and simultaneously onP andQ. In this work, we consider only lexicographic and
simultaneous extensions of the subterm ordering. In particular the first recursive
call terminates becauseA andB are subterms ofA⊗B.

5 Meta Theory ofL+
ω

The totality of every program inL+
ω is a sufficient and necessary condition for the

soundness ofL+
ω . The argument relies on a small-step operational semantics given

in Appendix??. We define a evaluation meta contextE to be a meta contextΨ
binding only module variablesα. For the purposes of the operational semantics,
we extend the set of programs with a closure{σ; P}, in which σ is a substitution
that mapsP from whatever meta context it is well-typed under into the outer meta
context. The evaluation judgmentE ` P → P ′ relates a programP to the outcome
of a single evaluation stepP ′. For a sequence of zero or more evaluation steps, we
write E ` P →∗ P ′. The set of values isV .

V ::= Λn :: (χ.A). P | Λγ∈(χ.Φ). P | 〈〈χ.M ; V 〉〉 | 〈〈〉〉
16
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For functions, applications, existentials and fixed points, evaluation proceeds
in the standard fashion. The evaluation of a closure{σ; P} is essentially carrying
out a single step of lazily applying the substitutionσ to P . This is done because
eager substitution is not sound in the presence of case. Evaluation of(case Ω, (Ψ`
σ′ 7→ P )) in a closure proceeds by attempting to generate a substitutionσ′′ that,
when composed withσ′, is equivalent to theσ of the closure. If one is found, then
evaluation ofP continues in a closure underσ′′. The evaluation ofν α :: (χ . s). P
proceeds by evaluatingP until it becomes a value. When it finally becomes a value,
theν binding is pushed into any non-values (as occur in a function) that may exist in
the value. In addition to the usual weakening and exchange lemmas, the following
properties hold:

Lemma 5.1 (LLF module variable strengthening) If Ψ; · ` χ : Φ and Ψ, α ::
(χ′ . s); bbχcc≺:

A ; bbχcc≺̂A . M : A thenΨ; bbχcc≺:
A ; bbχcc≺̂A . M : A.

Proof. If χ does not containα, then the LLF context produced by flattening and
filtering χ cannot contain any projections fromα, and thus neither canM . 2 2

Theorem 5.2 (Type preservation)If E ` P ∈ F and E ` P → P ′ thenE `
P ′ ∈ F .

Proof. By induction on the structure of the evaluation relation. The cases forν rely
on the fact that the type of the body of theν must not use the bound module variable,
and on Lemma5.1. This allows theν to be pushed inward while preserving the
type. The substitution cases rely on the soundness of the substitution ofσ into χ,
A, M andx. 2 2

Theorem 5.3 (Progress)If E ` P ∈ F then eitherP is a value orE ` P → P ′.

Proof. By induction on the structure of the typing derivation. The progress proof
uses the fact thatE binds only module variables, and on the usual canonical forms
lemma. It also relies on the coverage condition holding, which ensures that the
program(case ·) is never evaluated. 2 2

Theorem 5.4 (Termination) If E ` P ∈ F thenE ` P →∗ V .

Proof. By induction on the typing derivation, keeping track of the instantiations of
the values bound by reductions ofµ, using the termination condition. 2 2

Theorem 5.5 (Soundness)If · ` P ∈ F then|= F .

Proof. By induction onF , using Theorems5.2, 5.3and5.4. 2 2

6 Conclusion

We have described the meta logicL+
ω for the linear logical framework LLF. LLF

is useful for the representation of formal systems that rely on a notion of deletable
resource. Surprisingly, many such systems can be represented in LLF, among them
programming languages with effects, state transition systems, such as the infamous
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blocks world often used in AI, and of course resource oriented logics such as linear
logic itself.

The meta logicL+
ω is custom-made for LLF, which means that it incorporates

knowledge about linear assumptions, how they are consumed, split in the multi-
plicative, and duplicated in the additive fragment. It enables the formalization of
meta theoretic properties, the mechanization of reasoning about LLF encodings,
and leads to relatively short proof terms. The soundness ofL+

ω follows from a re-
alizability argument that shows that every function inL+

ω is total, i.e. it terminates
and covers all cases.

In future work, we plan to implement a proof checker and an automated theorem
prover forL+

ω , and consider extensions to the ordered logical framework and the
concurrent logical framework.
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