
LFM 2004 Preliminary Version

Redundancy Elimination for LF

Jason Reed 1

Carnegie Mellon University
Pittsburgh, Pennsylvania

jcreed@cs.cmu.edu

Abstract

We present a type system extending the dependent type theory LF, whose terms
are more amenable to compact representation. This is achieved by carefully omit-
ting certain subterms which are redundant in the sense that they can be recovered
from the types of other subterms. This system is capable of omitting more re-
dundant information than previous work in the same vein, because of its uniform
treatment of higher-order and first-order terms. Moreover the ‘recipe’ for recon-
struction of omitted information is encoded directly into annotations on the types
in a signature. This brings to light connections between bidirectional (synthesis
vs. checking) typing algorithms of the object language on the one hand, and the
bidirectional flow of information in the ambient encoding language. The resulting
system is a compromise seeking to retain both the effectiveness of full unification-
based term reconstruction such as is found in implementation practice, and the
logical simplicity of pure LF.

Key words: Proof Compression, Dependent Type Theory,
Bidirectional Type Checking

1 Introduction

The use of logical frameworks in domains such as proof-carrying code [Nec97]
makes the efficiency of proof representation and manipulation a nontrivial
issue. Proofs of safety for realistic programs can be, if näıvely represented,
unfeasibly large. Necula and Lee [NL98] developed one technique which ad-
dressed this issue. They give a way of representing proof terms in the logical
framework LF [HHP93] in a more efficient way, by rewriting them with whole
subtrees of the proofs erased. They then describe an algorithm which recov-
ers these omitted parts, using typing information found in other parts of the
proof.

1 This work was supported by NSF Grant CCR 0306313 “Efficient Logical Frameworks”.
This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

Their experimental results are good: proofs so represented tend to have
size roughly O(

√
n) of the originals, with similar improvements in checking

time.

To get a flavor of how omission works, consider the following example of
encoding a natural deduction proof theory in LF . We have a signature

o : type pf : o → type

⊃: o → o → o ∧ : o → o → o

where o is declared as the type of propositions, pf is the type family of proofs,
indexed by proposition, and ⊃ and ∧ are the familiar logical connectives. Take
one of the two natural deduction elimination rules for ∧:

A ∧B
∧E1

A

In LF it becomes

ande1 : Πa:o.Πb:o.pf (∧ a b) → pf a

Consider a use of this proof rule, ande1 a b d. Here d must be a derivation of a∧
b, and this larger proof ande1 a b d is a proof of a. This is excessively verbose,
in a sense: knowing what type d is supposed to have (that is, pf(∧ a b))
reveals what a and b must be. We would like to just write ande1 d. It is not
at all obvious, however, that the object d itself uniquely determines its type.
This is a central issue, and we return to it below.

Another sort of apparent redundancy appears if we examine the introduc-
tion rule for implication. The natural deduction rule is

A···
B

⊃I
A ⊃ B

The hypothetical derivation of B under the hypothesis A is represented by
higher-order abstract syntax [PE98] as a function from pf a to pf b, and the
rule is encoded as

impi : Πa:o.Πb:o.(pf a → pf b) → pf (⊃ a b)

Here we may notice that if we have a term impi a b f , and if we know it, as a
whole, is being checked against a certain type, pf (⊃ a b) then we can read
off what a and b have been. If we knew that the type is going to be provided
‘by the environment’ somehow, then we can simply write impi f instead.

It is this sort of omission of arguments that LFi obtains its savings from.
However, the technique uses a notion of ‘reconstruction recipes’ external to the

type system to control which arguments are omitted. This work aims to put
the basic idea of Necula and Lee on firmer type-theoretical footing, explaining
the mechanism of omission in the types themselves. We describe an extension
of the LF language, called LF∗, such that the same sort of arguments to type
families and constants can be omitted. Our priorities are, in order, (1) making
sure that the extension is conservative, (2) making the theory logically well-
motivated, (3) making sure that an eventual implementation is simple and
easy to trust, and only finally (4) maximizing the number of subterms that
can be omitted omitted.

It should be noted that this general idea of ‘implicit’ syntax is not new: It
can be found in the earlier work of Hagiya and Toda [HT94] with LEGO, and
Miquel [Miq01] and Luther [Lut01] with the Calculus of Constructions.

However, some approaches (such as [Miq01]) do not treat implicit terms
as anything more than a user-interface convenience. Though the front-end
reconstructs arguments omitted by the user, and erases them once again when
terms are printed, the core of the implementation works with fully explicit
terms. The meaning of the implicit calculus is in any event defined in terms
of the explicit calculus: an implicit term is well-typed if it can be elaborated
uniquely into an explicit term. Both [Lut01] and [HT94] agree that it seems
“difficult to directly give a foundation to the implicit calculus.” That is exactly
the aim of this work.

The remainder of the paper is structured as follows. We first present the
type theory of LF∗, followed by a description of a decision procedure for the
judgments therein. The proof of correctness of this algorithm is sketched. We
give a description of a translation from LF to LF∗ and argue that it preserves
typing and is bijective on terms, so that it witnesses the equivalence of the
new language and the old.

2 Type Theory

The two critical questions left unanswered in the introductory example are
when does an object uniquely determine its type? and when do we already
know, from the surrounding context, what type an object must have? These
are answered by organizing the language and type-checking algorithms of a
system so as to support bidirectional type-checking.

The terms are divided into normal terms, which can be type-checked if a
type is provided as input, atomic terms, which can be type-checked in such
a way that uniquely determines (one says it synthesizes) a type as output if
type-checking succeeds. Ordinarily in λ-calculi, we know that functions are
normal, and application of a constant or variable to a list (or spine) S of
arguments is atomic. That is, our grammar of terms looks something like

terms M ::= N | R
normal N ::= λx.M

atomic R ::= x · S | c · S
spines S ::= () | (M ; S)

Our reasoning about the example, however, suggests that we may want
some constants c — such as impi from the example — to require that c · S
receive a type as input before type-checking proceeds, so that some omitted
arguments in S can be recovered. We divide, therefore, the constants into
two halves, the synthesizable constants c+ and the checkable constants c−.
Therefore we write ande1+ instead of ande1, and impi− instead of impi, for
the latter will depend on the ‘inherited’ type information for reconstruction,
where the former does not. In general a spine headed by a c− constant is a
normal term, rather than atomic.

Now we have a further problem, however. The fate of constants such
as ande1 is in doubt, because they require certain of their arguments to be
synthesizing. What if the proof we have in mind of A ∧ B uses impi− as its
last step? There are two conflicting requirements: ande1+ wants to get type
information from impi− to proceed with reconstruction, and vice versa.

We fill this gap by allowing type ascriptions to appear inside spines, so
that when an argument does not provide its type, and the constant which it is
an argument of requires it, the type can be simply written down in the term.
We make a production rule for spine elements

E ::= M | M+ | ∗

which says that an argument may either be an ordinary term, a term which
is adequate when a synthesizing term is required, (see immediately below) or
else a placeholder for an omitted argument. Spines are then given by

S ::= () | (E; S)

Terms are now
M ::= N | R

N ::= λx.M | c− · S
R ::= x · S | c+ · S

and the M+ used above has the production

M+ ::= (N : A) | (R :)

The new syntax (R :) here seems peculiar: it would seem more natural to
put simply R. For an atomic term is adequate when a synthesizing term is
required, and so is a normal term with a type ascription. However, when we
define substitution, it is necessary to know syntactically when we come across
an atomic argument in a spine, whether it is in a position that actually requires
a synthesizing term or not. The (R :) signals that if substitution produces a
normal term, then a type ascription must be introduced.

Now we turn to the language of types in LF∗. They are given by the
grammar

basic types A, B ::= a · S | Π−x:A.B

general types Z ::= a · S | Πρx:A.Z

omission modes µ ::= s | i
polarities σ ::= + | −

Π-annotations ρ ::= σ | [µ]

Expanding out the grammar, there are four dependent function types, each
of which determines how its argument functions with regard to omission and
reconstruction. The Π− functions are just the ordinary dependent functions
from LF . They receive a − superscript to make them stand in contrast with
Π+, which require their argument to be synthesizing. When there are Π+

arguments, earlier arguments may be omitted via making their functional de-
pendency Π[s], which marks a function whose argument is omitted by synthesis.
Finally, Π[i] indicates a function whose argument is omitted by inheriting it
from the result type the function application is checked against. In this lan-
guage, the types of the proof rules in the example are (writing A → B for
Π−x:A.B when x doesn’t appear in B)

ande1 : Π[s]a:o.Π[s]b:o.Π+pf (∧ a b).pf a

impi : Π[i]a:o.Π[i]b:o.(pf a → pf b) → pf (⊃ a b)

Note that there is a distinction between the A, B are ‘basic’ types, which
variables in a context may have, and Z which are the more general types that
c− constants can have. It would be more felicitously uniform if we could have
simply one notion of type which constants and variables shared, but so far
we have not been able to overcome the technical difficulties that arise when
function variables are allowed to omit some of their arguments.

We elide for space reasons the grammar for kinds, and often refrain from
mentioning the cases for kinds in the results below. Extending the definitions
and results to that level is easy and uninteresting. Sometimes it is useful to
write W, V as a ‘wildcard’ standing for a term or type or kind, for a briefer
treatment of judgments and statements that are relevant for all three levels.

2.1 Substitutions

We elect a style of presentation which follows that of the concurrent logical
framework CLF [WCPW03], in that we keep all terms in canonical form,
that is, β-normal η-long form. This saves us from the complexity of dealing
directly with βη-convertibility and the ensuing complex logical relations proofs
of decidability of equality (for an example, see [HP01]) This complexity doesn’t
wholly disappear, though it reappears in a more tractable form: it is delegated
to the definition of substitution. Substitution of a normal term in for a variable
may create a redex, and the definition of substitution must carry out the

reduction to ensure that the result is still canonical. To show that this process
terminates we must pay attention to the decrease in the size of types of redices,
logically parallel to the induction in structural cut elimination [Pfe00]. For
this reason, CLF indexes the substitution operators with the type at which
they operate. In fact, to show just termination of the substitution algorithm,
only the skeleton of the type is required, but for our purposes, we need the
full type for an independent reason.

Namely, it is possible that a variable-headed term, say, x · () appears in
a spine in a position which needs to be synthesizing. As the matter stands,
this is perfectly acceptable, for variables applied to spines are synthesizing.
However, we may substitute a term for x, say c− · (), that produces a result
which no longer synthesizes. Therefore, before we set out on the substitution,
we must specify what type the substituted object has, so that we can create
a type ascription to ensure that the result synthesizes.

We define, therefore, partial operations [M/x]AM ′, [M/x]AA′, [M/x]AS,
substitution of M for x in M ′, A′, S, respectively, at the type A. Since sub-
stituting for a variable in a synthesizing term may require wrapping it in a
type, we have have a σ-indexed partial operations [M/x]Aσ R. When σ is plus
it outputs an M+, and when it’s −, an M . The operation [M ·S]Aσ resolves the
redex M · S, for M at type A, and similarly produces an M+ or M according
to σ.

To see that this definition is well-founded, one can analyze the simple type
of the type in the superscript, that is, the result of erasing all dependencies
and changing every Π to a mere →.

The term subj(M+) is defined by subj(R :) = R and subj(N : A) = N .
We write [M+/x]A to mean [subj(M+)/x]A.

[M · ()]a·S− = M

[R · ()]a·S+ = (R :)

[N · ()]a·S+ = (N : a · S)

[λx.M · (M ′; S)]Π
−x:A.B

σ = [[M ′/x]AM · S][M/x]AB
σ

[M/x]Aσ x · S = [M · [M/x]AS]Aσ

[M/x]Aσ y · S = y · [M/x]AS

[M/x]Aσ c+ · S = c+ · [M/x]AS

[M/x]Ac− · S = c− · [M/x]AS

[M/x]Aλy.M = λy.[M/x]AM

[M/x]AR = [M/x]A−R

[M/x]Atype = type

[M/x]Aa · S = a · [M/x]AS

[M/x]A(Πρy:B.Z) = Πρy:[M/x]AB.[M/x]AZ

[M/x]A() = ()

[M/x]A(E; S) = ([M/x]AE; [M/x]AS)

[M/x]A(R :) = [M/x]A+R

[M/x]A(N : B) = ([M/x]AN : [M/x]AB)

[M/x]A∗ = ∗

2.2 Strictness

We have still so far neglected to pin down formally what it means for, say,
one argument to have a sufficiently good occurrence in another argument to
allow the former to be omitted. We can see that clearly a has an occurrence
in pf (∧ a b) in such a way that we can ‘read it off,’ but the general higher-
order case can be more complicated. The variable simply appearing in the
syntax tree of the type is not enough, for the process of substituting in other
arguments may cause β-reductions which make that appearance vanish. We
therefore need to define strict occurrences, so that an argument which strictly
occurs in the type of a synthesizing argument, or in the result type of a c−

constant, may be safely omitted.

The definition of strict occurrences that follows closely follows the def-
inition of Pfenning and Schürmann [PS98] used to describe the theory of
notational definitions. The notion of pattern spine at the heart of it is origi-
nally due to Miller [Mil91]. The guiding idea is that a strict position cannot
be eliminated by other substitutions, and that, as a result, the operation of
substituting [M/x]N is injective in the argument M when x is strict in N .
This injectivity means that we can uniquely recover M from [M/x]N . That
is, the important consequence is that the corresponding matching problem is
decidable and has a unique closed solution.

A key limitation of the way strictness is defined here, from the standpoint
that more strict occurrences means more opportunities to omit redundant
information, is that x cannot generally have a strict occurrence in (∗, S), even
if it does have a strict occurrence in S. This is because we actually need more
than just the term being uniquely determined when it is substituted for a
strictly occurring variable: for technical reasons in the unification algorithm,
we need its type to be uniquely determined as well.

The strictness judgments are Γ s x ∈ Z, (x has a strict occurrence in
some argument of the type Z) Γ i x ∈ Z, (x has a strict occurrence in the
output of the type Z) Γ; ∆ x ∈ W , (x has a strict occurrence in W in the
presence of local bound variables ∆) and ∆ ` S pat. (S is a pattern spine,
that is, a sequence of distinct bound variables)

2.2.1 Top-level

Γ; · x ∈ S

Γ i x ∈ a · S

Γ; · x ∈ A

Γ s x ∈ Π+y:A.B

Γ, y : A µ x ∈ B

Γ µ x ∈ Πρy:A.B

2.2.2 Types
Γ; ∆ x ∈ S

Γ; ∆ x ∈ a · S

Γ; ∆, y x ∈ B

Γ; ∆ x ∈ Πρy:A.B

Γ; ∆ x ∈ A

Γ; ∆ x ∈ Πρy:A.B

2.2.3 Spines
Γ; ∆ x ∈ M

Γ; ∆ x ∈ (M ; S)

Γ; ∆ x ∈ S

Γ; ∆ x ∈ (M ; S)

Γ; ∆ x ∈ S

Γ; ∆ x ∈ (M+; S)

Γ; ∆ x ∈ R

Γ; ∆ x ∈ ((R :); S)

Γ; ∆ x ∈ N

Γ; ∆ x ∈ ((N : A); S)

Γ; ∆ x ∈ A

Γ; ∆ x ∈ ((N : A); S)

2.2.4 Pattern Spines

Since all terms are in η-long form, define x →∗
η̄ H (“H is an η-expansion of

the variable x”) by

y1 →∗
η̄ H1 · · · yn →∗

η̄ Hn

x →∗
η̄ λy1 . . . λyn.x · (H1; · · · ; Hn)

Then the definition of pattern spine is

∆ ` () pat

x →∗
η̄ H ∆1, ∆2 ` S pat

∆1, x, ∆2 ` (H; S) pat

2.2.5 Terms
Γ; ∆, y x ∈ M

Γ; ∆ x ∈ λy.M

∆ ` S pat

Γ; ∆ x ∈ x · S

y ∈ ∆ Γ; ∆ x ∈ S

Γ; ∆ x ∈ y · S

Γ; ∆ x ∈ S

Γ; ∆ x ∈ cσ · S

2.3 Type Checking

We define over the language of LF∗ two typing judgments Γ d̀ef M : A and
Γ àlg M : A, with analogous judgments at the type and kind levels. The
former is definitionally simpler, and consequently far easier to reason about,
but nonalgorithmic. The latter, however, is transparently decidable, and can
be implemented directly.

Establishing correctness of the system as a whole now has two parts. The
first part is to show that the algorithm embodied by Γ àlg M : A is sound
and complete relative to Γ d̀ef M : A. After that we must still connect
Γ d̀ef M : A over LF∗ to the same typing judgment over the original language
of LF , which we construe as a syntactic subset of LF∗.

In a diagram, the task ahead looks like

LF/ d̀ef

(—)∗
- LF∗/ d̀ef == LF∗/ àlg

Where (—)∗ is a bijective translation from LF to LF∗.

We first give the rules that Γ d̀ef M : A, Γ àlg M : A have in common.
This consists of all of the objects in the theory except for spines. Think of
each rule with ` as implicitly quantified by ‘for all ` ∈ { d̀ef , àlg}, . . .’.

When we come to assigning types to spines there are two directions which
a spine can be checked. The more familiar one is Γ ` S : Z > C, where the
type Z and the spine S are given, and the type C is output. This is read as
meaning that if a head (i.e. variable or constant) of type Z is applied S, the
result will be of type C. However, we have introduced constants that require
the output type to be known, so we also require a judgment Γ ` S : Z < C
which is identical in meaning to the other judgment, except that the type C
is input rather than output.

2.3.1 Kinding

a : K ∈ Σ Γ ` S : K > type

Γ ` a · S : type

Γ ` A : type Γ, x : A ` B : type

Γ ` Πσx:A.B : type

Notice here that Πµ types are well-kinded only in the event that the vari-
able they bind actually has a strict occurrence. This is a key property when
proving soundness of the system.

Γ ` A : type Γ, x : A ` B : type Γ, x : A µ x ∈ B

Γ ` Π[µ]x:A.B : type

2.4 Typing

Γ ` A : type

Γ ` (N : A) : A

Γ ` R : A

Γ ` (R :) : A

x : A ∈ Γ Γ ` S : A > C

Γ ` x · S : C

Γ, x : A ` M : B

Γ ` λx.M : Π−x:A.B

c+ : Z ∈ Σ Γ ` S : Z > C

Γ ` c+ · S : C

c− : Z ∈ Σ Γ ` S : Z < C

Γ ` c− · S : C

2.5 Spines: Definitional Typing

The definitional typing system d̀ef uses the following rules to typecheck spines.
So that we can write down rules only once that work the same way for both
> and <, say ><s means > and ><i means <. Recall that µ,µ′ are variables
standing for either s or i.

Γ d̀ef () : type ><µ′ type

Γ d̀ef () : a · S ><µ′ a · S
Γ d̀ef M : A Γ d̀ef S : [M/x]AV ><µ′ W

Γ d̀ef (M ; S) : Π−x:A.V ><µ′ W

A = A′

Γ d̀ef M+ : A′ Γ d̀ef S : [M+/x]AV ><µ′ W

Γ d̀ef (M+; S) : Π+x:A.V ><µ′ W

Γ d̀ef M : A Γ d̀ef S : [M/x]AV ><µ′ W

Γ d̀ef (∗, S) : Π[µ]x:A.V ><µ′ W

These rules as a system are impractical for an implementation because of
the final rule. If read bottom-up, it requires the omitted argument M of a
spine to be nondeterministically guessed.

2.6 Algorithmic Typing

The algorithmic type checking judgment does higher-order matching (that is,
unification where all of the right-hand sides of equations have no free variables)
to recover missing arguments.

2.6.1 Matching

We use P to denote sets of equations:

P ::= > | (E1
.
= E2) ∧ P | (S1

.
= S2) ∧ P | (A1

.
= A2) ∧ P

Q for sets of typing constraints:

Q ::= > | (M : A) ∧Q

and U for unification problems that track two sets of equality constraints, and
one set of typing constraints:

U ::= ∃Ψ.(P, P ′, Q)

where Ψ denotes a list of variables

Ψ ::= · | Ψ, x : A

It will also be necessary to talk about lists θ of substitutions:

θ ::= · | [M/x]Aθ

There are several technical details about such substitutions θ that must be
treated (not least of which, typing them) but for space reasons we do not
cover them here.

The idea at a high level is that to solve a unification problem

∃x1:A1, . . . , xn:An.(P, P ′, Q)

is to find a set of instantiations for x1, . . . , xn that make P, P ′, Q all true.
Given that every xi has a strict occurrence in P , which is maintained as an
invariant of the algorithm, we can decompose equations in P while preserving
any solutions that might exist, either instantiating variables, or postponing
equations by transferring them to P ′, until P is empty, and all that remains
is P ′ and Q. Since P is empty, our invariant says that no variables remain,
so both P ′ and Q are closed, and can be checked directly. The only potential
difficulty is the fact that we recursively call the typechecker on Q. But by
inspection, the algorithm only puts strictly smaller type-checking problems
into Q.

We define a transition relation =⇒θ ‘takes one step, resulting in substitu-
tion θ’ via the following rules. The basic rules for working on a set of equations
are quite straightforward, and all result in the empty substitution.

(a · S1
.= a · S2) ∧ P =⇒ (S1

.= S2) ∧ P

(Πρx:A1.B1
.= Πρx:A2.B2) ∧ P =⇒

(A1
.= A2) ∧ (B1

.= B2) ∧ P

(λx.M1
.= λx.M2) ∧ P =⇒ (M1

.= M2) ∧ P

(x · S1
.= x · S2) ∧ P =⇒ (S1

.= S2) ∧ P

(cσ · S1
.= cσ · S2) ∧ P =⇒ (S1

.= S2) ∧ P

(() .= ()) ∧ P =⇒ P

((E2;S1)
.= (E2;S2)) ∧ P =⇒ (E1

.= E2) ∧ (S1
.= S2) ∧ P

(∗ .= ∗) ∧ P =⇒ P

(R1 :) .= (R2 :) ∧ P =⇒ (R1
.= R2) ∧ P

(N1 : A1)
.= (N2 : A2) ∧ P =⇒ (N1

.= N2) ∧ (A1
.= A2) ∧ P

These are used via

P =⇒ P0

∃Ψ′(P, P ′, Q) =⇒ ∃Ψ′(P0, P
′, Q)

These less trivial rules handle the occurrence of variable on the left. Recall
that we are doing matching, not full unification, so ∃-quantified variables do
not occur on the right.

∃Ψ, x : A,Ψ′.((x · (H1; · · · ;Hn) .= R) ∧ P, P ′Q) =⇒[M/x]A

∃Ψ, ([M/x]AΨ′).[M/x]A(P, P ′, Q)

(if xi →∗
η̄ Hi where x1, . . . , xn are distinct variables not among those in

Ψ, x,Ψ′,Γ where M = λx1 . . . xn.R, if M has no free variables except those in
Γ)

∃Ψ, x : A,Ψ′.((x · (H1; · · · ;Hn) .= R) ∧ P, P ′Q) =⇒

∃Ψ, x : A, Ψ′.(P, (x · (H1; · · · ;Hn) .= R) ∧ P ′, Q)

(if the above rule doesn’t apply)

Iterated =⇒θ is the relation =⇒∗
θ, defined by

U =⇒∗
· U

U =⇒θ U ′ U ′ =⇒∗
θ′ U ′′

U =⇒∗
θ′θ U ′′

|= is defined, like `, uniformly over |=def and |=alg as follows:

Γ |= >
Γ ` M : A Γ |= Q

Γ |= (M : A) ∧Q

Γ |= P

Γ |= (W
.
= W) ∧ P

Γ |= P Γ |= P ′ Γ |= Q

Γ |= (P, P ′, Q)

Now we are able to give a definition of the core of the algorithm, the
constraint generation judgment, which takes the form

Γ; Ψ; Ψ′ ` S : Z ><µ′ C/(P, Q)

This claims that if we are trying to apply a head of type Z to S, and the
resulting type is C, then we must find instantiations for the variables in Ψ′ to
satisfy the equations P and type constraints Q. Γ, Ψ, S, Z are input to this
judgment, and Ψ′, P, Q are output. C is input if µ′ = i, and output if µ′ = s.
The judgment is defined by the following rules.

Γ; Ψ; · ` () : a · S < a · S ′/(a · S .
= a · S ′ ∧ >,>)

Γ; Ψ; · ` () : a · S > a · S/(>,>)

Γ; Ψ, x : A; Ψ′ ` S : Z ><µ′ C/(P, Q)

Γ; Ψ; x : A, Ψ′ ` (∗; S) : Π[µ]x:A.Z ><µ′ C/(P, Q)

Γ àlg M+ : A′

Γ; Ψ; Ψ′ ` S : [M+/x]AZ ><µ′ C/(P, Q)

Γ; Ψ; Ψ′ ` (M+; S) : Π+x:A.Z ><µ′ C/((A
.
= A′) ∧ P, Q)

Γ; Ψ; Ψ′ ` S : [M/x]AZ ><µ′ C/(P, Q)

Γ; Ψ; Ψ′ ` (M ; S) : Π−x:A.Z ><µ′ C/(P, (M : A) ∧Q)

Finally, the toplevel rules which tell how to algorithmically typecheck a
spine are

Γ; ·; Ψ′ ` S : Z < C/(P,Q)

∃Ψ′.(P,>, Q) =⇒∗
θ′ (>, P ′, Q′) Γ |=alg (P ′, Q′)

Γ àlg S : Z < C

Γ; ·; Ψ′ ` S : Z > C/(P,Q)

∃Ψ′.(P,>, Q) =⇒∗
θ′ (>, P ′, Q′) Γ |=alg (P ′, Q′)

Γ àlg S : Z > θ′C

When we have the type as input (Γ àlg S : Z < C) we invoke constraint
generation to produce Ψ′, P, Q, and call unification to check that the con-
straints are satisfied. If unification succeeds, then type-checking does. If we

are to output a type (Γ àlg S : Z < C) then we furthermore use the substi-
tution returned by unification, and apply it to the type C which constraint
generation produced, and return this as the result type of S.

2.7 Correctness

The statements of soundness and completeness of unification are somewhat
technical:

Lemma 2.1 (Soundness of Unification) Suppose that

∃Ψ′.(P, P ′, Q) =⇒∗
θ0

(>, P ′′, Q′)

and Γ |= (>, P ′′, Q). Then there is a θ′ such that θ′ = θ0 and Γ ` θ′ : Ψ′ and
Γ |= θ′(P, P ′, Q).

Lemma 2.2 (Completeness of Unification) Suppose there exists θ′ such
that Γ ` θ′ : Ψ′ and Γ |= θ′(P, P ′, Q). Suppose further that for every x ∈ Ψ′

that there is an equation W
.
= W ′ in P and a set ∆x of variables disjoint from

those declared in Γ, Ψ′ such that Γ; ∆x x ∈ W . Then there exist P ′′, Q, θ0

such that ∃Ψ′.(P, P ′, Q) =⇒∗
θ0

(>, P ′′, Q′) and θ′ = θ0 and Γ |= (>, P ′′, Q′).

The main thrust of them, however, as is standard with such transition
systems, is that (a) all of the individual transitions preserve solutions, and in
our case, preserve strict occurrences as well, and (b) each transition decreases
the size of the problem, so that solvability of a problem is decidable. The
correctness of unification then leads to the correctness of the typing algorithm

àlg with respect to the definition d̀ef .

Lemma 2.3 (Soundness and Completeness of àlg)

(i) If Γ àlg M : A, then Γ d̀ef M : A.

(ii) If Γ d̀ef M : A, then Γ àlg M : A.

3 Equivalence

Having defined LF∗ and establishing that the definitional typing judgment is
decidable, we turn now to the issue of showing that it is equivalent to LF .
As mentioned previously, we construe the language of LF as a strict subset
of the language of LF∗. Henceforth we syntactically distinguish every LF
object with a ◦ in the subscript and every LF∗ object with a ∗ subscript. The
grammar of LF is

M◦ ::= N◦ | R◦

N◦ ::= λx.M◦

R◦ ::= x · S◦ | c+ · S◦

E◦ ::= M◦

S◦ ::= () | (E◦; S◦)

A◦, B◦ ::= a · S◦ | Π−x:A◦.B◦

K◦ ::= type | Π−x:A◦.K◦

This is simply the LF∗ grammar with c−, Π+, Π[µ], (∗; S), (M+; S) removed.
The typing judgments and rules that apply to this subset of LF∗ are exactly
the ordinary typing rules for LF . The only difference is cosmetic: here we say
c+, Π− where one would of course find merely c, Π in a normal treatment of
LF .

It remains to show that LF∗ is isomorphic to LF , in the sense that every
proof term in LF∗ corresponds to one and only one proof term in LF . Fix
for the sake of discussion signatures Σ◦ and Σ∗, in LF and LF∗ respectively,
and assume that they assign types and kinds to exactly the same constant
and type family symbols, except that whenever Σ has c+, we find exactly one
of c+ or c− in Σ∗. Under suitable further assumptions (described below) that
Σ◦ and Σ∗ are in fact equivalent signatures, we aim to show that there is a
translation from well-formed objects in Σ◦ to well-formed objects in Σ∗ that
is bijective, homomorphic with respect to typing, and so on.

One difficulty in establishing this result via such a translation comes from
the fact that neither LF nor LF∗ prima facie bears strictly more information
than the other: LF∗ signatures have more information in the form of Π-
annotations, and its terms contain type ascriptions foreign to LF , while an
LF term generally contains subterms that are omitted in its LF∗ counterpart.
Because of this, we cannot simply define an erasure function W 7→ W ∗ from
LF to LF∗ that erases some subterms to ∗. We need another erasure W 7→ W ◦

which erases Π-annotations, and we need W 7→ W ∗ to fill in necessary type
ascriptions.

This notation is chosen to suggest that (—)∗ takes objects into LF∗, and
that (—)◦ takes objects back to LF , though this latter statement is not strictly
true. The general idea is that both mappings erase some information, and that
objects W◦ and W∗ ought to be considered equivalent when the mappings bring
them together, when ‘(W◦)

∗ = (W∗)
◦’.

The mapping (—)◦ for Π-types is defined by (Πρx:A.W)◦ = Π−x:A.(W ◦).
Otherwise, W ◦ = W . However, the definition of (—)∗ is less simple. Since it
needs to insert type ascriptions, it cannot be merely a function from terms to
terms, types to types, and so on. To know which type to insert, we must carry
along the type, and in order to know the type of variables, we must carry along
a context as well. We write this translation, then, using the same syntax as
the typing judgment itself, as (Γ◦ ` M◦ : A◦)

∗ for terms, and (Γ◦ ` A◦ : type)∗

for types.

For spines it is still not enough to write something of the form (Γ◦ `
S◦ : Z◦ > C◦)

∗. We need an additional argument Z∗, because its Π binders
carry the required extra annotations required to translate the spine, (dictating,
importantly, which arguments to erase) whereas Z◦ does not. Therefore the
translation function for spines takes the form (Γ◦ ` S◦ : Z◦ > C◦)

∗
Z∗ .

The translation is defined as follows:

Terms
(Γ◦ ` λx.M◦ : Π−x:A◦.B◦)

∗ =

λx.(Γ◦, x : A◦ ` M◦ : B◦)
∗

(Γ◦ ` x · S◦ : C◦)
∗ = x · (Γ◦ ` S◦ : A◦ > C◦)

∗
(Γ◦`A◦:type)∗

(if x : A◦ ∈ Γ◦)

(Γ◦ ` c+ · S◦ : C◦)
∗ = cσ · (Γ◦ ` S◦ : A◦ > C◦)

∗
A∗

(if cσ : A∗ ∈ Σ∗ and c+ : A◦ ∈ Σ◦)

Spines We mention only the case for typed (not kinded) spines. The other
case is analogous. We split cases on the subscript Z∗. Make the abbreviations
A∗ = (Γ◦ ` A◦ : type)∗, and S∗ = (Γ◦ ` S◦ : [M◦/x]A◦Z◦ > C◦)

∗
[M∗/x]A∗Z∗

, and

M∗ = (Γ◦ ` M◦ : A◦)
∗. Then for Πσ we do

(Γ◦ ` (M◦; S◦) : Π−x:A◦.Z◦ > C◦)
∗
Πσx:A∗.Z∗

=

 ((M∗ : A∗); S∗) if σ = +, M∗ normal;
((M∗:); S∗) if σ = +, M∗ atomic;
(M∗; S∗) otherwise.

Observe that we only add the type annotation A∗ when it is necessary. For
Π[µ] we simply erase the argument, and make the same recursive call on S◦ as
before:

(Γ◦ ` (M◦; S◦) : Π−x:A◦.Z◦ > C◦)
∗
Π[µ]x:A∗.Z∗

= (∗; S∗)

(Γ◦ ` () : C◦ > C◦)
∗
C∗ = ()

Types
(Γ◦ ` Π−x:A◦.B◦ : type)∗ =

Π−x:(Γ◦ ` A◦ : type)∗.(Γ◦, x : A◦ ` B◦ : type)∗

(Γ◦ ` a · S◦ : type)∗ = a · (Γ◦ ` S◦ : K◦ > type)∗K∗

(if a : K∗ ∈ Σ∗ and a : K◦ ∈ Σ◦)

We may also translate contexts in the evident way, namely by translating
each of the types in them. With these maps we can state the correspondence
condition for the two signatures:

Definition 3.1 Σ◦ and Σ∗ are equivalent if

• For every c, we have that cσ : A∗ ∈ Σ∗ and c+ : A◦ ∈ Σ◦ implies (A∗)
◦ =

(· ` A◦ : type)∗.

• For every a, we have that a : K∗ ∈ Σ∗ and a : K◦ ∈ Σ◦ implies (K∗)
◦ = (· `

K◦ : type)∗.

When two signatures are equivalent, the theories they generate should be
equivalent. This essentially amounts to two properties, that the image under
the translation of the terms of a type actually belong to the translation of the
type itself, and that the translation restricted to any one type is a bijection.

Theorem 3.2 (Type Preservation) Suppose that Σ◦ and Σ∗ are equiva-
lent. Then

• if Γ◦ `Σ◦ M◦ : A◦, then (Γ◦)
∗ `Σ∗ (Γ◦ ` M◦ : A◦)

∗ : (Γ ` A◦ : type)∗

• if Γ◦ `Σ◦ S◦ : A◦ > C◦ and (Γ◦ ` A◦ : type)∗ = (A∗)
◦, then (Γ◦)

∗ `Σ∗ (Γ◦ `
S◦ : A◦ > C◦)

∗
A∗ : A∗ > (Γ ` C : type)∗

• If Γ◦ is a Σ◦-context, then (Γ◦)
∗ is a Σ∗-context.

• if Γ◦ `Σ◦ A◦ : type then (Γ◦)
∗ `Σ∗ (Γ◦ ` A◦ : type)∗ : type.

• if Γ◦ `Σ◦ K◦ : kind then (Γ◦)
∗ `Σ∗ (Γ◦ ` K◦ : kind)∗ : kind.

Stating and proving the bijectivity of the translation, though important,
is considerably more difficult, and so we do not develop it here.

4 Conclusion

We have described a type system which internalizes facts about which parts
of terms can be safely omitted, while preserving representational adequacy.
An implementation can achieve significant savings by not representing these
omitted parts at all, and still ‘prove the same theorems’ as before.

The empirical advantage of this species of change of representation has
been confirmed by earlier work. Ours retains several of its key properties.
By working in a system derived from LF , we have at our disposal all of its
representational techniques, such as higher-order abstract syntax. Like LFi,
full unification is not used, and instead only a subset — in our case, higher-
order matching — is necessary. This is important for a maximally simple and
trustable implementation.

The divergence from LFi is that LF∗ seeks to make type theoretic sense
out of the possibility that subterms can be redundant. We do not have LFi’s
ability to assign both an ‘inference recipe’ and a ‘checking recipe’ to a single
constant, since we impose the restriction that a constant has a single type,
which gives its reconstruction recipe once and for all. However, preliminary
investigation suggests that in many cases — most especially when the object
language is a type theory admitting a bidirectional typing algorithm itself — a
constant is consistently always or almost always used in one way or the other.
Thus, only one recipe is really necessary most of the time.

There is also a possible answer to this difficulty from using notational
definitions. It is still an open problem whether notational definitions could
feasibly be combined with this system, but if they could, then we could regain
the ability to freely use different recipes by introducing a constant as being
definitionally equal to an old one: one which, by virtue of being exposed at a
new type, specifies a different reconstruction strategy for its arguments.

On the other side of the balance, there are forms of omission which LF∗
can handle, which LFi cannot. Since LF∗ places a priority on pushing the
mechanics of omission into the language itself at as fundamental a level as

possible, the design of it is such that all terms, types, and kinds can contain
placeholders for omitted information as a matter of course: the indices to a
type family are general terms, and terms may contain placeholders. LFi, on
the other hand, has restrictions on when placeholders can appear in types. We
anticipate, therefore, that encoding techniques that use more high-order and
high-level constructions may benefit from the uniform treatment of omission
afforded by LF∗. A more precise evaluation of the effectiveness of the proposed
system still awaits implementation and experimentation, which we hope to
complete soon.

Acknowledgements

Many thanks are due Frank Pfenning for his encouragement and help with
both the conceptual and technical portions of this work, and to Kevin Watkins
for the original formulation of the type system.

References

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for
defining logics. Journal of the Association for Computing Machinery,
40(1):143–184, January 1993.

[HP01] Robert Harper and Frank Pfenning. On the equivalence and canonical
forms in the LF type theory. Technical report, Carnegie Mellon
University, 2001.

[HT94] Masami Hagiya and Yozo Toda. On implicit arguments. In Logic,
Language and Computation, pages 10–30, 1994.

[Lut01] Marko Luther. More on implicit syntax. In Automated Reasoning.
First International Joint Conference (IJCAR’01), Siena, Italy, June
18–23, 2001, Proceedings, volume 2083 of Lecture Notes in Artificial
Intelligence, pages 386–400, Berlin, 2001. Springer-Verlag.

[Mil91] Dale Miller. A logic programming language with lambda-abstraction,
function variables, and simple unification. Journal of Logic and
Computation, 1(4):497–536, 1991.

[Miq01] Alexandre Miquel. The implicit calculus of constructions: Extending
pure type systems with an intersection type binder and subtyping. In
S. Abramsky, editor, Proc. of 5th Int. Conf. on Typed Lambda Calculi
and Applications, TLCA’01, Krakow, Poland, 2–5 May 2001, volume
2044, pages 344–359. Springer-Verlag, Berlin, 2001.

[Nec97] George C. Necula. Proof-carrying code. In Proceedings of the 24th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Langauges (POPL ’97), pages 106–119, Paris, January 1997.

[NL98] George C. Necula and Peter Lee. Efficient representation and validation
of logical proofs. In Proceedings of the 13th Annual Symposium on Logic
in Computer Science (LICS’98), pages 93–104, Indianapolis, Indiana,
1998. IEEE Computer Society Press.

[PE98] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In
Proceedings of the ACM SIGPLAN ’88 Symposium on Language Design
and Implementation, pages 199–208, Atlanta, Georgia, June 1998.

[Pfe00] Frank Pfenning. Structural cut elimination I. intuitionistic and classical
logic. Information and Computation, 157(1/2):84–141, mar 2000.

[PS98] Frank Pfenning and Carsten Schürmann. Algorithms for equality and
unification in the presence of notational definitions. In T. Altenkirch,
W. Naraschewski, and B. Reus, editors, Types for Proofs and Programs,
pages 179–193, Kloster Irsee, Germany, March 1998. Springer-Verlag
LNCS 1657.

[WCPW03] K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. A concurrent
logical framework I: Judgments and properties. Technical report,
Carnegie Mellon University, 2003.

	Introduction
	Type Theory
	Substitutions
	Strictness
	Type Checking
	Typing
	Spines: Definitional Typing
	Algorithmic Typing
	Correctness

	Equivalence
	Conclusion
	References

