
LFM 2004 Preliminary Version

Imperative LF Meta-Programming

Aaron Stump

Dept. of Computer Science and Engineering Washington University in St. Louis
St. Louis, Missouri, USA Web: http://cl.cse.wustl.edu/

Abstract

Logical frameworks have enjoyed wide adoption as meta-languages for describing
deductive systems. While the techniques for representing object languages in logi-
cal frameworks are relatively well understood, languages and techniques for meta-
programming with them are much less so. This paper presents work in progress on
a programming language called Rogue-Sigma-Pi (RSP), in which general programs
can be written for soundly manipulating objects represented in the Edinburgh Log-
ical Framework (LF). The manipulation is sound in the sense that, in the absence
of runtime errors, any putative LF object produced by a well-typed RSP program
is guaranteed to type check in LF. An important contribution is an approach for
soundly combining imperative features with higher-order abstract syntax. The focus
of the paper is on demonstrating RSP through representative LF meta-programs.

Key words: Meta-Programming, Logical Frameworks, Rewriting
Calculus

1 Introduction

Applications using a logical framework such as the Edinburgh Logical Frame-
work (LF) [7] very frequently need meta-programs which produce or manip-
ulate LF encodings of derivations. For example, proof-producing decision
procedures like the CVC (“Cooperating Validity Checker”) system or the
Touchstone theorem prover from Necula’s PCC system emit proof objects
for formulas they report valid [18,10]. The Princeton and Yale Foundational
Proof-Carrying Code (FPCC) projects both rely on tools that automatically
generate LF derivations [21,6].

The present work contributes to the study of sound meta-programming for
LF. A meta-programming language for LF is described called Rogue-Sigma-Pi
(RSP). RSP extends LF in a type-safe way with convenient meta-programming
constructs: pattern-matching, general recursion, a limited form of dependent
records, and expression attributes (for mutable state). The combination of
mutable state with higher-order abstract syntax (HOAS) [12] is quite delicate.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Stump

An important contribution of the present work in progress is a (currently just
conjectured) sound approach supporting this combination.

The meta-theoretic properties of RSP necessary for its intended use are
type safety and conservativity with respect to LF. Due to the inclusion of
dependent records (as also happens with the inclusion of pairs: see, e.g., [16]),
unicity of types fails in LF and hence in RSP. The approach adopted here is to
rely on bottom-up type computation, but add support for explicit ascriptions
to guide the type computation to a desired type. Conservativity with respect
to LF has one qualification. In RSP, run-time errors like failure of pattern
matching can occur, which result in an RSP term’s evaluating to Null. The
statement of conservativity is this: any RSP value of LF type is guaranteed to
be an LF object, as long as it contains no Nulls. This form of conservativity
together with type safety guarantees the property mentioned above: in the
absence of run-time errors, any putative LF object produced by evaluation of
an RSP term is truly an LF object.

The paper informally introduces RSP (Section 3), and then shows how the
language is used in practice on several example meta-programs (Section 4).
While it is not hard to formalize the basic idea of RSP’s type system, the exact
formalization needed to achieve the meta-theoretic results is work in progress.
The paper presupposes knowledge of LF (see, e.g., [11]).

2 Related Work

LF meta-programming plays a crucial role in several application domains. In
the CVC project, a cooperating validity checker was instrumented to produce
proofs in a variant of LF [18]. It was originally hoped that producing proofs
would help catch bugs in CVC. This was actually quite rare, since most bugs
were failures of completeness, where validity proofs are of no obvious rele-
vance. Nevertheless, there were constantly bugs in CVC’s proof-producing
code. Given a straightforward implementation in C++, it is easy to write
code which erroneously generates malformed proofs. Such an error is caught
only when a malformed proof is produced for some input formula and then
run through a proof checker. Tracking down the causes of such failed proofs
is extremely time consuming.

Several approaches have been proposed for writing type-safe LF meta-
programs. Appel and Felty use Twelf to implement partially correct tactics
and decision procedures [1]. In Twelf, sets of LF types receive a computational
interpretation as logic programs [13]. LF’s typing establishes that any proof
produced by a successful computation is guaranteed to check. The program
may still fail due to run-time errors such as non-termination or match fail-
ure. The Delphin language of Schürmann is a pure functional language for
meta-programming with LF encodings [17]. Delphin carefully places pattern-
matching and recursion over LF for type safe manipulation for LF encodings.
Other less closely related systems include Cayenne and Alf [2,9].

2



Stump

3 Overview of RSP

RSP is a proper extension of LF. We adopt the following notation for LF. We
write x:A => B for dependent product type Πx A : B. , and x:A -> M for λ x :
A. M . We call the latter representational abstractions, since they will be used
in RSP solely for representation using HOAS. Another kind of abstraction will
be used for computation. In RSP’s operational semantics, computation occurs
in the bodies of representational abstractions, although not in the bodies of
computational abstractions. Insofar as a representational abstraction is simply
a parameterization of its body, evaluating that body without any argument
given is not unreasonable. Notationally, if x does not occur in B, we write A

=> B instead of x:A => B. Application is written explicitly with infix @, and
x @ y is sometimes written x(y) when x is a variable or constant.

The features RSP adds to LF are briefly these. RSP has dependently
typed expression attributes, which can be read (X.a) and written (X.a :=

Y). The type of an attribute is just like a dependent function type, except with
=a> instead of =>. Types of attribute reads are computed as for applications.
The type system restricts attributes in attribute reads and attribute writes
to be just constant symbols. Using such attributes, we support recursion by
writing recursive equations: a functional expression containing attribute read
a.b, say, is written into the b attribute of a.

The computational abstractions mentioned above are dependently typed
pattern abstractions, typed with yet another arrow, =c>. These are of the
form x\P\∆ -> M. Here, x is a name for the whole input to the abstraction,
P is the pattern the input should match, ∆ is a context for pattern variables
in P, and M is the body of the abstraction. If ∆ is empty we write null for it.
Pattern abstractions are applied to target expressions by matching the pattern
against the target. The notion of matching used in RSP is just syntactic first-
order matching. Deterministic choice allows pattern abstractions of the
same type to be combined: we write M|N for deterministic choice between M and
N. An application of a |-expression is evaluated by using the first abstraction
(from left to right) whose pattern matches the target expression. RSP uses
Null(A) for match failure and also for reads of uninitialized attributes, for
every type A.

RSP’s pattern abstractions are inspired by those of Pure Pattern Type
Systems (P2TS) [3], with an important difference. In P2TS, the range type of
a pattern abstraction is allowed to depend on the pattern variables. Hence,
the pattern and its context must become part of the domain type of the
abstraction, and pattern abstractions receive types ΠP : ∆ . B, where P is the
pattern, ∆ is the context for pattern variables, and B is the type of the body.
Abstractions can still only be connected by choice if they have exactly the
same type. Since patterns are part of types, this leads to the following serious
drawback of the P2TS approach: abstractions can only be connected if they
are attempting to match the same pattern. This is a severe restriction, since

3



Stump

(c-arrow-I)

pattern Γ ∆ P

Γ, ∆ ` P :: A Γ, ∆, x = P ` M :: B Γ ` x : A =c> B :: ∗

Γ ` x\P\∆ → M :: x : A =c> B

(rec-I)
Γ ` M : A Γ, y = M ` N :: B Γ ` x : A, B :: ∗

Γ ` (x = M, y.N) :: x : A, B

Fig. 1. Selected RSP typing rules

it means programs cannot use case analysis to take different action based
on the form of expressions. The present approach solves this problem by
not including patterns as part of the domain types of abstractions. But this
requires the range type not to depend on pattern variables. The range type
can still depend, however, on the name x for the entire target expression to
which the pattern abstraction is being applied.

This approach to dependent pattern abstractions is enforced by the typing
rule (c-arrow-I) in Figure 1. As mentioned above, the exact formalization of
RSP is not yet complete, so this is just the essential idea: note that things
like the definition of pattern used in the first premise must be formulated with
great care. The third premise adds an equation to the context, which is used
when checking convertibility. The fourth premise ensures that the pattern
variables from ∆ are not used in B.

Finally, it turns out to be a practical necessity to have some kind of pairing
mechanism. This is mainly to allow pattern abstractions to perform simulta-
neous pattern matching on a dependently typed bundle of objects. Initially,
RSP adopted dependent sum types, following [16]. It has become clear, how-
ever, that a limited form of dependent record types would lead to more
readable meta-programs. This is because in some applications, it becomes
necessary to manipulate rather large bundles, and it is easier to read code
which refers to elements of a large bundle by name instead of by a sequence
of projections. Fortunately, the uses of bundles in RSP does not seem to re-
quire some of the features which complicate record types. We do not need
subtyping on record types, nor, apparently, manifest fields in record types.
We adopt right-associating records as in [14]. We write {x : A, B} for the
right-associating record with leftmost field x and remaining fields B. Then (x

= M, y.N) denotes the dependent record with leftmost field x storing element
M, and remaining fields N, where N is allowed to use y as another name for M.
This follows the approach originally proposed in [8], where each field has a
label and an associated bound variable (to avoid variable capture during sub-
stitution). We often elide the binding and write just (x = M, N). By using x

4



Stump

O : type.

IMP : (O => O => O).

FALSE : O.

Pf : (O => type).

Dn : (P : O => Pf(IMP @ (IMP @ (IMP @ P @ FALSE) @ FALSE) @ P)).

K : (P : O => Q : O => Pf(IMP @ P @ (IMP @ Q @ P))).

S : (P : O => Q : O => R : O =>

Pf(IMP @ (IMP @ P @ (IMP @ Q @ R))

@ (IMP @ (IMP @ P @ Q) @ (IMP @ P @ R)))).

MP : (P : O => Q : O => Pf(IMP @ P @ Q) => Pf(P) => Pf(Q)).

I : type.

EQUALS : (I => I => O).

Eqrefl : (x : I => Pf(EQUALS @ x @ x)).

Eqsymm : (x : I => y : I => Pf(EQUALS @ x @ y) =>

Pf(EQUALS @ y @ x)).

Eqtrans : (x : I => y : I => z : I => Pf(EQUALS @ x @ y) =>

Pf(EQUALS @ y @ z) => Pf(EQUALS @ x @ z)).

Fig. 2. LF signature: classical logic with equality (no quantifiers)

as an alias for M in N (which is discussed but not supported in [14]), we can
often guide bottom-up type computation to some desired type for M. In some
cases, however, we still need explicit ascriptions M:A. The typing rule should
be essentially the (rec-I) rule of Figure 1.

RSP terms are parsed with the following precedences from tightest to loos-
est binding: attribute read and projections, application, record formation, ar-
rows, and deterministic choice. So the first term below is fully parenthesized
as the second (and evaluates to whatever value is stored for attribute b of
expression a)

(x\a\null -> x.b | x\y\y:I -> x.c) @ a

((x\a\null -> (x.b)) | (x\y\y:I -> (x.c))) @ a.

4 Meta-Programming Examples

We consider two example meta-programs that manipulate LF encodings of
proofs in classical first-order logic with equality. All the code has been type
checked and run on sample inputs using a prototype implementation of RSP 1 .
This prototype is written in Rogue, a version of the untyped Rewriting Calcu-

1 This implementation does not support all the features of records yet, in particular field
accesses. Versions of the examples using projections instead of field accesses have been
checked and run on sample inputs.

5



Stump

1. rank : (I =a> Int).

2. findp : (x : I =a> {y:I, Pf(Equals @ x @ y)}).

3. find : (base =a> x : I =c> {y:I, d:Pf(Equals @ x @ y)}).

4.

5. uf.find := x \ y \ y : I ->

6. Let(fx, x.findp,

7. Ite(fx,

8. Let(ffx, uf.find @ fx.1,

9. x.findp := (y = ffx.1,

10. d = Eqtrans @ x @ fx.1 @ y @ fx.2 @ ffx.2)),

11. Drop1(x.rank := 0, (y = x,

12. d = Eqrefl(x) : Pf(Equals @ x @ y))))).

Fig. 3. The RSP code for find

lus [19], which is essentially an untyped version of RSP. We encode our logic
in a standard way as the LF signature of Figure 2. Our examples do not deal
with quantifiers, so they are omitted for space reasons. Also, constructs to
form first-order logic terms are omitted. The examples also make use of the
following non-logical LF declarations, whose role is further explained below:

base : type.

uf : base.

dt : base.

4.1 Proof-Producing Union-Find

The first example is a proof-producing version of the well-known union-find
algorithm (see, e.g., [4, Chapter 22]). Recall that this algorithm maintains
disjoint sets of elements in balanced lazily path-compressed trees. The union

operation takes two elements and merges their trees by making the root of the
shallower one (as bounded by its rank) point to the root of the deeper one.
The find operation takes an element x and returns the root of its tree. It
modifies the pointers (called find pointers) encountered along the path from
x to the root so that they all point directly to the root. Proof-producing
union additionally takes in (the LF encoding of) a proof that the two given
elements are equal. Proof-producing find additionally returns a proof that x
= r where x is the input element and r is the root element which find returns.
The underlying data structure is augmented so that every find pointer from a
node x to a node x.findp has associated with it a proof that x = x.findp.

Figure 3 shows typing declarations and the code just for find. Lines
are numbered for reference. The typing declarations declare attributes rank

and findp, as well as find (lines 1-3). The latter is just so we can write a
recursive definition, which occupies the rest of the Figure (lines 5-12). We
implement find pointers using the findp attribute. The idea is that x.findp
will store a dependent record of type y:I, Pf(Equals @ x @ y). That is,

6



Stump

Let(x,M,N) ≡ (x \ q \ q : type(M) -> N) @ M

Ite(M,N,N’) ≡ (Null(type(M)) -> N’ |

q \ q2 \ q2 : type(M) -> N) @ M

Drop1(M,N) ≡ Let(ignore, M, N)

Fig. 4. RSP abbreviations used in the examples

a record consisting of an individual y together with a proof that x equals
y. Such a record is also what uf.find returns. We set uf.find to be a
pattern abstraction taking in an individual x matching a pattern which is a
single variable y (line 5). Since a variable matches anything, this pattern does
not constrain the input to the abstraction at all (and syntactic sugar can be
introduced to omit it). We first put x’s find pointer in temporary variable fx

using a Let statement (line 6). We then use an Ite statement (if-then-else)
to check (line 7) whether or not x’s find pointer is Null (at the appropriate
type). This relies on the fact, mentioned above, that attributes without a
stored value default to Null. Let and Ite forms (as well as Drop1, used on
line 11) are abbreviations, given in Figure 4, where we write type(M) for the
type in the current context of M.

Consider then the first case of the if-then-else statement (lines 8-10). We
make a recursive call to uf.find on the first component of fx, which is the
individual pointed to by x’s find pointer, and put the result in temporary
ffx (line 8). Then we set x’s find pointer to be a new record, consisting of
ffx.1 (line 9), which by induction is the top element of the chain of find
pointers from fx.1; and the appropriate transitivity proof (line 10). Note the
careful use of y as the third argument to Eqtrans. This ensures that the type
computed bottom-up for the record (i.e., the one being stored in x.findp)
is y:I, d:Pf(Equals @ x @ y), as required by the stated return type for
uf.find. The “else” branch of the Ite expression (lines 11-12) sets x’s rank
to 0 (for the benefit of uf.union), and then returns a record consisting of
x and a reflexivity proof. Bottom-up type computation for Eqrefl(x) will
compute the type Pf(Equals @ x @ x). In order for the two branches of the
Ite expression to have the same type, an ascription must be used (line 12) so
that the reflexivity proof will be viewed as having type Pf(Equals @ x @ y).
Since y is an alias for x at this point, this ascription is legal.

4.2 Imperative Deduction Theorem

The union-find example constructs proofs but never applies a pattern ab-
straction to a proof to analyze it. In this second example, we consider a
meta-program that does analyze proofs using pattern abstractions. For the
Hilbert-style formulation of classical logic we have adopted (Figure 2), it is
standard to prove the so-called Deduction Theorem by induction on the struc-
ture of proofs (cf. [20, Chapter 2]) with case analysis:

7



Stump

dedthm : (base =a> A : O =c> B : O =c>

(Pf(A) => Pf(B)) =c> Pf(IMP @ A @ B)).

dedthm_h : (base =a> bridge : (u:O => Pf(u)) =>

bundle : {A : O, B : O, d : Pf(B)} =c>

Pf(IMP @ bundle.A @ bundle.B)).

dedthm_cached : (bundle : {A : O, B : O, d : Pf(B)} =a>

Pf(IMP @ bundle.A @ bundle.B)).

Fig. 5. Declarations for the Deduction Theorem

1. dt.dedthm := A:O \ null -> B:O \ null ->

2. D : (Pf(A) => Pf(B)) \ null ->

3. (bridge : (u:O => Pf(u)) ->

4. dt.dedthm_h @ bridge @

5. (q = A, p = B, d = D @ bridge(A) : Pf(p))

6. : Pf(IMP @ A @ B))

7. @ Null(u:O => Pf(u))

Fig. 6. Deduction Theorem, outer routine

Theorem 1 (Deduction Theorem) If formula B is derivable possibly us-
ing assumption u of formula A, then the formula “A implies B” is derivable
without assumption u.

The inductive proof corresponds exactly to a certain recursive program,
where case analysis is implemented by pattern matching. Such a program is a
standard example for meta-programming in Twelf [11]. The Twelf program
implementing the Deduction Theorem uses HOAS to represent the hypothet-
ical judgment that B is derivable from assumption A as a representational
(i.e., λ-) abstraction. Careful use of higher-order pattern unification enables
computation to proceed beneath such abstractions.

We develop here an implementation of the Deduction Theorem in RSP.
Since RSP supports imperative programming using attributes, we will actu-
ally be able to write an imperative version of this function, which caches inter-
mediate results. Caching intermediate results is a simple but highly effective
optimization in automated reasoning systems. In the case of the Deduction
Theorem, we will cache intermediate proofs using an attribute dedthm cached.
Since the type of the cached proof, IMP @ A @ B, depends on both formulas A
and B, we have to store cached results in the dedthm cached attribute of de-
pendent records of type A:O, B:O, d:Pf(B). This explains the declared type
for dedthm cached in Figure 5.

Just as in Twelf, it will be necessary to compute under representational
abstractions. RSP is able to achieve this using just first-order matching. We
borrow a technique of Fegaras and Sheard, developed for implementing cata-

8



Stump

1. dt.dedthm_h := bridge : (u:O => Pf(u)) ->

2. bundle : {A:O, B : O, d:Pf(B)} \ null ->

3. Ite(bundle.dedthm_cached, bundle.dedthm_cached,

4. bundle.dedthm_cached := ((A : O ->

5. (B \ A \ null -> F \ bridge @ B \ null -> IMP_REFL |

6.

7. B:O \ null ->

8. (F \ MP @ P @ B @ d1 @ d2

9. \ (P : O, d1 : Pf(IMP @ P @ B), d2 : Pf(P)) ->

10. MP @ (IMP @ A @ P) @ (IMP @ A @ B)

11. @ (MP @ (IMP @ A @ (IMP(P) @ B))

12. @ (IMP @ (IMP @ A @ P) @ (IMP @ A @ B))

13. @ (S @ A @ P @ B)

14. @ (dt.dedthm_h @ bridge @

15. (x \ A, y \ (IMP @ P @ B), d1 : Pf(y))))

16. @ (dt.dedthm_h @ bridge @ (x \ A, y \ P, d2 : Pf(y))) |

17. D : Pf(B) \ null -> MP @ B @ (IMP @ A @ B) @

18. (K @ B @ A) @ D))) @

19. bundle.A @ bundle.B @ bundle.d)).

Fig. 7. Deduction Theorem, main routine

morphisms over datatypes with embedded functions, to program with HOAS
in RSP [5]. The function dt.dedthm of Figure 6 takes in the function from
Pf(A) to Pf(B) representing the hypothetical judgment. It calls this function
on a placeholder term bridge(A), thus replacing (representations of) uses
of the assumption A in the proof with the placeholder. The helper routine
dt.dedthm h of Figure 7 then operates on objects of type Pf(B) which may
contain occurrences of the placeholder. Enountering the placeholder signals
that the assumption is being used, and the appropriate action may be taken.
One nice twist here is that unlike in [5], the placeholder does not need to be
built in (either to our LF signature or to RSP). We simply introduce it using
a representational abstraction (Figure 6, line 3). Since we compute in the
bodies of representational abstractions, we will then call the helper (line 4)
with the placeholder deployed in the term (line 5). Finally, the placeholder is
eliminated after the helper is done computing by applying the representational
abstraction to Null at the appropriate type (line 7). Bugs in our implemen-
tation might lead to occurrences of Null appearing in the resulting proof, but
this is consistent with our statement of conservativity with respect to LF.

The main routine of the Deduction Theorem (Figure 7) has few surprises.
The code begins by checking to see if there is a cached result, and uses it if
so (line 3). Otherwise (lines 4-19), it sets the cached result to the appropriate
proof, computed by applying cases to the parts of the input bundle. Recursive
calls are needed (line 14 and line 16) just when the input proof is an application
of MP. For typographic reasons the proof IMP REFL for one of the cases (in line

9



Stump

MP @ (IMP @ A @ (IMP @ B @ B)) @ (IMP @ A @ B)

@ (MP @ (IMP @ A @ (IMP(IMP @ B @ B) @ B))

@ (IMP @ (IMP @ A @ (IMP @ B @ B)) @ (IMP @ A @ B))

@ (S @ A @ (IMP @ B @ B) @ B)

@ (K @ A @ (IMP @ B @ B))) @ (K @ A @ B)

Fig. 8. IMP REFL (reflexivity of implication, where A = B)

5) appears in Figure 8. Note that this proof is in terms of A and B, but it
is supposed to prove IMP @ A @ A. This is indeed what it proves, because at
the point in Figure 7 where IMP REFL is used (line 5), it is known that A and
B are identical. This is because in line 5, the pattern abstraction matches iff
the argument given for B matches pattern A. Bottom-up type computation for
the proof of Figure 8 will, however, compute type IMP @ A @ B, which is just
what we need to match the return type of dt.dedthm h.

5 Mutable State and HOAS

The above examples combine mutable state and HOAS. Without some restric-
tions, this would quickly lead to failure of type preservation. For example,
consider the term

x:I -> (a.b := x)

Since this is a representational abstraction, evaluation will occur in the body,
causing variable x to be stored in attribute b of expression a. Reading this
attribute subsequently returns an open term, which is hardly typable!

Our solution to this problem is based on the following very simple obser-
vation. Suppose that instead of the above term we had something like

x:I -> (x.b := x)

Then there would be no unsoundness, because outside the scope of this binding
for x, we cannot reference x. Hence, we cannot attempt to read its b attribute.

We generalize this observation as follows. In an attribute write expression
x.a := y, if the set of free variables FV(x) is a superset of FV(y), then we
know that it cannot happen that a variable of y goes out of scope while x.a

could still be evaluated. The above examples all are safe in this regard. For
instance, take the attribute write in uf.find (Figure 3, lines 9-10). Assume by
induction that terms t cannot evaluate to terms t’ such that FV(t’) ) FV(t).
Then no term in the body of uf.find can evaluate to a term containing more
than the free variables of x. Hence, the attribute write is safe. A similar
observation applies to the attribute write in dt.dedthm h (Figure 7, line 4).
A suitable analysis can enforce this approach; in some cases, it appears some
annotations may need to be supplied relating the free variables sets of different
arguments to a function. This is the case with the union function of union-
find, for example, whose code we omit for space reasons.

10



Stump

6 Conclusion and Future Work

This paper has presented work in progress on imperative LF meta-programming
in Rogue-Sigma-Pi (RSP). RSP overlays LF with standard programming con-
structs, including syntactic pattern matching and unrestricted recursion. Im-
perative programming is supported through dependently typed attributes,
which are very convenient for numerous examples, including those of proof-
producing union-find and the imperative Deduction Theorem which were con-
sidered here. It is well-known that great care is required to combine program-
ming constructs with LF. Imperative features pose special problems, particu-
larly due to the interaction with HOAS. A conservative solution was proposed:
we can store values with free variables in attributes as long as we know that
the attribute read expressions become inaccessible at least as soon as the val-
ues do. The main future work is proving the meta-theoretic properties of type
safety and conservativity with respect to LF for a formalization of the system.

References

[1] A. Appel and A. Felty. Dependent Types Ensure Partial Correctness of
Theorem Provers. Journal of Functional Programming, 2002. to appear.

[2] Lennart Augustsson. Cayenne – a language with dependent types. In
Proceedings of the third ACM SIGPLAN international conference on Functional
programming, pages 239–250. ACM Press, 1998.

[3] G. Barthe, H. Cirstea, C. Kirchner, and L. Liquori. Pure patterns type systems.
In Principles of Programming Languages. ACM, 2003.

[4] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT
Press, 1992.

[5] Leonidas Fegaras and Tim Sheard. Revisiting catamorphisms over datatypes
with embedded functions (or, programs from outer space). In Proceedings of
the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 284–294. ACM Press, 1996.

[6] N. Hamid, Z. Shao, V. Trifonov, S. Monnier, and Z. Ni. A Syntactic Approach to
Foundational Proof Carrying-Code. In IEEE Symposium on Logic in Computer
Science, 2002.

[7] R. Harper, F. Honsell, and G. Plotkin. A Framework for Defining Logics.
Journal of the Association for Computing Machinery, 40(1):143–184, January
1993.

[8] Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-
order modules with sharing. In 21st Symposium on Principles of Programming
Languages, pages 123–137, 1994.

11



Stump

[9] Lena Magnusson. The Implementation of ALF—a Proof Editor Based on
Martin-Löf ’s Monomorphic Type Theory with Explicit Substitution. PhD thesis,
Chalmers University of Technology and Göteborg University, 1995.

[10] G. Necula and P. Lee. Proof Generation in the Touchstone Theorem Prover.
In David McAllester, editor, 17th International Conference on Automated
Deduction, 2000.

[11] F. Pfenning. Logical Frameworks, chapter 21. Volume 2 of Robinson and
Voronkov [15], 2001.

[12] F. Pfenning and C. Elliott. Higher-order abstract syntax. In ACM SIGPLAN
Symposium on Language Design and Implementation, 1988.

[13] F. Pfenning and Carsten Schürmann. System Description: Twelf — A Meta-
Logical Framework for Deductive Systems. In 16th International Conference
on Automated Deduction, 1999.

[14] Robert Pollack. Dependently typed records in type theory. Formal Aspects of
Computing, 13:386–402, 2002.

[15] A. Robinson and A. Voronkov, editors. Handbook of Automated Reasoning.
Elsevier and MIT Press, 2001.

[16] J. Sarnat. LF-Sigma: The Metatheory of LF with Sigma types. Technical
Report 1268, Yale CS department, 2004.

[17] C. Schürmann. Recursion for higher-order encodings. In Proceedings of
Computer Science Logic, number 2142 in LNCS, pages 585–599, 2001.

[18] A. Stump, C. Barrett, and D. Dill. CVC: a Cooperating Validity Checker. In
14th International Conference on Computer-Aided Verification, 2002.

[19] A. Stump, R. Besand, J. Brodman, J. Hseu, and B. Kinnersley. From Rogue to
MicroRogue. In International Workshop on Rewriting Logic and Applications,
2004.

[20] A. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge University
Press, 2nd edition, 2000.

[21] D. Wu, A. Appel, and A. Stump. Foundational Proof Checkers with Small
Witnesses. In D. Miller, editor, 5th ACM-SIGPLAN International Conference
on Principles and Practice of Declarative Programming, 2003.

12


	Introduction
	Related Work
	Overview of RSP
	Meta-Programming Examples
	Proof-Producing Union-Find
	Imperative Deduction Theorem

	Mutable State and HOAS
	Conclusion and Future Work
	References

