
Representing Reductions of NP-Complete Problems in
Logical Frameworks — A Case Study

Jatin Shah
Yale University

jatin.shah@yale.edu

Carsten Schürmann
Yale University

carsten@cs.yale.edu

Abstract

Under the widely believed conjecture P6=NP, NP-complete problems cannot be
solved exactly using efficient polynomial time algorithms. Furthermore, any instance
of a NP-complete problem can be converted to an instance of another problem in NP
in polynomial time. Thus, identifying NP-complete problems is very important in
algorithm design and can help computer scientists and engineers redirect their efforts
towards finding approximate solutions to these problems. As a first step towards a
digital library for NP-complete problems, we describe a case study involving two well-
known NP-complete problems 3-SAT and CHROMATIC together with a reduction and
the corresponding soundness proof in a logical framework.

1 Introduction

Variables are omnipresent in mathematics and programming languages, computer algebra
systems and proof assistants. In the past a significant amount of work has been about the
treatment of variables in semantics, type theory, and concurrency theory. In this paper we
shift our focus of attention towards a different discipline, complexity theory, and examine
the requirements of a logical framework designed for representing graphs, formulas, and
reductions.

Representing complexity theoretical problems from the area of NP-complete problems
require concise formulations of the underlying mathematical domains, structures, and of
course, reductions. Variables range over scalars, graphs, edges, and nodes, with respective
operations such as substitution, expansion, deletion, or complement, most of which are not
directly supported by any existing logical framework. Of course, one can encode graphs as
adjacency matrices, or lists of edges and vertices, but these are not the techniques that we
strive to use in this paper. Instead we pursue the design a powerful and elegant logical
framework that is tailored for complexity theoretic problems, especially related to NP com-
pleteness, with an internalized concept of graph. To this end we report here on a case study
on two NP complete problems, 3-satisfiability (3-SAT) and the chromatic number of a graph
(CHROMATIC) and their encodings in the linear logical framework LLF [CP96].

1

When representing mathematical constructs, it is not only important how variables are
encoded, but also what operations are provided, and what meta theoretical behavior can
be expected. A standard technique for representing variables in logical frameworks with
induction principles, for example, often employ de Bruijn indices or strings, and consequently
environments, contexts, and substitutions are encoded as lists. In this setting, common
operations, such as the creation of new variable names, lookup, and substitution application
are left to the user, as is the derivation of necessary but often unwieldy meta-theoretic
consequences. Other logical frameworks, that have evolved out of the simply typed λ-
calculus, such as LF [HHP93] and LLF advocate the use of (linear) higher-order functions to
encode variable binders to encode object language variables unless they behave differently.
Closed under congruence, βη [Coq91] are the only rules of equality supported and therefore
neither of the two frameworks help directly with the encoding of graphs and their associated
functionality.

In a first preliminary case study we have encoded the reduction from the satisfiability of
conjunctive normal form (CNF) to the satisfiability problem of a conjunctive normal form
where each clause consists of exactly three literals (3-SAT) in LF, which does not depend
on graphs at all. One direction was proven with the meta theorem prover that is part of
the Twelf system [PS99]. The other direction required some amount of manual interaction
and eventually was also verified. The problem described in this paper of reducing from 3-
SAT to CHROMATIC is much more challenging because it relies crucially on the interaction
with graphs including the insertion of edges as well as the union of graphs. The reduction
described below is well-known [GJ79] and turns Boolean formulas in conjunctive normal
form into graphs by inserting two vertices for each variable (one that corresponds to the
positive form of the literal, the other to its negation) and a vertex for each individual clause.
Depending on the literals contained in each clause, new edges are inserted into the graph.

Upon completion the chromatic number for the resulting graph is at least as complex
to find as a model for the original Boolean formula. Because the reduction is polynomially
computable in the size of the formula , the NP completeness of CHROMATIC follows di-
rectly from 3-SAT being NP complete. The development presented in this paper gives a
deductive account for all concepts involved and describes an implementation that has been
type-checked in linear Twelf. Linear Twelf is a preliminary prototype implementation of
a extension of Twelf to constructs present in LLF. Unfortunately, linear Twelf is lacking
a termination and coverage checkers necessary to ensure that the present encoding really
constitutes a proof. We have however convincingly and satisfactorily verified these condi-
tions by hand. The source code of this development can be accessed from the our webpage
http://www.cs.yale.edu/~jds58/chromatic.elf.

This paper is organized in the following way. In Section 2, we describe two problems,
3-SAT and CHROMATIC, respectively, and formulate them in form of a inference system.
How to convert 3-SAT to CHROMATIC is described in Section 3 followed by Section 4 on
how to encode the problems and the respective reduction in LLF. In Section 5 we give a
correctness proof of the reduction, and show that it is indeed total. We assess results and
conclude with future work in Section 6. Excerpts of the implementation in linear Twelf is
given in the Appendix.

2

Boolean variables u, un

Boolean formulas f, fn ::= pos u | neg u | new u.f | fm ∧ fn | fm ∨ fn

Vertex variables v, w, x, . . . , vn, wn, xn, . . .
Edges e, en ::= edge v w
Graphs G, Gn ::= # | newv v.G | newe e : (vm, vn).G | Gm ∪Gn

Figure 1: Description of instances of Boolean formulas and graphs.

2 Two NP-Complete Problems

The two fundamental problems in NP that are studied in this paper are 3-satisfiability
(3-SAT) and chromatic number (CHROMATIC). We proceed by presenting them in the
familiar standard theoretical computer science discourse below followed by a reformulation
as an inference system. For more information about these and other NP-complete problems,
the reader is referred to Garey and Johnson [GJ79].

Definition 2.1 (3-SAT) Given a set U = {u1, u2, . . . , un} of Boolean variables and a con-
junctive normal form formula f = c1 ∧ c2 ∧ . . . cm on the Boolean variables in U such that
ci = li1 ∨ li2 ∨ li3,∀i = 1, . . . ,m and li1, li2, li3 ∈ U ∪ U where U = {ū1, ū2, . . . , ūm}. Is there
a truth assignment to the Boolean variables such that every clause in f is satisfied?

Definition 2.2 (CHROMATIC) Given a graph G = (V, E) where V is the set of vertices
and E is the set of edges, and a positive integer C. Is G C-colorable, i.e., does there exist a
function χ : V → {1, 2, . . . , C} such that χ(u) 6= χ(v) whenever {u, v} ∈ E?

3-SAT’s domain is that of propositional formulas with the usual connectives whereas
CHROMATIC’s domain is that of graphs consisting of vertices and edges. Boolean variables
are schematic and denoted with u1 . . . un. We omit the informal pictorial presentation of
graphs. For the purpose of representation in a formal system, however, the standard math-
ematical discourse of describing Boolean formulas, variables, and graphs is too informal and
too imprecise. Hence, a more formal way of representing these domains is in order, and this
is what is described in Figure 1. Besides Boolean variables, edges and vertices are considered
to be variables as well, giving rise to three respective binding constructs new, newv, and newe.
Without loss of generality, we assume that the individual conjuncts in a Boolean formula do
not contain references to new. Colors C can be thought of as integers.

Next, we capture the essence of 3-SAT and CHROMATIC, formally. Of course, each
of the definition can simply be expressed as a first-order formula enriched with predicates
that describe formulas and graphs. When using a logical framework, however, it is easier
to capture the respective meaning in form of two inference systems that are depicted in
Figures 2 and 3.

The statement that an instance of 3-SAT is a “Yes” instance, i.e. the Boolean formula
F has a model, is written as η ` F SAT where environments η contain assignments for the
free variables in F .

Environments: η ::= · | η, u → true | η, u → false

3

η, u → true ` (pos u) SAT
satp

η, u → false ` (neg u) SAT
satn

η ` F1 SAT η ` F2 SAT

η ` (F1 ∧ F2) SAT
sat∧

η ` F1 SAT

η ` (F1 ∨ F2) SAT
sat∨1

η ` F2 SAT

η ` (F1 ∨ F2) SAT
sat∨2

η, u → true ` F SAT
η ` new u.F SAT

satt
η, u → false ` F SAT

η ` new u.F SAT
satf

Figure 2: Inference rules for “Yes” instances of 3-SAT.

η ` # C COLORING
cgempty

C ′ ≤ C η, v → C ′ ` G C COLORING
η ` newv v.G C COLORING

cgvertex

C1 ≤ C C2 ≤ C C1 6= C2 η, A → C1, B → C2 ` G C COLORING

η, A → C1, B → C2 ` newe e : (A, B).G C COLORING
cgedge

η ` G1 C COLORING η ` G2 C COLORING

η ` (G1 ∪G2) C COLORING
cgunion

Figure 3: Inference rules for “Yes” instances of CHROMATIC.

Environments also satisfy the standard properties of intuitionistic contexts, such as weaken-
ing, strengthening and permutation, allowing us to use higher-order encodings to represent
them in a logical framework as discussed in Section 4.

Similarly, every “Yes” instance satisfying Definition 2.2 can be expressed as a derivation
in the inference system depicted in Figure 3. For any graph G and color C, the judgment
η ` G C COLORING means that the graph G can be colored with at most C colors where
colors for free vertices in G are colored as defined in η and no edge is connected to vertices
of same color. In this setting, we extend η to binds colors to vertices as well.

Environments: η ::= · · · | η, A → C

It is not hard to see that an instance of 3-SAT or CHROMATIC will have a deduction if and
only if it is a “Yes” instance. As an example, the proof that the Boolean formula ū1 ∧ u2 is

4

satisfiable is written as

·, u1 → false, u2 → true ` (neg u1) SAT
satn ·, u1 → false, u2 → true ` (pos u2) SAT

satp

·, u1 → false, u2 → true ` (neg u1) ∧ (pos u2) SAT
sat∧

·, u1 → false ` new u2.(neg u1) ∧ (pos u2) SAT
satt

· ` new u1.new u2.(neg u1) ∧ (pos u2) SAT
satf

However, it is important to note that the intractability of an NP-complete problem has
a mirror image in the world of inference systems as well. A graph G and a color C forms
an instance of Definition 2.2 if and only if a derivation of · ` G C COLORING exists, which
may involve checking all possible color assignments for vertices in the instance.

3 3-SAT CHROMATIC Reduction

A polynomial time reduction from 3-SAT to CHROMATIC consists in showing that there
exists a algorithm polynomial in the size of the Boolean formula that converts every instance
of 3-SAT to an instance of CHROMATIC such that all “Yes” instances of 3-SAT are mapped
to “Yes” instances of CHROMATIC and vice-versa. Instead of mapping a Boolean formula
F to a graph G, we shall use the inference system formulation from the previous section to
represent the polynomial time reduction as a total function mapping derivation of η ` F SAT
into derivations of η ` G C COLORING.

Following Karp [Kar72]1 and Lewis [Lew] we sketch the reduction first informally be-
fore formalizing it further. Suppose, we are given an instance of 3-SAT as described in
Definition 2.1.

1. For every variable ui, create vertices vi, v′
i and xi. For every clause cj, create a vertex

cj in the graph.

2. Connect the edges between these vertices as below:

(a) For every i, add an edge {vi, v
′
i}.

(b) For every i and j, add an edge {xi, xj} when i 6= j.

(c) For every i and j, add an edge {vi, xj} and {v′
i, xj} when i 6= j.

(d) For every i and j, add an edge {ci, vj} if uj does not appear in ci and an edge
{ci, v

′
j} if ūj does not appear in ci.

It is not hard to see that if the Boolean formula with n variables has a truth assignment
then the graph has a n+1-coloring and vice versa. Essentially, the construction given above
– connecting vi’s and v′

i’s to the clique on xi’s – forces creation of n true colors and one false
color.

A formalization of this reduction, again in form of a inference system is given in Figure 4.
The main judgment is of the form Γ; ∆ ` K � F ⇒C C ′, G, where Γ is a list of assumptions

1Karp’s reduction as printed is incorrect.

5

Γ, (u, v, v′, x); ∆, u ` K � F ⇒C+1 C ′, G

Γ; ∆ ` K � new u.F ⇒C C ′, newv v v′ x.newe e : (v, v′).G
convnew

Γ; ∆ ` K; F � F ′ ⇒C C ′, G

Γ; ∆ ` K � F ∧ F ′ ⇒C C ′, G
conv∧

Γ; ∆ ` K; (F1 ∨ F2 ∨ F3) ⇒ G1 Γ; ∆ ` G2 CLIQUE Γ; ∆ ` G3 VARS-TO-CLIQUE

Γ; ∆ ` K � (F1 ∨ F2 ∨ F3) ⇒C C, G1 ∪G2 ∪G3
convb

Γ; ∆ ` · ⇒ #
cconv base

Γ; ∆ ` K ⇒ G1 Γ; ∆ ` F ⇒ G2

Γ; ∆ ` K; F ⇒ G1 ∪G2
cconv cont

Γ, (u1, v1, v
′
1, x1), (u2, v2, v

′
2, x2), (u3, v3, v

′
3, x3); ∆ ` c ↓ G

Γ, (u1, v1, v
′
1, x1), (u2, v2, v

′
2, x2), (u3, v3, v

′
3, x3); ∆, u1, u2, u3 ` (pos u1) ∨ (pos u2) ∨ (pos u3)

⇒ newv c.newe e1 : (c, v′
1) e2 : (c, v′

2) e3 : (c, v′
3).G

conv5

(39 similar rules omitted)

Γ; · ` C ↓ #
conv base

Γ, (u, v, v′, x); ∆ ` C ↓ G

Γ, (u, v, v′, x); ∆, u ` C ↓ newe e : (C, v) e′ : (C, v′)
conv cont

Γ; · ` # CLIQUE
clique #

Γ, (u, v, v′, x); ∆ ` G1 CLIQUE Γ; ∆ ` CONNECTX x G2

Γ, (u, v, v′, x); ∆, u ` (G1 ∪G2) CLIQUE
clique vtx

Γ; · ` # VARS-TO-CLIQUE
vars2clique #

Γ, (u, v, v′, x); ∆ ` G1 VARS-TO-CLIQUE Γ, (u, v, v′, x); ∆ ` CONNECTX v G2

Γ, (u, v, v′, x); ∆ ` CONNECTX v′ G3

Γ, (u, v, v′, x); ∆ ` CONNECTV x G4

Γ, (u, v, v′, x); ∆, u ` (G1 ∪G2 ∪G3 ∪G4) VARS-TO-CLIQUE
vars2clique vtx

Γ; · ` CONNECTV X #
connectV #

Γ, (u, v, v′, x′); ∆ ` CONNECTV X G

Γ, (u, v, v′, x′); ∆, u ` CONNECTV X newe e : (X, v) e′ : (X, v′).G
connectV vtx

Γ; · ` CONNECTX X #
connectX #

Γ, (u, v, v′, x′); ∆ ` CONNECTX X G

Γ, (u, v, v′, x′); ∆, u ` CONNECTX X newe e : (X, x′).G
connectX vtx

Figure 4: Linear LF representation of 3-SAT CHROMATIC reduction.

6

of the form (u, v, v′, x) representing a relationship between a free Boolean variable in F and
its corresponding free graph vertices in G. ∆ is a list of Boolean variables accumulated
during the traversal of a Boolean formula when the reduction algorithm runs. Eventually,
it will contain all free Boolean variables in F . We also maintain two variables C and C ′: C
is incremented every time we see a new variable and C ′ corresponds to the total number of
variables. Intuitively, the C contains the information which vertex to color with which color.
All clauses that are contained in the Boolean formula prompt the insertion of edges into the
graph corresponding to step (d) of the conversion algorithm. We achieve this by maintaining
a “continuation” stack of clauses that were already encountered but not yet processed. The
language of continuation stack is given below. Here init is the initial continuation, indicating
that we have no more clauses left. Pfenning [Pfe01] describes continuations and their usage
in compilation of expressions in considerable detail.

Continuations K ::= init | K; f

Thus, these inference rules allow us to build a valid deduction for a judgment Γ; ∆ ` K�F ⇒C

C ′, G if and only if the conversion algorithm given above converts the Boolean formula
represented by combining the clauses in F and K to the graph G; C should always be more
than the free Boolean variables in F and C ′ is the total number of Boolean variables in F .

The edges in step (a) are added immediately when we encounter a new variable in rule
convnew, the edges in step (b) are added through the inference rules associated with judg-
ment Γ; ∆ ` G CLIQUE, the edges in step (c) are added through the inference rules associated
with Γ; ∆ ` G VARS-TO-CLIQUE.

In step (d), we create a vertex corresponding to every clause and add edges connecting the
clause to vertices corresponding to literals not in the clause. These edges are added through
the inference rules associated with Γ ∆ ` K; F ⇒ G. We are only considering clauses with
three literals and hence there are 40 different kinds of clauses: each of the 3 literals can have
a variable appearing as itself or as its complement, giving us 8 choices and each clause can
have up to 3 distinct variables, giving us 5 choices2. For the sake of conciseness we give only
one representative rule conv5 in Figure 4, the reader may guess what the other 39 rules look
like.

The predicate CONNECTX adds an edge between its first argument and every vertex
among the resource in ∆. We note that once we access a vertex in ∆, it is subsequently re-
moved from it (see for example rules conv5, conv cont,clique vtx, vars2clique vtx,connectV vtx,
and connectX vtx). We build the clique recursively. First, we access a vertex among all re-
sources in ∆, thereby removing it from the context. We add an edge between this vertex and
all other vertices in the context. Then we merge it with the clique created recursively from
the remaining vertices in the context (see rule clique vtx). Consequently, ∆’s properties are
best described as those of the linear context in the sense of linear logic [Gir87].

If a Boolean formula F has n variables, 0 free variables and m clauses, then the number of
inference rules used in the derivation ·; · ` init �F ⇒z C, G are m+n+1 (each new variable
corresponds to the inference rule convnew, each clause corresponds to the inference rule

2When variables appear only positively in each of the 3 literals, the 5 choices are: (pos u1) ∨ (pos u1) ∨
(pos u1), (pos u1)∨(pos u1)∨(pos u2), (pos u1)∨(pos u2)∨(pos u1), (pos u2)∨(pos u1)∨(pos u1), (pos u1)∨
(pos u2) ∨ (pos u3)

7

conv∧ and there is one base case). Further, the deductions for the judgments Γ; ∆ ` K ⇒ G1,
Γ; ∆ ` G2 CLIQUE, and Γ; ∆ ` G3 VARS-TO-CLIQUE have height O(n). Hence, the total
number of inference rules used in the derivation of the reduction is O(m + n). Thus, the
proposed reduction algorithm is in P, moreover, the way how the reduction algorithm is
specified renders it directly amenable to being implemented in a logical framework which we
discuss next.

4 Representation in a Logical Framework

A logical framework is a meta-language that serves the representation of deductive system
defined in terms of judgments and inference rules in a type theory. Several frameworks
are available, we mention only few such as Isabelle [Pau94], Lego [LP92], LF [HHP93] or
LLF [CP96]. For a good overview about logical framework research, consult [Pfe99]. In
pursuit of the overall goal of this work, the design of a digital library for complexity theoretic
problems, special attention must be paid to the simplicity with which complexity theoretic
problems are to be formulated by the user. Therefore, for this particular case study, our
choice has fallen on LLF, mostly because the representation of Γ and ∆ behave just like the
intuitionistic and the linear context provided by the framework. And indeed, the entire the
development so far through Sections 2 and 3 has been implemented and type checked in a
prototype implementation for LLF and the interested reader can get a feel for the encoding
in Appendix A – C. Also the correctness proof still to be discussed has been implemented
in linear Twelf.

LLF is a conservative extension over LF and incorporates three connectives from linear
logic, namely multiplicative implication ((), additive conjunction (&) and additive truth (>).
It is a two zone system that explicitly distinguishes between intuitionistic assumptions (that
play the role of Γ), and linear assumptions (that play the role of resources ∆). In a derivation,
linear assumptions can only be used exactly once. The few main axiom and introduction
rules of linear logic connectives and their intuitionistic counterparts are given in Figure 5.
Note that the additive conjunction (&) allows the use of the same set of linear assumptions
for proving both the conjuncts and multiplicative implication (() puts a linear assumption
into the linear context. The rule Iaxiom expresses that an intuitionistic assumption can only
be used if no linear assumptions are present as opposed to the Laxiom rule that consumes
one single linear assumption.

LLF supports the judgments-as-types methodology for representation and incorporates
the aforementioned linear connectives as type constructors. In addition, each rule is endowed
with a proof objects that correspond to the introduction and elimination forms as shown
below.

Objects M ::== λ̂x : A.M | M1̂M2 (Linear functions)
| 〈M1, M2〉 | FST M | SND M (Additive conjunction)
| 〈〉 (Additive unit element)

Thus, a linear LF representation for the judgment Γ; ∆ ` J is pΓq → p∆q (pJq
where pΓq, p∆q and pJq are linear LF representations of Γ, ∆ and J respectively. And

8

Γ, A; · ` A
Iaxiom

Γ; ∆, A ` A
Laxiom

Γ; ∆ ` > Top

Γ; ∆1 ` A Γ; ∆2 ` B

Γ; ∆1, ∆2 ` A×B
×− I

Γ; ∆ ` A Γ; ∆ ` B

Γ; ∆ ` A&B
&− I

Γ, A; ∆ ` B

Γ; ∆ ` A → B
→ −I

Γ; ∆, A ` B

Γ; ∆ ` A (B
(−I

Figure 5: A fragment of linear logic.

finding a proof is equivalent to finding an object of the corresponding type generated from
the language of LF objects augmented as above.

Although LLF supports quite elegant representations of Boolean formulas and graphs
given in Figure 1, there is something unsatisfying about the way the reduction is laid out
in Figure 4. The linear context is used as an auxiliary concept for computing cliques, and
to connect a vertex to all remaining vertices in a graph. Additive conjunction is used to
pass this auxiliary information to the other relevant judgments. The graph isomorphism
problem is not relevant for this particular case study, but might be in the general case, as
are other operations such as the intersection of two graphs, or the expansion of a node in
graph by another graph. To decide it in LLF would require the user to encode it explicitly
— a complicated operation that is prone for error and difficult to reason about. Our graph
representation stores all vertices and edges in a graph together with the superfluous history
in which order vertices and edges were inserted. Thus, adequacy of the representation is
guaranteed.

The linear Twelf code for all inference rules shown so far can be directly derived from the
judgments-as-types methodology underlying LLF. The translations where the environment
mapping is extended such as the rules satt and satf for 3-SAT and cgvertex and cgedge for
CHROMATIC use hypothetical judgments. These assignments are represented by type fam-
ilies hyp and colorvertex for the case of Boolean variables and graph vertices respectively.
We give some of these rules here in Figure 6 the complete code is given in the Appendices A
and B. Let U and V be LLF types, and M an LLF object. In concrete syntax, we write
{x:U}V for the dependent type Πx : U.V , and [x:U]M for the higher-order term λx : U.M .
As usual, where convenient we omit the leading block of Π quantifiers from constant decla-
rations to improve readability. Furthermore we write U -o V for the linear function type
U (V , and U & V for the additive conjunction U&V . Figure 7 depicts an encoding of
the rules that construct a graph clique. Note, how the harmless looking & in clique vtx is
responsible for duplicating the context ∆ in rule clique vtx in Figure 4.

9

hyp : v -> b -> type. colorvertex : vertex -> nat -> type.

sat : o -> type. coloring : nat -> graph -> type.

satp : sat (pos A) cg# : coloring C #.

<- hyp A true. cgvertex : coloring C (newv [v] (G v))

sat/\ : sat (F1 /\ F2) <- (C’ <= C)

<- sat F1 <- (v:vertex colorvertex v C’

<- sat F2. -> coloring C (G v)).

satnewt : sat (new F)

<- (v:v hyp v true -> sat (F v)).

Figure 6: Encoding of selected rules in LLF.

clique : graph -> type.

connectX : vertex -> graph -> type.

clique vtx : (var U -o clique (G + G’))

<- clique G & connectX X G’

<- relate U X.

clique # : clique #.

connectX vertex : (var U -o connectX X (newe [e:edge X X’] G))

<- relate U X’

<- connectX X G.

connectX # : connectX X #.

Figure 7: Encoding of cliques in LLF.

5 Correctness

In this section, we show that the conversion from 3-SAT to CHROMATIC maps all “Yes”
instances of 3-SAT to “Yes” instances of CHROMATIC and vice-versa. This section presents
a sequence of lemmas cumulating in Theorem 5.7. All lemmas and theorems presented
in this Section have been encoded as relations in LLF and type checked in the prototype
implementation of linear Twelf. The source code for this development is given in Appendix D.
Although type checking is not enough to guarantee that the source code constitutes a proof,
we have convinced ourselves that all cases are covered and the underlying induction principle
is sound.

With the deductive description of the reduction algorithm from Figure 4, we first establish
the invariant property about the assumptions in Γ with respect to the context η as used in
Figure 2 and 3. First, it relates the truth value of each Boolean variable in 3-SAT with the
color assignment to each vertex in CHROMATIC and second it guarantees that all vertices
in the context are assigned distinct colors. That the intuitionistic LLF context as image of
Γ satisfies the second part at all times is a global property of the context and can currently
only be enforced by manual inspection.

10

Definition 5.1 (Valid environments) For any Boolean variables u1, u2, . . . , un and ver-
tices v1, v2, . . . , vn;v

′
1, v

′
2, . . . , v

′
n and x1, x2, . . . , xn, let

Γ = (u1, v1, v
′
1, x1), (u2, v2, v

′
2, x2), . . . , (un, vn, v

′
n, xn)

and η = u1 → B1, u2 → B2, . . . , un → Bn where Bi ∈ {true, false} and C be any color. An
environment η′ is said to be valid under environments Γ and η and color C if

η′ =

x1 → C1, x2 → C2, . . . , xn → Cn

v1 → C ′
1, v2 → C ′

2, . . . , vn → C ′
n

v′
1 → C ′′

1 , v2 → C ′′
2 , . . . , v′

n → C ′′
n

Ci’s are distinct, Ci ≤ C and

C ′
i =

{
Ci if Bi = true
c0 if Bi = false

C ′′
i =

{
c0 if Bi = true
Ci if Bi = false

We begin now with the presentation of the individual lemmas. First, we describe an
infrastructure lemma about properties of colors. If integers were available as constraint
domain in linear Twelf as they are in the non-linear version of Twelf (which they are not),
colors could have been encoded directly as integers rendering this lemma unnecessary.

Lemma 5.2 (Properties of colors) Let C and C ′ be colors. The following properties hold:
(1) If C < C ′ then C < C ′+1. (2) If C ′ ≤ C then C ′ ≤ C+1. (3) If C = C ′ then C < C ′+1.
(4) If C ≤ C. (5) If C < C + 1. (6) If C < C ′ then C 6= C ′. (7) If C < C ′ then C ≤ C ′.
(8) If C < C ′ then C < C ′ + 1.

The proofs are straightforward, and omitted (even from the appendix). We refer, however,
to these properties in the appendix in form of type families lemma1 – lemma8. Next, we
prove the basic property of graph coloring that is a graph that is colorable with C colors is
also colorable with C + 1 colors.

Theorem 5.3 (Coloring preservation) For any graph G and a color C, if D :: η `
G C COLORING then there exists D′ :: η ` G (C + 1) COLORING.

Proof: The proof proceeds by induction over the height of derivation D. We have four
cases depending on whether the derivation D ends in cg#, cgvertex, cgedge or cgunion (see
figure 3); the case cg# is the base case. The proof follows naturally using Lemma 5.2 (2). �

In LLF, this proof is represented as a relation over D and D′, i.e. pDq :coloring C G

and pD′q :coloring (s C) G. This relation is implemented as a type family

increase color : coloring C G -> coloring (s C) G -> type.

where each of the cases of the proof is represented as a declaration as given in Appendix C.
We show some excerpts from the signature below. The declarations of increase_vtx and
increase_union correspond to the cases when the derivation D ends in cgvertex and
cgunion respectively.

11

increase_vtx : increase_color (cgvertex CG E) (cgvertex CG’ E’)

<- ({v:vertex}{c:colorvertex v C’}

increase_color (CG v c) (CG’ v c))

<- lemma2 E E’.

increase_union : increase_color (cgunion CG1 CG2) (cgunion CG1’ CG2’)

<- increase_color CG1 CG1’

<- increase_color CG2 CG2’.

The lemmas given below prove that the edges added in the steps (b), (c) and (d) of the
conversion algorithm do not connect vertices assigned the same color.

Lemma 5.4 (Clique Coloring) For any graph G: Let x1, x2, . . . , xn be the free variables in
G and u1, u2, . . . , un be Boolean variables. Let Γ = (u1, , , x1), (u2, , , x2), . . . , (un, , , xn)
and ∆ = u1, u2, . . . , un.

If D :: Γ; ∆ ` G CLIQUE and C ≥ c0 +n then there exists G :: η ` G C COLORING where
η = x1 → C1, x2 → C2, . . . , xn → Cn, Ci’s are distinct and Ci ≤ C.

Proof: Since, the inference rules for CLIQUE only connect the different xi’s and these vertices
are colored with distinct colors, the proof follows by induction. An encoding of the individual
cases of type family clique_color is given in Appendix D. �

Lemma 5.5 (Coloring of graph created from edges between variables and clique)
For any graph G: Let v1, v2, . . . , vn;v

′
1, v

′
2, . . . , v

′
n and x1, x2, . . . , xn be the free variables in G

and u1, u2, . . . , un be Boolean variables. Let

Γ = (u1, v1, v
′
1, x1), (u2, v2, v

′
2, x2), . . . , (un, vn, v

′
n, xn)

and ∆ = u1, u2, . . . , un. Let η = u1 → B1, u2 → B2, . . . , un → Bn where Bi ∈ {true, false}. If
D :: Γ; ∆ ` G VARS-TO-CLIQUE and C ≥ c0 + n then there exists G :: η′ ` G C COLORING
where η′ is valid under environments Γ, η and color C.

Proof: The inference rules for VARS-TO-CLIQUE only connect vi to xj and v′
i to xj if

i 6= j. These pairs of vertices are never assigned same colors if η′ is a valid environment.
The proof follows again by induction. An encoding of the individual cases of type family
connect2clique is given in Appendix D. �

Lemma 5.6 (Coloring of graph created from the clauses) For any continuation K and
a graph G: Let u1, u2, . . . , un be the free variables in K and v1, v2, . . . , vn;v

′
1, v

′
2, . . . , v

′
n be the

free variables in G. Let

Γ = (u1, v1, v
′
1,), (u2, v2, v

′
2,), . . . , (un, vn, v

′
n,)

and ∆ = u1, u2, . . . , un. Let η = u1 → B1, u2 → B2, . . . , un → Bn where Bi ∈ {true, false}. If
D :: Γ; ∆ ` K ⇒ G and C ≥ c0 + n then

E :: η ` K SAT

12

iff
G :: η′ ` G C COLORING

where η′ is valid under environments Γ, η and color C.

Proof: If the truth assignment in η satisfies all the clauses in K, then we color every clause
vertex cj with the color assigned to the literal which satisfies that clause, i.e. if the literal
ui appears in cj and is true then we assign cj with color of vi (as defined in η′) and if the
literal ūi appears in ci and is false then we assign cj with color of v′

i (as defined in η′). In
other words, we color each cj with a true color. Since, we have n distinct true colors and cj

is connected to vertices corresponding to literals not in cj, we do not add any edges between
vertices with same color. The other direction is similar. The formal proof is by induction
and each of the cases of the only if part is encoded into declarations of the type family
conv’ color in Appendix D. �

Theorem 5.7 (Main Theorem) For any continuation K, Boolean formula F and graph
G: Let u1, u2, . . . , un be the free variables in F and K. Let v1, v2, . . . , vn;v

′
1, v

′
2, . . . , v

′
n and

x1, x2, . . . , xn be the free variables in G. Let

Γ = (u1, v1, v
′
1, x1), (u2, v2, v

′
2, x2), . . . , (un, vn, v

′
n, xn)

and ∆ = u1, u2, . . . , un. Let η = u1 → B1, u2 → B2, . . . , un → Bn where Bi ∈ {true, false}. If
D :: Γ; ∆ ` K � F ⇒C C ′, G and C ≥ c0 + n then

E :: η ` F SAT,F :: η ` K SAT

iff
G :: η′ ` G C ′ COLORING

where η′ is valid under environments Γ and η and color C ′.

Proof: (Sketch) We note that C ′ is at least n, so we always have n distinct colors. The
proof follows by induction on the height of the derivation D using lemmas 5.4, 5.5 and 5.6.
The only if part of the proof is represented in linear Twelf by a type family

reductionf : {C:nat} conv F C C’ K G -> sat F -> satK K

-> coloring C’ G -> type.

It encodes the relation between color C, representations of the derivations D, E , F and G,
i.e. pDq : conv F C C’ K G, pEq : sat F, pFq : satK K, pGq : coloring C G. The
implementation of each case is direct and the corresponding encoding is given in Appendix D.
Because each Γ is valid “by construction”, it need not be included into the formulation of the
theorem, and we can always take advantage of it whenever needed in the proof; the relevant
type families are necolor and lecolor shown in the Appendix D. �

13

6 Conclusion and Future Work

In this paper, we have given a deductive account for a reduction from 3-satisfiability to
chromatic number. All inference systems and all proofs presented in this paper have been
implemented in the linear logical framework LLF. We believe this to be the first attempt
to employ logical framework technology for representing and reasoning with NP-complete
problems. Eventually we plan to develop a digital library of NP-complete problems, that con-
tains problems domains, reductions, and correctness proofs, and a powerful query language
to retrieve them.

Central to the representation of a whole range of NP-complete and many other problems
in computer science is the notion of a graph. Graphs are not first class citizens neither in
logical frameworks nor in computer algebra systems. On the other hand they are so common
in this particular problem domain that a search for a graph oriented logical framework is
warranted. This case study has exposed some of short-comings of our way of encoding graphs.
First, variables that range over graphs behave differently than variables of the λ-calculus.
What does it mean for a graph to be substituted into a variable that ranges over graphs?
How shall incoming edges be relinked if a subgraph is replaced by a variable? Second,
linearity plays an essential role in our construction of cliques, which makes graph related
operations somewhat clumsy to express. Other operations, such as deciding if two graphs
are isomorphic are neither primitive nor easy to implement, if definitional equality is based
on βη-rules exclusively. In this light, the work described in this paper should not be seen as
an answer, more as an initial step towards understanding the basic design requirements of
such a graph oriented logical framework.

The nature of this case study exposes a challenge for coverage checking algorithms [SP03]
predominantly used in logical frameworks as well. For example, an environment was defined
to be valid only if all colors assigned to vertices are pairwise different. This is a global
property that cannot easily be enforced locally as required in the proof of main theorem.
Currently, invariants of this kind are not supported neither by the coverage checker imple-
mented in Twelf nor the meta-logics for LF [Sch00] or LLF [MS03]. Consequently, further
research and implementation work are necessary to provide coverage checking and automated
theorem proving support for all lemmas and theorems contained in this paper.

And finally, any valid reduction between two NP complete problems must be a polynomial
time reduction. It is possible to argue that this is indeed the case by examining the size of
the derivations involved. What is left to do is to develop polytime checker for LF and LLF
signatures, respectively.

Acknowledgements. We would like to thank Dana Angluin for raising our interest in
studying the relationship between logical frameworks and complexity theory and the many
discussions related to the subject.

References

[Coq91] Thierry Coquand. An algorithm for testing conversion in type theory. In Gérard
Huet and Gordon Plotkin, editors, Logical Frameworks, pages 255–279. Cambridge

14

University Press, 1991.

[CP96] Iliano Cervesato and Frank Pfenning. A linear logical framework. In E. Clarke,
editor, Proceedings of the Eleventh Annual Symposium on Logic in Computer Sci-
ence — LICS’96, pages 264–275, New Brunswick, New Jersey, 27–30 July 1996.
IEEE Computer Society Press.

[Gir87] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-completeness. W. H. Freeman and Co., 1979.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.
Journal of the Association for Computing Machinery, 40(1):143–184, January 1993.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In Raymond E.
Miller and James W. Thatcher, editors, Complexity of computer computations,
pages 85–103. Plenum Press, New York, NY, 1972.

[Lew] F. D. Lewis. Solving NP-Complete Problems. World Wide Web,
http://cs.engr.uky.edu/ lewis/cs-heuristic/text/contents.html. This is a web-
version of a work in progress.

[LP92] Zhaohui Luo and Robert Pollack. The LEGO proof development system: A user’s
manual. Technical Report ECS-LFCS-92-211, University of Edinburgh, May 1992.

[MS03] Andrew McCreight and Carsten Schürmann. A meta linear logical framework.
Draft, 2003.

[Pau94] Lawrence C. Paulson. Isabelle: A Generic Theorem Prover. Springer-Verlag LNCS
828, 1994.

[Pfe99] Frank Pfenning. Logical frameworks. In Alan Robinson and Andrei Voronkov,
editors, Handbook of Automated Reasoning. Elsevier Science Publishers, 1999. In
preparation.

[Pfe01] Frank Pfenning. Computation and Deduction. Cambridge University Press, 2001.

[PS99] Frank Pfenning and Carsten Schürmann. System description: Twelf — a meta-
logical framework for deductive systems. In H. Ganzinger, editor, Proceedings
of the 16th International Conference on Automated Deduction (CADE-16), pages
202–206, Trento, Italy, July 1999. Springer-Verlag LNAI 1632.

[Sch00] Carsten Schürmann. Automating the Meta-Theory of Deductive Systems. PhD
thesis, Carnegie Mellon University, 2000. CMU-CS-00-146.

[SP03] Carsten Schürmann and Frank Pfenning. A coverage algorithm for LF. In Pro-
ceedings of Theorem Proving in Higher-order Logics (TPHOLs), Rome, 2003. To
appear.

15

A Encoding of 3-SAT

% Boolean variables
v : type. % Variables
b : type. % Boolean Domain
true : b.
false : b.

% Boolean Formulae
o : type.
/\ : o -> o -> o. %infix right 10 /\.
\/ : o -> o -> o. %infix right 10 \/.
pos : v -> o.
neg : v -> o.
new : (v -> o) -> o.

% Encoding ’Yes’ instances of 3-SAT
hyp : v -> b -> type.
sat : o -> type.
satp : sat (pos A)

<- hyp A true.
satn : sat (neg A)

<- hyp A false.
sat/\: sat (F1 /\ F2)

<- sat F1
<- sat F2.

sat\/1: sat (F1 \/ F2)
<- sat F1.

sat\/2: sat (F1 \/ F2)
<- sat F2.

satnewt: sat (new F)
<- ({v:v} hyp v true -> sat (F v)).

satnewf: sat (new F)
<- ({v:v} hyp v false -> sat (F v)).

B Encoding of CHROMATIC

% Representation of graphs
vertex : type.
edge : vertex -> vertex -> type.
graph : type.
: graph. % Empty Graph
newv : (vertex -> graph) -> graph.
newe : (edge A B -> graph) -> graph.
+ : graph -> graph -> graph. %infix right 10 +.

% Colors -- Proofs Omitted
nat : type.
z : nat.
s : nat -> nat.
!= : nat -> nat -> type. %infix right 10 !=.
< : nat -> nat -> type. %infix right 10 <.

16

== : nat -> nat -> type. %infix right 10 ==.
<= : nat -> nat -> type. %infix left 10 <=.
% Some theorems about colors
lemma1 : C < C’ -> C < (s C’) -> type.
lemma2 : C <= C’ -> C <= (s C’) -> type.
lemma3 : C == C’ -> C < (s C’) -> type.
lemma4 : C <= C -> type.
lemma5 : C < (s C) -> type.
lemma6 : C < C’ -> C != C’ -> type.
lemma7 : C < C’ -> C <= C’ -> type.
lemma8 : C < C’ -> C < (s C’) -> type.

% Encoding ’Yes’ instances of CHROMATIC
colorvertex : vertex -> nat -> type.
coloring : nat -> graph -> type.
cg# : coloring N #.
cgvertex : coloring C (newv [v] (G v))

<- (C’ <= C)
<- ({v:vertex} colorvertex v C’ -> coloring C (G v)).

cgedge : coloring C (newe [e: edge A B] G)
<- colorvertex A C1
<- colorvertex B C2
<- C1 != C2
<- C1 <= C
<- C2 <= C
<- coloring C G.

cgunion : coloring C (G1 + G2)
<- coloring C G1
<- coloring C G2.

% A property of graph coloring
increase_color : coloring C G -> coloring (s C) G -> type.
increase_# : increase_color cg# cg#.
increase_vtx : increase_color (cgvertex CG E) (cgvertex CG’ E’)

<- ({v:vertex}{c:colorvertex v C’} increase_color (CG v c) (CG’ v c))
<- lemma2 E E’.

increase_edge : increase_color (cgedge CG E2 E1 E3 C1 C2) (cgedge CG’ E2’ E1’ E3 C1 C2)
<- increase_color CG CG’
<- lemma2 E2 E2’
<- lemma2 E1 E1’.

increase_union : increase_color (cgunion CG1 CG2) (cgunion CG1’ CG2’)
<- increase_color CG1 CG1’
<- increase_color CG2 CG2’.

C Encoding of 3-SAT CHROMATIC Reduction

% Continuations
stack : type.
empty : stack.
; : stack -> o -> stack. %infix right 10 ;.

% Satisfiability for continuations

17

satK : stack -> type.
satKempty : satK empty.
satK; : satK (K ; F)

<- satK K
<- sat F.

% Encoding of 3-SAT CHROMATIC reduction
var : v -> type.
relate : v -> vertex -> vertex -> vertex -> type.
conv : o -> nat -> nat -> stack -> graph -> type.
conv’ : stack -> graph -> type.
conv’’ : o -> graph -> type.
conv’’’ : vertex -> graph -> type.
clique : graph -> type.
connectX : vertex -> graph -> type.
connectV : vertex -> graph -> type.
connect2clique : graph -> type.
convnew: conv (new F) C C’ K (newv [v] newv [v’] newv [x] newe [e:edge v v’] (G v v’ x))

<- ({u:v} {v:vertex} {v’:vertex} {x:vertex} relate u v v’ x -> var u
-o conv (F u) (s C) C’ K (G v v’ x)).

conv/\: conv (F /\ F’) C C’ K G
<- conv F’ C C’ (K ; F) G.

conv3: conv (F1 \/ F2 \/ F3) C C K (G + G’ + G’’)
<- conv’ (K ; (F1 \/ F2 \/ F3)) G & clique G’ & connect2clique G’’.

% Adding edges between clauses and all literals not in the clause
conv’init: conv’ empty # o- <T>. % Consume rest of the linear context
conv’cont: conv’ (K ; F) (G’ + G’’)

<- conv’ K G’ & conv’’ F G’’.

conv’’1: (var U -o conv’’ ((pos U) \/ (pos U) \/ (pos U))
(newv [c] newe [e:edge c V’] (G c)))

<- ({c:vertex} conv’’’ c (G c))
<- relate U V V’ _.

conv’’2: (var U1 -o var U2 -o conv’’ ((pos U1) \/ (pos U1) \/ (pos U2))
(newv [c] newe [e1:edge c V1’] newe [e2:edge c V2’] (G c)))

<- ({c:vertex} conv’’’ c (G c))
<- relate U1 V1 V1’ _
<- relate U2 V2 V2’ _.

conv’’3: (var U1 -o var U2 -o conv’’ ((pos U1) \/ (pos U2) \/ (pos U1))
(newv [c] newe [e1:edge c V1’] newe [e2:edge c V2’] (G c)))

<- ({c:vertex} conv’’’ c (G c))
<- relate U1 V1 V1’ _
<- relate U2 V2 V2’ _.

conv’’4: (var U1 -o var U2 -o conv’’ ((pos U2) \/ (pos U1) \/ (pos U1))
(newv [c] newe [e1:edge c V1’] newe [e2:edge c V2’] (G c)))

<- ({c:vertex} conv’’’ c (G c))
<- relate U1 V1 V1’ _
<- relate U2 V2 V2’ _.

conv’’5: (var U1 -o var U2 -o var U3 -o conv’’ ((pos U1) \/ (pos U2) \/ (pos U3))
(newv [c] newe [e1:edge c V1’] newe [e2:edge c V2’]

newe [e3: edge c V3’] (G c)))
<- ({c:vertex} conv’’’ c (G c))

18

<- relate U1 V1 V1’ _
<- relate U2 V2 V2’ _
<- relate U3 V3 V3’ _.

% There are 35 more similar inference rules: Each ’pos’ can be replaced by
% ’neg’ independently of others

conv’’’_vtx: (var U -o conv’’’ C (newe [e: edge C V] newe [e’: edge C V’] G))
<- (conv’’’ C G)
<- relate U V V’ _.

conv’’’_#: conv’’’ C #.

% Encoding of clique construction
clique_vtx : (var U -o clique (G + G’))

<- clique G & connectX X G’
<- relate U _ _ X.

clique_# : clique #.

% Adds edges between the vertex X and all x-vertices in the context
connectX_vertex : (var U -o connectX X (newe [e:edge X X’] G))

<- relate U _ _ X’
<- connectX X G.

connectX_# : connectX X #.

% Connect vertices corresponding to the variables to the clique
connect2clique_vtx : (var U -o connect2clique (G + G’ + G’’ + G’’’))

<- connect2clique G & connectX V G’ & connectX V’ G’’ &
connectV X G’’’

<- relate U V V’ X.
connect2clique_# : connect2clique #.

%
connectV_vertex : (var U -o connectV X (newe [e:edge V X] newe [e’:edge V’ X] G))

<- relate U V V’ _
<- connectV X G.

connectV_# : connectV X #.

% A Property of 3-SAT CHROMATIC Reduction
conv_lemma : conv F C C’ K G -> (C <= C’) -> type.
convlem_base : conv_lemma (conv3 D) E

<- lemma4 E.
convlem_/\ : conv_lemma (conv/\ D) E

<- conv_lemma D E.
convlem_new : conv_lemma (convnew D) E

<- ({u:v}{v:vertex}{v’:vertex}{x:vertex}{r:relate u v v’ x}{var: var u}
conv_lemma (D u v v’ x r ^ var) (<=s E’))

<- lemma2 E’ E. % Proof of: (s C) <= C’ ==> C <= C’

19

D Correctness of Encoding of 3-SAT CHROMATIC

Reduction

% Correctness of CONNECTX: CONNECTX does not add edges between vertices
% having same color
connectX_color : {C:nat} colorvertex X C’ -> (C < C’) -> connectX X G

-> coloring C’ G -> type.
connectXc_base: connectX_color z CGX E connectX_# cg#.
connectXc_cont: {R:relate _ _ _ X1}{CGX1:colorvertex X1 (s C)}

connectX_color (s C) CGX (<s E) (connectX_vertex D R ^ V)
(cgedge CG F2 F1 NE CGX1 CGX)

<- connectX_color C CGX E’ D CG
<- lemma8 E E’
<- lemma4 F1
<- lemma6 (<s E) NE
<- lemma7 (<s E) F2.

connectX_color’ : {C:nat} colorvertex X z -> connectX X G -> coloring (s C) G -> type.
connectXc’_base: connectX_color’ z CGX connectX_# cg#.
connectXc’_cont: {R:relate _ _ _ X1}{CGX1:colorvertex X1 (s C)}

connectX_color’ (s C) CGX (connectX_vertex D R ^ V)
(cgedge CG E’ <=z !=z1 CGX1 CGX)

<- connectX_color’ C CGX D CG’
<- increase_color CG’ CG
<- lemma5 E
<- lemma7 E E’.

% Correctness of encoding of Clique
clique_color : {C:nat} clique G -> coloring C G -> type.
cliquec_base : clique_color z clique_# cg#.
cliquec_cont : {R:relate _ _ _ X}{CGX:colorvertex X (s C)}

clique_color (s C) (clique_vtx R (D1 , D2) ^ V) (cgunion CG1 CG2)
<- clique_color C D1 CG1’
<- increase_color CG1’ CG1
<- lemma5 E % Proof of C < (s C)
<- connectX_color C CGX E D2 CG2.

% Correctness of CONNECTV
connectV_color : {C:nat} colorvertex X C’ -> (C < C’) -> connectV X G

-> coloring C’ G -> type.
connectVc_base: connectV_color z CGX E connectV_# cg#.
connectVc_cont1: {R:relate _ V1 V1’ X1}{CGV1:colorvertex V1 (s C)}

{CGV1’:colorvertex V1’ z}
connectV_color (s C) CGX (<s E) (connectV_vertex D R ^ V)

(cgedge (cgedge CG F2 <=z !=z1 CGX CGV1’) F2 F1 NE CGX CGV1)
<- connectV_color C CGX E’ D CG
<- lemma8 E E’
<- lemma6 (<s E) NE
<- lemma7 (<s E) F2
<- lemma4 F1.

connectVc_cont2: {R:relate _ V1 V1’ X1}{CGV1:colorvertex V1 z}
{CGV1’:colorvertex V1’ (s C)}

20

connectV_color (s C) CGX (<s E) (connectV_vertex D R ^ V)
(cgedge (cgedge CG F2 F1 NE CGX CGV1’) F2 <=z !=z1 CGX CGV1)

<- connectV_color C CGX E’ D CG
<- lemma8 E E’
<- lemma6 (<s E) NE
<- lemma7 (<s E) F2
<- lemma4 F1.

% Correctness of connect2clique (VARS-TO-CLIQUE): Edges added between x_j and v_i,
% and x_j and v_i’ do not connect vertices with same color when i!=j
connect2clique_color : {C:nat} connect2clique G -> coloring C G -> type.
connect2cliquec_base : connect2clique_color z connect2clique_# cg#.
connect2cliquec_cont1 : {R:relate U V V’ X}{CGV:colorvertex V z}

{CGV’:colorvertex V’ (s C)}{CGX:colorvertex X (s C)}
connect2clique_color (s C)

(connect2clique_vtx R (D1 , D2, D3, D4) ^ VAR)
(cgunion CG1 (cgunion CG2 (cgunion CG3 CG4)))

<- connect2clique_color C D1 CG1’
<- increase_color CG1’ CG1
<- connectX_color’ C CGV D2 CG2
<- connectX_color C CGV’ E D3 CG3
<- lemma5 E
<- connectV_color C CGX E D4 CG4.

connect2cliquec_cont2 : {R:relate U V V’ X}{CGV:colorvertex V (s C)}
{CGV’:colorvertex V’ z}{CGX:colorvertex X (s C)}
connect2clique_color (s C)

(connect2clique_vtx R (D1 , D2, D3, D4) ^ VAR)
(cgunion CG1 (cgunion CG2 (cgunion CG3 CG4)))

<- connect2clique_color C D1 CG1’
<- increase_color CG1’ CG1
<- connectX_color C CGV E D2 CG2
<- lemma5 E
<- connectX_color’ C CGV’ D3 CG3
<- connectV_color C CGX E D4 CG4.

% For verifying that environment is valid
necolor : {M:nat} {N:nat} M != N -> type.
necolor1: necolor z (s M) !=z1.
necolor2: necolor (s M) z !=z2.
necolor3: necolor (s M) (s N) (!=s D)

<- necolor M N D.
lecolor : {M:nat}{N:nat} M <= N -> type.
lecolor1: lecolor z M <=z.
lecolor2: lecolor (s M) (s N) (<=s D)

<- lecolor M N D.

% Correctness of coloring of the graph created by connecting a clause vertex with
% all literals not in the clause
conv’’’_color : {C:nat} {C’:nat} {C’’:nat} colorvertex V (s C’’) ->

conv’’’ V G -> coloring C’ G -> type.
conv’’’c_base: conv’’’_color z C’ C’’ CGV conv’’’_# cg#.
conv’’’c_cont1:{R:relate U1 V1 V1’ _}{CGV1:colorvertex V1 (s C1)}

21

{CGV1’:colorvertex V1’ z}
conv’’’_color (s C) C’ C’’ CGV (conv’’’_vtx R D ^ V)

(cgedge (cgedge CG <=z F !=z2 CGV1’ CGV) F1 F NE CGV1 CGV)
<- conv’’’_color C C’ C’’ CGV D CG
<- necolor (s C’’) (s C1) NE
<- lecolor (s C’’) C’ F
<- lecolor (s C1) C’ F1.

conv’’_color : {C:nat} conv’’ F G -> sat F -> coloring C G -> type.

% Case: F=(pos U) \/ (pos U) \/ (pos U)
% U=True
conv’’c_1 : {R:relate U V V’ _}{CGV:colorvertex V (s C’)}{CGV’:colorvertex V’ z}

conv’’_color (s C) (conv’’1 R D ^ VAR) E
(cgvertex ([c] [cgc] (cgedge (CG’ c cgc) <=z F !=z2 CGV’ cgc)) F)

<- ({c:vertex}{cgc:colorvertex c (s C’)}
conv’’’_color C (s C) C’ cgc (D c) (CG c cgc))

<- lecolor (s C’) (s C) F.

% Case: F=(pos U1) \/ (pos U1) \/ (pos U2)
% U1=True, U2=True
conv’’c_2A :{R1:relate U1 V1 V1’ _}{CGV1:colorvertex V1 (s C1’)}

{CGV1’:colorvertex V1’ z}{R2:relate U2 V2 V2’ _}
{CGV2:colorvertex V2 (s C2’)}{CGV2’:colorvertex V2’ z}
conv’’_color (s (s C)) (conv’’2 R2 R1 D ^ VAR2 ^ VAR1) E

(cgvertex ([c] [cgc] (cgedge (cgedge
(CG c cgc) <=z F !=z2 CGV2’ cgc) <=z F !=z2 CGV1’ cgc)) F)

<- ({c:vertex}{cgc:colorvertex c (s C1’)}
conv’’’_color C (s (s C)) C1’ cgc (D c) (CG c cgc))

<- lecolor (s C1’) (s (s C)) F.

% Case: F=(pos U1) \/ (pos U1) \/ (pos U2)
% U1=False, U2=True
conv’’c_2B: {R1:relate U1 V1 V1’ _}{CGV1:colorvertex V1 z}

{CGV1’:colorvertex V1’ (s C1’)}{R2:relate U2 V2 V2’ _}
{CGV2:colorvertex V2 (s C2’)}{CGV2’:colorvertex V2’ z}
conv’’_color (s (s C)) (conv’’2 R2 R1 D ^ VAR2 ^ VAR1) E

(cgvertex ([c] [cgc] (cgedge (cgedge
(CG c cgc) <=z F2 !=z2 CGV2’ cgc) F1 F2 NE CGV1’ cgc)) F2)

<- ({c:vertex}{cgc:colorvertex c (s C2’)}
conv’’’_color C (s (s C)) C2’ cgc (D c) (CG c cgc))

<- lecolor (s C2’) (s (s C)) F2
<- lecolor (s C1’) (s (s C)) F1
<- necolor (s C2’) (s C1’) NE.

% Case: F=(pos U1) \/ (pos U1) \/ (pos U2)
% U1=True, U2=False
conv’’c_2C: {R1:relate U1 V1 V1’ _}{CGV1:colorvertex V1 (s C1’)}

{CGV1’:colorvertex V1’ z}{R2:relate U2 V2 V2’ _}
{CGV2:colorvertex V2 z}{CGV2’:colorvertex V2’ (s C2’)}
conv’’_color (s (s C)) (conv’’2 R2 R1 D ^ VAR2 ^ VAR1) E

(cgvertex ([c] [cgc] (cgedge (cgedge
(CG c cgc) F2 F1 NE CGV2’ cgc) <=z F1 !=z2 CGV1’ cgc)) F1)

22

<- ({c:vertex}{cgc:colorvertex c (s C1’)}
conv’’’_color C (s (s C)) C2’ cgc (D c) (CG c cgc))

<- lecolor (s C2’) (s (s C)) F2
<- lecolor (s C1’) (s (s C)) F1
<- necolor (s C1’) (s C2’) NE.

% The other 37 forms of clause F have similar proofs.

% Correctness of coloring of all graphs corresponding to all clauses
% on the continuation
conv’_color : {C:nat} conv’ K G -> satK K -> coloring C G -> type.
conv’c_base : conv’_color C (conv’init ^ ()) satKempty cg#.
conv’c_cont : conv’_color C (conv’cont (D1 , D2)) (satK; E2 E1) (cgunion CG1 CG2)

<- conv’_color C D1 E1 CG1
<- conv’’_color C D2 E2 CG2.

% Proof of the Reduction - from 3-SAT to Chromatic Number
reductionf : {C:nat} conv F C C’ K G -> sat F -> satK K -> coloring C’ G -> type.
reductionnew_t : reductionf C (convnew D) (satnewt E) F

(cgvertex ([v] [cgv] (cgvertex ([v’][cgv’]
(cgvertex ([x][cgx] (cgedge (CG v v’ x cgv cgv’ cgx)

<=z H !=z2 cgv’ cgv)) H)) <=z)) H)
<- ({u:v} {hypt: hyp u true}{v:vertex}{v’:vertex}{x:vertex}

{r:relate u v v’ x}{var: var u}{cgv :colorvertex v (s C)}
{cgv’:colorvertex v’ z}{cgx :colorvertex x (s C)}
reductionf (s C) (D u v v’ x r ^ var) (E u hypt) F

(CG v v’ x cgv cgv’ cgx))
<- ({u:v}{v:vertex}{v’:vertex}{x:vertex}

{r:relate u v v’ x}{var: var u}
conv_lemma (D u v v’ x r ^ var) H).

reductionnew_f : reductionf C (convnew D) (satnewf E) F
(cgvertex ([v] [cgv] (cgvertex ([v’][cgv’]
(cgvertex ([x][cgx] (cgedge (CG v v’ x cgv cgv’ cgx)

H <=z !=z1 cgv’ cgv)) H)) H)) <=z)
<- ({u:v} {hypf: hyp u false}{v:vertex}{v’:vertex}{x:vertex}

{r:relate u v v’ x}{var: var u}{cgv :colorvertex v z}
{cgv’:colorvertex v’ (s C)}{cgx :colorvertex x (s C)}
reductionf (s C) (D u v v’ x r ^ var) (E u hypf) F

(CG v v’ x cgv cgv’ cgx))
<-({u:v}{v:vertex}{v’:vertex}{x:vertex}

{r:relate u v v’ x}{var: var u}
conv_lemma (D u v v’ x r ^ var) H).

reduction/\ : reductionf C (conv/\ D) (sat/\ E1 E2) F CG
<- reductionf C D E2 (satK; E1 F) CG.

reduction_base : reductionf C (conv3 (D1 , D2 , D3)) E F (cgunion CG1 (cgunion CG2 CG3))
<- conv’_color C D1 (satK; E F) CG1
<- clique_color C D2 CG2
<- connect2clique_color C D3 CG3.

23

