
Lexicographic Path Induction

Jeffrey Sarnat1 and Carsten Schürmann2

1 Yale University
jeffrey.sarnat@yale.edu

2 IT University of Copenhagen
carsten@itu.dk

Abstract. Programming languages theory is full of problems that re-
duce to proving the consistency of a logic, such as the normalization of
typed lambda-calculi, the decidability of equality in type theory, equiv-
alence testing of traces in security, etc. Although the principle of trans-
finite induction is routinely employed by logicians in proving such theo-
rems, it is rarely used by programming languages researchers who often
prefer alternatives such as proofs by logical relations and model theo-
retic constructions. In this paper we harness the well-foundedness of the
lexicographic path ordering to derive an induction principle that com-
bines the comfort of structural induction with the expressive strength
of transfinite induction. Using lexicographic path induction, we give a
consistency proof of Martin-Löf’s intuitionistic theory of inductive defi-
nitions. The consistency of Heyting arithmetic follows directly, and weak
normalization for Gödel’s T follows indirectly; both have been formalized
in a prototypical extension of Twelf.

1 Introduction

Programming languages theory is full of problems that reduce to proving the con-
sistency of a logic, such as the normalization of typed λ-calculi, the decidability
of equality in type theory, equivalence testing of traces in security, etc. Although
the principle of transfinite induction is routinely employed by logicians in prov-
ing such theorems, it is rarely used by programming languages researchers who
often prefer alternatives such as proofs by logical relations and model theoretic
constructions.

This phenomenon can be explained at least in part by the fact that ordinals
can be notoriously tricky to work with. The Burali-Forti paradox illustrates that
any ordinal notation system is necessarily incomplete, and in practice, as ordinals
get bigger, the notation systems needed to describe them become more complex.

In contrast, the lexicographic path ordering (LPO) is both powerful (its order
type approaches the small Veblen ordinal) and well understood by computer
scientists. Furthermore, it is easy to implement and has been used to prove the
termination of term rewriting systems (TRSs) for decades, where, ironically, its
considerable proof-theoretic strength cannot be fully harnessed.

For many logical systems, consistency follows directly from the termination of
a cut-elimination procedure. Since the LPO is more than strong enough to prove

the consistency of arithmetic, and cut-elimination procedures can be expressed
as term rewriting systems, one might hope to demonstrate the consistency of
arithmetic using the lexicographic path ordering to show the termination of
such a TRS.

However, this is impossible. Buchholz [Buc95] has shown that if one proves
the termination of a TRS using the LPO, then the proof can be modified such
that it is valid in a fragment of arithmetic. By Gödel’s second incompleteness
theorem, one cannot prove the consistency of arithmetic from within a fragment
of arithmetic, therefore a cut-elimination procedure for arithmetic cannot be
shown terminating formulated as a TRS via the LPO.

In this paper, we show how to harness the strength of the LPO in form of
an induction principle that we call lexicographic path induction, which combines
the comfort of structural induction with the expressive strength of transfinite
induction.

The consistency of arithmetic and weak normalization of Gödel’s T are well-
known examples of transfinite induction. We give a novel consistency proof by
lexicographic path induction of an intuitionistic theory of inductive definitions,
based on the system by Martin-Löf [ML71] that inspired the definition of induc-
tive types in type theory [Dyb91,PM93], and several sequent calculi in the pro-
gramming languages literature [MM00,MT03,Bro06,GMN08]. The consistency
of Heyting Arithmetic follows as a simple corollary, and the weak normaliza-
tion of Gödel’s T follows via a structural logical relation [SS08]. Both have been
formalized in a prototypical extension of Twelf (http://www.twelf.org/lpo/).

The paper is organized as follows. In the Section 2 we introduce the lexi-
cographic path orderings and the principle of lexicographic path induction. In
Section 3 we introduce a sequent calculus and for intuitionistic logic with induc-
tive definitions. In Section 4, we prove the consistency of this logic. In Section 5,
we conclude and describe related and future work.

2 The Lexicographic Path Ordering

The lexicographic path ordering (LPO) provides a modular way of specifying
orderings on finite labeled trees whose constructors have fixed arity.

Given a signature Σ of fixed arity constructors, whose elements we denote
generically by the letters f and g, labeled trees are defined as follows

Labeled Trees s, t ::= f(s1 , . . . , sn)

where the arity of f, denoted #f, is n for n ≥ 0. We use Σn to denote the
constructors of Σ of arity n. Although signatures can in principle be infinite, all
of the signatures considered in this paper are finite.

Definition 1 (Lexicographic Path Ordering). Given a precedence relation
< on Σ we define <lpo as the smallest relation on trees that satisfies the following:

s = f(s1 , . . . , sn)<lpo g(t1 , . . . , tm) = t iff at least one of the following holds:

1. f < g and for all i,∈ 1 . . . , n si<lpo t

2. f = g and there exists k ∈ 1, . . . , n s.t. for all i < k si = ti , sk < tk and for
all j ∈ k + 1, . . . , n sj<lpo t

3. s≤lpoti , for some i ∈ 1, . . . , n

where s≤lpot is shorthand for “s = t or s<lpo t.”

We are concerned exclusively with instances of <lpo where < is transitive and
well-founded (and therefore irreflexive). LPOs have several nice properties, in-
cluding the preservation of transitivity and well-foundedness of <.

Lemma 1 (Properties of LPO).

– (Subterm) t<lpo f(. . . t . . .)
– (Monotonicity) If s<lpo t, then f(. . . s . . .) <lpo f(. . . t . . .).
– (Transitivity) If < is transitive, then so is <lpo .
– (Well-foundedness) If < is well-founded, then so is <lpo .
– (Big head) If s = f(s1 , . . . , sn), g1 < f, . . . , gm < f and t is built up from

s1 , . . . , sn and g1 , . . . , gm then t<lpo s.

Proof. The subterm, monotonicity and transitivity properties are shown in [KL80],
well-foundedness is shown in [Buc95]. The big head property can be shown by a
straightforward induction on the structure of t.

Example 1
Let Σ = {z, succ, op}, where #z = 0, #s = 1 and #op = 2, and let < be

defined as z < {s, op}, s < op. The following inequalities hold for every s and t

1. succn(s)<lpo op(s, t) and succn(t)<lpo op(s, t), for every n
2. succ(op(s, t))<lpo op(s, succ t)
3. op(s, op(s, op(s, t)))<lpo op(succ s, t)
4. op(s, op(succ s, t))<lpo op(succ s, succ t)

The first inequality can be seen as an instance of the big head property. The
second inequality in highlights another interesting property of LPOs: if a large
constructor (in this case op) occurs beneath a small constructor (in this case
succ), then “bubbling up” the larger constructor results in larger term, or viewed
the other way, “bubbling up” the smaller constructor results in a smaller term;
this observation will play an important role in Lemma 6. The third inequality
highlights the application of the second clause of Definition 1: in a sense, one
can think a partially applied constructor as being a constructor in its own right,
where the “precedence” of op(s,−) is smaller than op(succ s,−). The last inequal-
ity can be used to help show that the Ackermann function, when formulated as
a term rewriting system, terminates.

Definition 2 (Principle of Lexicographic Path Induction). The Principle
of Lexicographic Path Induction is the principle of well-founded induction with
the LPO as the well-founded ordering.

In the next sections, we will show one of the application of the principle, which
justifies its definition, and demonstrates how one can proof the consistency of
Heyting arithmetic via this principle.

3 The Intuitionistic Theory of Inductive Definitions

In the previous section, we saw that lexicographic path induction can be seen
as an instance of well-founded induction. However, more conventional induction
principles can be obtained from the notion of inductive definitions.

In mathematics, inductive definitions give rise to monotone operators, and
the Tarski-Knaster fixed point theorem can be used to justify the existence
of, and a notion of induction over, inductively defined families [Pie02]. Induc-
tive definitions can also be primitively formalized in the language of first order
logic, using a theory of iterated inductive definitions. Martin-Löf’s intuitionistic
theory of iterated inductive definitions (IID<ω) [ML71] is notable for its formu-
lation as a natural deduction calculus, where predicate symbols play the role of
inductively defined families, atomic introduction rules play the role of monotone
operator and atomic elimination rules play the role induction principles. Martin-
Löf proved the consistency of IID<ω using a logical relations argument; here, we
give a sequent calculus formulation of (non-iterated) intuitionistic inductive def-
initions (IID0) and in Section 4 we prove its consistency using lexicographic path
induction. The proof-theoretic strength of IID0 is that of arithmetic [ML71].

3.1 Formulas and Proofs

The language of IID0 is parameterized by a term algebra, whose fixed arity
constructors we denote generically using the letter c, by some collection of fixed
arity predicate symbols, whose elements we denote generically using the letter a,
and some collection X of term variables, whose elements we refer to generically
using the letters x and y. As a running example, we consider an instantiation of
IID0 with a term algebra corresponding to the natural numbers, i.e. the constant
z and unary constructor s, and with the predicate symbols ⊥, nat and eq, whose
arities are 0, 1, and 2, respectively. Formulas are defined below.

Terms t, u ::= x | c(t1, . . . , tn)
Formulas F,G ::= a(t1, . . . , tn) | F ∧G | F ∨G | F ⇒ G | ∀x.F | ∃x.F
Predicates P,Q ::= (x1, . . . , xn 7→ F)

An n-ary predicate is the abstraction of a formula over n bound variables: note
that any formula can be viewed as a 0-ary predicate, and vice-versa. We say
that a formula is atomic if it of the form a(t1, . . . , tn), which we denote using
the letters A and B; otherwise it is compound, which we denote using the letters
K and L.

We write t[t′/x] and F [t/x] for the usual notions of capture-avoiding sub-
stitution on terms and formulas, and P (t1, . . . , tn) for F [t1/x1] . . . [tn/xn] when
P = x1, . . . , xn 7→ F .

We formalize the notion of provability using sequents of the form Γ ` F ,
where Γ is the notion of context defined below. We depart slightly from con-
vention by using Γ to keep track of not only which logical hypotheses may be
used freely in the deduction of a sequent, but also which free term variables
may be used in the deduction as well. Although naming the logical hypotheses

in Γ is not useful when presenting IID0’s proof rules, doing so is useful in the
presentation of IID0’s proof terms, which will be introduced in Section 3.2. To
this end, we assume that we are given a set of hypothetical variables H, whose
elements we denote generically using the letter h.

Contexts Γ ::= · | Γ, h:A | Γ, x

In order for Γ to be well formed, we require that each element of X or H occur in
Γ at most once; this condition can typically be satisfied by the implicit renaming
of bound variables. We write Γ [t/x] for the capture-avoiding substitution of all
occurrences of x in Γ with t (if x is an entry in Γ , it is deleted). The relation Γ ≥
Γ ′ holds whenever Γ ′ can be obtained by deleting some number of declarations
from Γ . We sometimes abuse notation by writing Γ, Γ ′ for the concatenation of
two contexts.

Our rules are formulated in the style of Pfenning [Pfe95], itself similar to G3i
of [TS00]; the exact formulation of rules is immaterial to the applicability of our
technique, although we feel that this presentation corresponds to an especially
natural notion of proof term. We depart slightly from convention by denoting
the occurrence of F in Γ using the premiss h:F ∈ Γ , rather than writing Γ
as Γ ′, h:A,Γ ′′; we feel that this presentation makes the correspondence between
proof-rules and proof terms more transparent. IID0’s core proof rules are below.

h:F ∈ Γ
axiom

Γ ` F

Γ ` F Γ, h:F ` G
cut

Γ ` G
Γ ` F Γ ` G

∧r
Γ ` F ∧G

Γ ` Fi ∨ri

Γ ` F1 ∨ F2

Γ, h:F ` G
⇒r

Γ ` F ⇒ G

Γ, x ` F
∀r

Γ ` ∀x.F

Γ ` F [t/x]
∃r

Γ ` ∃x.F

Γ, h:Fi ` G h′:F1 ∧ F2 ∈ Γ
∧li

Γ ` G

Γ, h1:F1 ` G Γ, h2:F2 ` G h′:F1 ∨ F2 ∈ Γ
∨l

Γ ` G

Γ,F [t/x] ` G h′:∀x.F ∈ Γ
∀l

Γ ` G

Γ ` F1 Γ, h:F2 ` G h′:F1 ⇒ F2 ∈ Γ
⇒ l

Γ ` G

Γ, x, h:F ` G h′:∃x.F ∈ Γ
∃l

Γ ` G
The ∀l and ∃r rules have a free variable side condition: every free variable of

t is contained in Γ . Note that the eigenvariable side condition for ∀r and ∃l (i.e.
x 6∈ Γ) is enforced by our notion of well-formed context; this notion gives rise to
a similar side condition for the hypothetical variables introduced in ⇒r and in
all of the left rules.

IID0 is parameterized not only by its predicate symbols, but by the proof
rules that refer to its atomic formulas. As is the case with compound formulas,
the proof rules for atomic formulas can be divided into right rules and left rules.
The right rules are supplied by the user, but must follow a particular format;
the left rules are obtained algorithmically from the right rules.

Right rules. In general, the atomic right rules must be of the form:
Γ ` A1 . . . Γ ` An

Γ ` A0

where A0 . . . An are built up from predicate symbols, term-schematic variables,
and constructors from the term algebra. For example, the right rules for nat, eq,
and ⊥ are below (note that ⊥ has no right rules).

natrz

Γ ` nat(z)

Γ ` nat(t)
natrs

Γ ` nat(succ t)
eqr

Γ ` eq(t, t)

Left rules. In the setting of functional programming, a catamorphism (the most
famous of which is probably foldr) can be used to provide a canonical notion of
induction over the inhabitants of an inductively defined datatype. Through the
lens of the Curry-Howard isomorphism, we can think of IID0’s predicate sym-
bols as being inductively defined datatypes, the atomic right rules as datatype
constructors, and the atomic left rules as catamorphisms (this analogy will be
made more precise in 3.2). Just as foldr has arguments corresponding to the
constructors nil and cons, so too must the atomic left rule for the predicate
symbol nat have minor premisses corresponding to natrz and natrs. In general,
atomic left rules all have the form

minor
premisses Γ, h:P (t1, . . . , tn) ` G h′:a(t1, . . . , tn) ∈ Γ

Γ ` G

where the major premiss (i.e. Γ, h:P (t1, . . . , tn) ` G) can be seen as allowing for
the generalization of the induction hypothesis P , and the minor premisses are
calculated from the right rules. For example, the atomic left rules for nat,⊥, and
eq are defined as follows.

Γ ` P (z) Γ, x, h0:P (x) ` P (succ x) Γ, h:P (t) ` G h′:nat(t) ∈ Γ
natl

Γ ` G

Γ, h:F ` G h′:⊥ ∈ Γ
⊥l

Γ ` G

Γ, x ` P (x, x) Γ, h:P (t, u) ` G h′:eq(t, u) ∈ Γ
eql

Γ ` G

The minor premisses of natl are calculated from natrz and natrs; the sole minor
premiss of eql is calculated from eqr; ⊥ has no right rules, and therefore ⊥l
has no minor premisses. For details as to how minor premisses are calculated
from right rules and how mutual dependencies are treated, we refer the reader
to [ML71] and [Bro06]. We can obtain Leibniz equality

Γ, h:Q(t)⇒ Q(u) ` G h′:eq(t, u) ∈ Γ

Γ ` G

from eql by instantiating P (x, y) to a predicate of the form Q(x) ⇒ Q(y), and
satisfying the minor premiss with the impr rule; we can obtain the more familiar
version of ⊥l

h:⊥ ∈ Γ

Γ ` G

by instantiating F to G and satisfying the major premiss with the axiom rule.
In fact, the major premiss of every atomic left rule can be made redundant this
way, and presenting IID0’s atomic left rules without major premisses would not
complicate the presentation of our consistency proof. However, as Brotherston
points out in [Bro06], without such major premisses, the cut rule could not be
eliminated from all of IID0’s proofs; although proving full cut elimination for
IID0 is beyond the scope of this paper, we choose this formulation to preserve
the possibility for future work. IID0 has the following basic properties:

Lemma 2.

(Weakening) If Γ ` F and Γ ′ ≥ Γ then Γ ′ ` F
(Exchange) If Γ, h:G, h′:G′, Γ ′ ` F then Γ, h′:G′, h:G,Γ ′ ` F
(Contraction) If Γ0, h:G,Γ1, h

′:G,Γ2 ` F then Γ0, h:G,Γ1, Γ2 ` G and
Γ0, Γ1, h

′:G,Γ2 ` F
(Substitution) If Γ, x, Γ ′ ` F and fv(t) ⊆ Γ then Γ, Γ ′[t/x] ` G[t/x]

Definition 3 (Right Normal). We say that a proof of Γ ` F is right-normal
iff it contains only right rules.

Note right-normality is a stronger criterion than being cut-free. We are primar-
ily concerned with right-normal proofs of atomic formulas; the following lemma
summarizes the interaction between atomic right-normal proofs and minor pre-
misses in the left rules of IID0.

Lemma 3 (Folding Right-Normal Proofs). Given a right-normal proof of
Γ ` a(t1, . . . , tn) and proofs of the minor premisses of a’s left rule with induction
hypothesis P , then Γ ` P (t1, . . . , tn) is provable using only substitution instances
of the minor premisses’ proofs and cut.

Proof. By a structural induction on Γ ` a(t1, . . . , tn), using substitution.

It is easy to see that Lemma 3 generalizes to the mutual dependent case.

3.2 Proof Terms

We define proof terms for Martin Löf’s IID0 in order to provide a concise notation
for describing and manipulating proof trees. The syntax for the non-atomic proof
terms is defined below.

C,D,E ::= axiom h | cut F C (h.D) | andr C D | andli (h.C) h′ | orri C |
orl (h1.C) (h2.D) h′ | impr (h.C) | impl C (h.D) h′ | allr (x.C) |
alll t (h.C) h′ | existsr t C | existsl (x.h.C) h′ | . . .

We interpret h.C and x.C as binding occurrences of the variables h and x in
C, and write C[t/x] for the capture avoiding substitution of t for x. The typing

rules are given below.

h:F ∈ Γ

Γ ` axiom h : F

Γ ` C : F Γ, h:F ` D : G

Γ ` cut F C (h.D) : G

Γ ` C : F Γ ` D : G

Γ ` andr C D : F ∧G

Γ ` C : Fi

Γ ` orri C : F1 ∨ F2

Γ, h:F ` C : G

Γ ` impr (h.C) : F ⇒ G

Γ, x ` C : F

Γ ` allr (x.C) : ∀x.F

Γ ` C : F [t/x]

Γ ` existsr t C : ∃x.F

Γ, h:F [t/x] ` G h′:∀x.F ∈ Γ

Γ ` alll t (h.C) h′ : G

Γ, x, h:F ` G h′:∃x.F ∈ Γ

Γ ` existsl (x.h.C) h′ : G

Γ, h:Fi ` C : G h′:F1 ∧ F2 ∈ Γ

Γ ` andli (h.C) h′ : G

Γ ` C : F1 Γ, h:F2 ` D : G h′:F1 ⇒ F2 ∈ Γ

Γ ` impl C (h.D) h′ : G

Γ, h1:F1 ` C : G Γ, h2:F2 ` D : G h′:F1 ∨ F2 ∈ Γ

Γ ` orl (h1.C) (h2.D) h′ : G

The proof term constructors corresponding to atomic inference rules are ob-
tained in a manner analogous to the above: subtrees correspond to subterms,
and extending the context of a subderivation corresponds to introducing a new
bound variable; term-, formula-, and predicate-schematic variables are explicitly
included in proof terms when convenient. We continue our example below.

C,D,E ::= . . . | natrz | natrs t C | eqr t | natl P t C0 (x.h0.C1) (h.D) h′ |
botl F (h.C) h′ | eql P t u (x.C) (h.D) h′

Due to space constraints, we omit the typing rules for atomic proof terms; it
should be a straightforward exercise for the reader to reconstruct them.

Theorem 2 (Curry-Howard). There exists an isomorphism between deriva-
tions of Γ ` F and proof terms D s.t. Γ ` D : F .

Proof. Each direction is proven by a straightforward induction on the given
derivation, replacing each instance of a proof rule with the corresponding typing
rule, and vice versa.

The Curry-Howard isomorphism justifies treating well-typed proof terms
and proof derivations interchangeably, without losing generality. For example,
Lemma 3 corresponds to an analogous lemma over well-typed terms, whose be-
havior on untyped proof terms is, in the case of nat, realized by the following
function.

fold-nat (natrz) (P) (D1) (x.h.D2) = D0

fold-nat (natrs t C) (P) (D1) (x.h.D2) =

cut P (t) (fold-nat C P D1 (x.h.D2)) h.(D2[t/x])

4 The Consistency Proof

We give now the consistency proof of Martin-Löf’s IID0, where we reason about
derivations using lexicographic path induction. Informally, a logic is consistent if
its notion of provability is somehow nontrivial. Although there are several ways
to make this precise, one of the more common is to demonstrate the existence of
an unprovable sequent, which can typically be shown as a corollary to some sort
of normalization theorem. We generalize this notion slightly by proving that, if
· ` C : A then there exists a right-normal D s.t. · ` D : A. If, for example, ⊥
is an atomic predicate symbol, then consistency in the traditional sense follows
immediately.

Although proof terms are in a sense finite trees, we do not apply lexicographic
path induction to them directly because proof terms contain information that we
do not consider relevant to the size of a proof. Instead, we apply the principle to
skeletons of proof trees, which will be defined in 4.1; lexicographic path induction
on skeletons subsumes structural induction on proof trees.

In many ways, our proof follows the same general structure as Gentzen’s
proof of the consistency of arithmetic [Gen38], and the Howard [How70] and
Schütte [Sch77] proofs of normalization for Gödel’s T. All involve assigning well-
founded orderings to proof trees/λ-calculus terms (ε0 for Gentzen, Howard and
Schütte, the LPO here); all demonstrate normalization for a restricted class of
sequents/types (· ` · for Gentzen; the base type for Howard and Schütte, · ` A
here); and all unfold inductions all-at-once, rather than one-at-a-time. Our proof
differs from the others in that lexicographic path induction is applied directly to
skeletons of proof terms, whereas in Gentzen’s, Howard’s and Schütte’s proofs,
the assignment of ordinals to proofs/λ-calculus terms is very complex. This dis-
crepancy shouldn’t be too surprising: the order type of the lexicographic path
ordering approaches the small Veblen ordinal [DO88,Mos04], which is MUCH
larger than ε0; it is often the case that using stronger-than-necessary assumptions
can lead to simpler proofs.

4.1 Ordering Proof Terms

Although we have seen in 3.2 that well-typed proof terms contain the same
amount of information as proof trees, we do not consider all of this information
to be relevant to the size of proofs. In particular, we do not consider hypotheses
or elements of the term algebra relevant, nor, with the notable exception of
cut, do we consider formulas or predicates relevant. We therefore map proof
terms into labeled trees, called skeletons, which are obtained from proof terms
by stripping spurious information. Because we consider the size of cut-formulas
to be relevant to the size of proofs (as is typically the case), skeletons are defined
for formulas as well. The signature Σ for skeletons is defined as follows.

Σ0 = a, axiom
Σ1 = all, exists, andli , orri , impr, allr, alll, existsr, existsl
Σ2 = and, or, imp, andr, orl, impl
Σ3 = cut

Σ also contains constructors of the appropriate arity corresponding to atomic
rules, where the stripping function is defined analogously. We give some repre-
sentative cases of stripping. Note the use of the sans serif font for skeletons.

|a(t1 , . . . , tn)| = a

|F ∧G| = and(|F |, |G|)
|∀x .F | = all(|F |)

|cut F C h.D | = cut(|F |, |C |, |D |)
|axiom h| = axiom

|allr x .C | = allr(|C |)
|existsl(x .h.C) t | = existsl(|C |)

|natl P t C0 (x .h.C1) (h.D) h ′| = natl(|C0 |, |C1 |, |D |)

Definition 4 (Skeleton Ordering). We define < as the least transitive or-
dering on Σ satisfying all of the following:

1. If f corresponds to an atomic formula, and g is any of {and, or, imp, all,
exists} then f < g

2. If f corresponds to a formula, and g corresponds to a proof term, then f < g

3. If f corresponds to a right-rule or a compound left-rule then f < cut

4. If f corresponds to an atomic left-rule, then cut < f

5. If f corresponds to an atomic right-rule, then f < axiom

<lpo is the lifting of < to skeletons via the LPO.

The first two clauses of Definition 4 are motivated by the first two clauses of
Lemma 4, which will be used by Lemma 6; the third clause is motivated by
Lemma 6 as well. The last two clauses are motivated by Lemma 5.

Lemma 4 (Properties of Skeletons).

1. For every A and every K, |A|<lpo |K |
2. For every F and every C, |F |<lpo |C |
3. For every C, every t and every x, |C | = |C [t/x]|

Proof. Each case is a straightforward by structural induction; both 1 and 2 are
instances of the big head principle.

Because the LPO has the subterm property, and because skeletons contain
most of the structural information of proof terms, all of the instances of structural
induction on C in this paper can be replaced by lexicographic path induction on
|C |.

4.2 The Normalization Procedure

Our proof is structured as follows. Given · ` C : A, C must either be of the form
ar C1 . . . Cn, or cut F D h.E. In the former case, we right-normalize C1 . . . Cn,
and apply ar to the result. In the latter case, we find a proof term C ′ which is
smaller than C and right-normalize C ′; however, the calculation of C ′ depends
on whether the cut-formula F is atomic or compound. Observe that, if F is
atomic, then, by induction, we can right-normalize D into D′; C ′ is obtained
by eliminating all uses of h from h.E, making use of D′ and Lemma 3. If F
is compound, we perform what is essentially a small-step version of the cut-
admissibility proof in [Pfe95], where, for reasons that will be explained later, we
must be careful to avoid any “commutative conversions” for atomic left rules.

Recall that we write A for atomic formulas and K for for compound formulas.

Lemma 5 (Atomic Cut Reduction). For every C and h.D, if C is right-
normal, Γ ` C : A and Γ, h:A ` D : F , then there exists E such that Γ ` E : F
and |E |<lpo |D |.

Proof. By structural induction on D. Most cases are straightforward, often using
weakening on C and exchange on D before applying the induction hypothesis,
and using monotonicity of <lpo on the result. The non-trivial uses of h come
from axiom and the atomic left rule for A. If D = axiom h, we return C,
which is smaller than axiom h by the big head principle and the fifth clause of
Definition 4. If D is a non-trivial instance of an atomic left rule, we induct D’s
subterms and apply Lemma 3, whose output is smaller than D by the third clause
of Lemma 4, the big head principle and the fourth clause of Definition 4. The
proof can be realized on untyped terms by the function redA, some representative
cases of which are below.

redA (C) (h.axiom h) = C
redA (C) (h.axiom h′) = axiom h′

redA (C) (h.natl P t D0 (x.h′.D1) (h′′.D2) h) =

let D′
0 = redA C h.D0

(x.h′.D′
1) = x.h′.(redA C h.D1)

E = fold-nat C P D′
0 (x.h′.D′

1)
(h′′.D′

2) = h′′.(redA C h.D2)

in

cut P (t) E (h′′.D′
2)

redA (C) (h.natl P t D0 (x.h′.D1) (h′′.D2) h′′′) =

let D′
0 = redA C h.D0

(h′.D′
1) = x.h′.(redA C h.D1)

(h′′.D′
2) = h′′.(redA C h.D2)

in

natl P t D′
0 (x.h′.D′

1) (h′′.D′
2) h′′′

Lemma 6 (Compound Cut Reduction). For every Γ which only contains
compound assumptions (i.e. if h:F ∈ Γ , then F must be compound), if Γ `
cut K C (h.D) : G then there exists E such that Γ ` E : G and |E | <lpo |cut K C (h.D)|.

Proof. By structural induction on cut K C (h.D). The proof can be realized
on untyped terms by the function redK, some representative cases of which are
below. Most cases use Lemma 4, clause 2.

If C is a left rule, or if D is either right rule or left rule that acts on a
hypothesis other than h, then the cut is “commutative,” and the offending rule
will be bubbled up (see Definition 4, clause 3). Note that the restriction on Γ
means that we never encounter commutative cuts of atomic left rules, and thus
will never have to bubble one past a cut. This is critical, because as we have seen
in Lemma 5, cut must be smaller than al.

redK (cut K C (h.andr D1 D2)) = andr (cut K C h.D1) (cut K C h.D2)
redK (cut K (andli (h′.C) h′′) (h.D)) = andli (h′.cut K C h.D) h′′

redK (cut K C (h.andli (h′.D) h′′)) = andli (h′.cut K C h.D) h′′

If C is a right rule, and D is a left rule that acts on h, then the cut is “essential.”
The sizes of cut-formulas play a crucial role in these cases. The ∀ and ∃ essential
cases use Lemma 4, clause 3.

redK (cut (F ⇒G) (impr h0.C0) (h.impl D0 (h1.D1) h)) =

cut G (cut F (cut (F ⇒G) (impr h0.C0) h.D0) C0)
(h1.cut (F ⇒G) (impr h0.C0) h.D1)

redK (cut (∀x.F) (allr x.C) (h.alll t (h′.D) h)) =

cut (F [t/x]) (C[t/x]) (h′.cut (∀x.F) (allr x.C) h.D)

If C orD is a compound cut, we apply the induction hypothesis and monotonicity
of <lpo ; if C or D is an atomic cut, we bubble it up (see Lemma 4, clause 1).

redK (cut K (cut L C0 h′.C1) D) = cut K (redK C) h.D
redK (cut K C (h.cut L D0 h′.D1)) = cut K C h.(redk D)

redK (cut K h.(cut A C0 h′.C1) D) = cut A C0 (h′.cut K C1 h.D)
redK (cut K C (h.cut A D0 h′.D1)) =

cut A (cut K C h.D0) h′.(cut K C h.D1)

We are now ready to prove our consistency theorem.
Theorem 3 (Consistency of IID0). For all C, if · ` C : A then there exists
a right-normal D such that · ` D : A

Proof. By lexicographic path induction on |C |. This theorem can be realized by
the function norm on untyped terms, which is defined as follows.

norm (ar C1 . . . Cn) = ar (norm C1) . . . (norm Cn)
norm (cut A C1 h.C2) = norm (redA (norm C1) (h.C2))
norm (C as cut K C1 h.C2) = norm (redK C)

Note that the consistency theorem can be generalized straightforwardly to se-
quents of the form Γ ` F , where Γ contains only eigenvariables, and F contains
no implications; we choose not to formulate it this way for the sake of simplicity.
Also note that, if we choose to omit the atomic left rule for a predicate sym-
bol a, then the consistency theorem can also be generalized to sequents of the
form Γ ` A, where Γ contains only eigenvariables and hypotheses of the form
a(t1, . . . , tn); this generalization is used in the proof of weak normalization for
Gödel’s T.

4.3 Heyting Arithmetic

Heyting arithmetic is usually presented with a term algebra that contains con-
structors not only for z and succ, but also for addition and multiplication, whose
operational meaning is defined axiomatically; induction is usually defined as an
axiom schema of the form P (z) ∧ (∀x.P (x) ⇒ P (succ x)) ⇒ ∀x.P (x). We in-
stead formulate Heyting Arithmetic as an instance of IID0, whose term algebra
includes only z and succ, and whose atomic formulas include nat, eq and ⊥
(as described in 3.1) along with predicate symbols for add,mult and any other
functions that we wish to reason about. The usual axioms for reasoning about
addition and multiplication are instead formulated as right rules for add and
mult.

addrz

Γ ` add(z, t, t)

Γ ` add(t1, t2, t3)
addrs

Γ ` add(succ t1, t2, succ t3)

multrz

Γ ` mult(z, t, z)

Γ ` mult(t1, t2, t3) Γ ` add(t1, t3, t4)
multrs

Γ ` mult(succ t1, t2, t4)

Instead of performing induction on terms, we relativize quantifiers (as in
[Bro06]), and perform induction on nat using natl. For example, the relativiza-
tion of ∀x1.∀x2.∃y.add(x1, x2, y) is ∀x1.nat(x1) ⇒ ∀x2.nat(x2) ⇒ ∃y.nat(y) ∧
add(x1, x2, y), which is a theorem in this logic.

Unfortunately, two of Peano’s axioms (the inequality of zero and one, and
the injectivity of the successor operation) are not provable in the logic as we
have described it thus far. Thus, we explicitly add the following inference rules,
without changing any of the existing atomic left rules.

Γ ` eq(t, succ t)
pa7

Γ ` ⊥

Γ ` eq(succ t, succ u)
pa8

Γ ` eq(t, u)

Fortunately, the addition of these two rules barely complicates the consistency
proof: redA must be extend with two trivial inductions over pa7 and pa8, and
the normalization algorithm must be extended as follows:

norm (pa7 C) = % undefined: no such right-normal C
norm (pa8 C) = let (eqr (succ t)) = norm C in eqr t

4.4 Weak Normalization for Gödel’s T

Gödel’s T is the extension of the simply-typed λ-calculus with terms for zero,
successor, and a primitive recursion operator. Due to space constraints, we can-
not include a full development of the proof of weak normalization for Gödel’s
T, but the proof follows a structural relations argument that is nearly identical
to that of the simply-typed λ-calculus found in [SS08]. The proofs of Closure
Under Weak Head Expansion and the Escape Lemma, both of which proceed
by induction on types, are entirely unchanged. The major challenge is in the
Fundamental Theorem, where we must show that applications of the primitive

recursion operator are in the logical relation. The primitive recursion operator
defines induction on terms of base type, so it should come as no surprise that the
Fundamental Theorem can be proven for this case by appealing to induction on
the notion of “weakly normalizing at base type,” which is represented here by
the unary predicate symbol hco. To this end, we extend the assertion logic with
an IID0-style left rule for hco (and only hco), which allows us to complete the
proof of the Fundamental Theorem. A slight generalization of Theorem 3 can be
applied to this assertion logic, thus completing the proof of weak normalization.
For details, see http://www.twelf.org/lpo/.

5 Conclusion

We have demonstrated that lexicographic path induction is a suitable replace-
ment for transfinite induction in at least some settings. The proofs of consistency
for Heyting arithmetic and Gödel’s T have been formalized in a prototypical ex-
tension of Twelf.

We are not the first to prove the consistency of a logic using an ordering
from term rewriting theory: [DP98,Bit99,Urb01] show the strong normalization
of cut elimination for different formulations of first-order logic using either the
recursive (a.k.a multiset) path ordering or lexicographic path ordering. However,
because these results rely on proving termination of term rewriting systems, they
cannot be scaled to arithmetic (by Gödel’s second incompleteness theorem and
[Buc95]).

Several other logics from the programming languages literature formulate
the notion of induction similar to IID0: the proofs of consistency for FOλ∆N

[MM00], Linc [MT03], and G [GMN08] all rely on logical relations; the proof
of consistency for LKID [Bro06] uses model theory. We are optimistic that at
least some of these systems can be proven consistent using lexicographic path
induction.

The proof theoretic strength of IID<ω([ML71], section 10) exceeds that of the
small Veblen ordinal, and thus its consistency cannot be proven by lexicographic
path induction. We leave whether our technique scales to any useful logics or
type theories whose proof-theoretic ordinal is greater than ε0, but smaller than
small Veblen, to future work.

Acknowledgments: We would like to thank Michael Rathjen and Georg
Moser for their helpful answers to our questions regarding large ordinals, and
Søren Debois for his helpful comments on an earlier draft of this paper.

References

[Bit99] Elias Tahhan Bittar. Strong normalization proofs for cut-elimination in
gentzens sequent calculi. In Banach Center Publication, pages 179–225, 1999.

[Bro06] James Brotherston. Sequent Calculus Proof Systems for Inductive Defini-
tions. PhD thesis, University of Edinburgh, November 2006.

[Buc95] Wilfried Buchholz. Proof-theoretic analysis of termination proofs. Ann. Pure
Appl. Logic, 75(1-2):57–65, 1995.

[DO88] Nachum Dershowitz and Mitsuhiro Okada. Proof-theoretic techniques for
term rewriting theory. In LICS, pages 104–111. IEEE Computer Society,
1988.

[DP98] Roy Dyckhoff and Luis Pinto. Cut-elimination and a permutation-free se-
quent calculus for intuitionistic logic. Studia Logica, 60(1):107–118, 1998.

[Dyb91] Peter Dybjer. Inductive sets and families in martin-lof’s type theory and their
set-theoretic semantics. In Logical Frameworks, pages 280–306. Cambridge
University Press, 1991.

[Gen38] Gerhard Gentzen. New version of the consistency proof for elementary num-
ber theory. In M. E. Szabo, editor, The Collected Papers of Gerhard Gentzen,
1969, pages 252–286. North-Holland Publishing Co., Amsterdam, 1938.

[GMN08] Andrew Gacek, Dale Miller, and Gopalan Nadathur. Combining generic
judgments with recursive definitions. In F. Pfenning, editor, Proceedings of
LICS 2008, pages 33–44. IEEE Computer Society Press, June 2008.

[How70] W. A. Howard. Assignment of ordinals to terms for primitive recursive func-
tions of finite type. In A.Kino, J. Myhill, and R. E. Vesley, editors, Intuition-
ism and Proof Theory, pages 443–458. North-Holland, 1970.

[KL80] Sam Kamin and Jean-Jacques Levy. Attemps for generalising the recursive
path orderings. Unpublished lecture notes, 1980.

[ML71] Per Martin-Löf. Hauptsatz for the intuitionistic theory of iterated inductive
definitions. In J.E. Fenstad, editor, Proceedings of the Second Scandinavian
Logic Symposium. North Holland, 1971.

[MM00] Raymond McDowell and Dale Miller. Cut-elimination for a logic with defi-
nitions and induction. Theoretical Computer Science, 232(1-2):91–119, 2000.

[Mos04] Ingo Lepper Georg Moser. Why ordinals are good for you. In ESSLLI 2003
- Course Material II, volume 6 of Collegium Logicum, pages 1–65. The Kurt
Gödel Society, 2004.

[MT03] Alberto Momigliano and Alwen Tiu. Induction and co-induction in sequent
calculus. In Stefano Berardi, Mario Coppo, and Ferruccio Damiani, editors,
TYPES, volume 3085 of Lecture Notes in Computer Science, pages 293–308.
Springer, 2003.

[Pfe95] Frank Pfenning. Structural cut elimination. In D. Kozen, editor, Proceedings
of the Tenth Annual Symposium on Logic in Computer Science, pages 156–
166, San Diego, California, June 1995. IEEE Computer Society Press.

[Pie02] Benjamin C. Pierce. Types and programming languages. MIT Press, Cam-
bridge, MA, USA, 2002.

[PM93] C. Paulin-Mohring. Inductive Definitions in the System Coq - Rules and
Properties. In M. Bezem and J.-F. Groote, editors, Proceedings of the con-
ference Typed Lambda Calculi and Applications, number 664 in Lecture Notes
in Computer Science, 1993. LIP research report 92-49.

[Sch77] K. Schütte. Proof Theory. Springer-Verlag, 1977.
[SS08] Carsten Schürmann and Jeffrey Sarnat. Structural logical relations. In LICS,

pages 69–80, Los Alamitos, CA, USA, 2008. IEEE Computer Society.
[TS00] A.S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Number 43 in

Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, second edition edition, 2000.

[Urb01] Christian Urban. Strong normalisation for a gentzen-like cut-elimination pro-
cedure. In Proceedings of the 5th International Conference on Typed Lambda
Calculi and Applications, pages 415–42, May 2001.

