
Practical Programming with
Higher-Order Encodings and Dependent Types?

Adam Poswolsky1 and Carsten Schürmann2

1 Yale University poswolsky@cs.yale.edu
2 IT University of Copenhagen carsten@itu.dk

Abstract. Higher-order abstract syntax (HOAS) refers to the tech-
nique of representing variables of an object-language using variables of a
meta-language. The standard first-order alternatives force the program-
mer to deal with superficial concerns such as substitutions, whose im-
plementation is often routine, tedious, and error-prone. In this paper,
we describe the underlying calculus of Delphin. Delphin is a fully im-
plemented functional-programming language supporting reasoning over
higher-order encodings and dependent types, while maintaining the ben-
efits of HOAS. More specifically, just as representations utilizing HOAS
free the programmer from concerns of handling explicit contexts and sub-
stitutions, our system permits programming over such encodings with-
out making these constructs explicit, leading to concise and elegant pro-
grams. To this end our system distinguishes bindings of variables in-
tended for instantiation from those that will remain uninstantiated, uti-
lizing a variation of Miller and Tiu’s ∇-quantifier [4].

1 Introduction

Logical frameworks are meta-languages used to represent information. Any sys-
tem supporting the declaration of custom datatypes is providing a framework for
representing information. Church’s simply typed λ-calculus is arguably the first
logical framework that supports higher-order encodings, which means that bind-
ing constructs of the object language (the information modeled) are expressed
in terms of the binding constructs of the λ-calculus. This deceptively simple idea
allows for encodings of complex data structures without having to worry about
the representation of variables, renamings, or substitutions that are prevalent in
logic derivations, typing derivations, operational semantics, and more.

The logical framework LF [3] is essentially an extention of Church’s λ-calculus
with dependent types and signatures. A signature contains a collection of con-
stants used to construct objects of different types, also known as datatype con-
structors. Dependent types and type families (type level constants that need to
be indexed by objects) can capture invariants about representations that are
impossible with just simple types. A list can be indexed by its length. An ex-
pression can be indexed by its type. An evaluation relation can be represented
as a type indexed by two expressions, its input and output. The list goes on.
? This research has been funded by NSF grants CCR-0325808 and CCR-0133502.

Neither the simply typed λ-calculus nor LF are suitable for programming.
Neither framework permits the definition of recursive functions by cases. They
are logical frameworks, whose sole purpose is the representation of syntax mod-
ulo variable renaming and substitution. Furthermore, we must be careful when
adding anything to LF. For example, the addition of case analysis would in-
evitably lead to exotic terms, i.e. typeable terms that do not correspond to any
concrete term in the object-language being encoded. The existence of such exotic
terms would eliminate the main benefits of higher-order encodings.

Thus, the first challenge of designing a calculus of recursive functions sup-
porting higher-order encodings is to cleanly separate the two function spaces
for representation and computation. Our Delphin calculus defines a computa-
tion level supporting function definition by case analysis and recursion without
extending the representation level LF. Therefore, all of LF’s representational
features and properties are preserved.

The second challenge of designing our calculus is supporting recursion under
representation level (LF) functions. We solve this problem by distinguishing be-
tween two methods of variable binding. The function type constructor ∀ (or ⊃
when non-dependent) binds variables that are intended for instantiation, which
means that computation is delayed until application. Additionally, we provide
a newness type constructor ∇ to bind variables that will always remain unin-
stantiated and hence computation will not be delayed. The introduction form
of ∇ is the ν (pronounced new) construct, νx. e, where x can occur free in e.
Evaluation of e occurs while the binding x remains uninstantiated. Therefore,
for the scope of e, the variable x behaves as a constant in the signature, which
we will henceforth call a parameter. One may view ν as a method of dynamically
extending the signature.

The Delphin calculus distinguishes between parameters (extensions of the
signature) and objects (built from constants and parameters). The type A#

refers to a parameter of type A. Intuitively, the type A# is best viewed as a
subtype of A. Although all parameters of type A do have type A, the converse
does not necessarily hold.

The presence of parameters introduce concerns with respect to case analysis.
When performing case analysis over a type, we cannot only consider the con-
stants declared in the signature, but we must also consider parameters. To this
end, Delphin permits a versatile definition of cases. Pattern variables of type A#

will be used to capture these additional cases.
Our ∇-type constructor is related to Miller and Tiu’s ∇-quantifier [4], where

they distinguish between eigenvariables intended for instantiation from those
representing scoped constants. In their logic, the formula (∀x. ∀y. τ(x, y)) ⊃
∀z. τ(z, z) is provable, whereas (∇x. ∇y. τ(x, y)) ⊃ ∇z. τ(z, z) is not.
Similarly, the Delphin type (∀x. ∀y. τ(x, y)) ⊃ ∀z. τ(z, z) is inhabited by
λf. λz. f z z. However, the type (∇x. ∇y. τ(x, y)) ⊃ ∇z. τ(z, z) is in general
not inhabited because nothing might be known about τ(z, z).

In this paper we describe our calculus of recursive functions and its implemen-
tation in the Delphin programming language. Delphin is available for download

Types A, B ::= a | A M | Πx:A. B
Objects M, N ::= x | c | M N | λx:A. N
Kinds K ::= type | Πx:A. K

Signature Σ ::= · | Σ, a:K | Σ, c:A
Context Γ ::= · | Γ, x:A

Fig. 1. The logical framework LF

at http://www.cs.yale.edu/∼delphin. We begin this paper with an overview
of the logical framework LF in Section 2. We motivate the Delphin language in
Section 3, and provide examples in Section 4. We discuss its static semantics in
Section 5 followed by the operational semantics in Section 6. Next, we present
some meta-theoretical results in Section 7. An advanced example with combina-
tor transformations is given in Section 8. We briefly discuss some implementation
details in Section 9. Finally, we describe related work in Section 10 before we
conclude and assess results in Section 11.

2 Logical Framework LF

The Edinburgh logical framework [3], or LF, is a meta-language for representing
deductive systems defined by judgments and inference rules. Its most prevalent
features include dependent types and the support for the higher-order encodings
of syntax and hypothetical judgments.

We present the syntactic categories of LF in Figure 1. Function types assign
names to their arguments in Πx:A. B. We write A → B as syntactic sugar when
x does not occur in B. Types may be indexed by objects and we provide the
construct A M to represent such types. We write x for variables while a and
c are type and object constants (or constructors), respectively. We often refer
to a as a type family. These constants are provided in a fixed collection called
the signature. The functional programmer may interpret the signature as the
collection of datatype declarations.

In the presence of dependencies, not all types are valid. The kind system of LF
acts as a type system for types. We write Γ `lf M : A for valid objects and Γ `lf A :
K for valid types, in a context Γ that assigns types to variables. The typing
and kinding rules of LF are standard [3] and are omitted here in the interest of
brevity. All LF judgments enjoy the usual weakening and substitution properties
on their respective contexts, but exchange is only permitted in limited form due
to dependencies. We take ≡αβη as the underlying notion of definitional equality
between LF-terms. Terms in β-normal η-long form are also called canonical
forms.

Theorem 1 (Canonical forms). Every well-typed object Γ `lf M : A possesses
a unique canonical form (modulo α-renaming) Γ `lf N : A, such that M ≡αβη N .

Encodings consist of a signature and a representation function, which maps
elements from our domain of discourse into canonical forms in our logical frame-
work. We say that an encoding is adequate if the representation function (p−q)

is a compositional bijection (one that commutes with substitution). We next
present examples of a few adequate encodings. We write the signature to the
right of the representation function.

Example 1 (Natural numbers).
nat : type

p0q = z z : nat
pn + 1q = s pnq s : nat → nat

Example 2 (Expressions). As another example, we choose the standard language
of untyped λ-terms t ::= x | lam x. t | t1@t2. The encoding ptq is as follows:

pxq =x exp : type
plam x. tq = lam (λx:exp. ptq) lam : (exp → exp) → exp
pt1@t2q =app pt1q pt2q app : exp → exp → exp

In this example, we represent object-level variables x by LF variables x of
type exp, which is recorded in the type of lam. As a result, we get substitution
for free: p[t1/x]t2q = [pt1q/x]pt2q.

Example 3 (Natural deduction calculus). Let A,B ::= A ⇒ B | p be the lan-
guage of formulas. We will use ⇒ as an infix operator below. We write E ::` A if
E is a derivation in the natural deduction calculus. Natural deduction derivations
E ::` A are encoded in LF as pEq : nd pAq, whose signature is given below.

u
` A

...
` B

impi
` A ⇒ B

` A ` A ⇒ B
impe

` B

o : type
⇒: o → o → o

nd : o → type
impi : (nd A → nd B) → nd (A ⇒ B)
impe : nd (A ⇒ B) → nd A → nd B.

We omit the leading Πs from the types when they are inferable. This is,
for example, common practice in Twelf. The logical framework LF draws its
representational strength from the existence of canonical forms, providing an
induction principle that allows us to prove adequacy.

3 Delphin Calculus

The Delphin calculus is specifically designed for programming with (higher-
order) LF encodings. It distinguishes between two levels: computational and
representational. Its most prominent feature is its newness type constructor ∇,
which binds uninstantiable parameters introduced by our ν construct. Figure 2
summarizes all syntactic categories of the Delphin calculus.

We use δ to distinguish between representational types A, parameters A#,
and computational types τ .3 Representational types A are the LF types defined
3 In the corresponding technical report [6] we also allow for computation-level param-

eters τ#, which we omit here for the sake of simplicity.

Types δ ::= τ | A | A#

Computational Types τ, σ ::= > | ∀α∈δ. τ | ∃α∈δ. τ | ∇x∈A#. τ
Variables α ::= x | u

Expressions e, f ::= α | M | unit | e f | (e, f) | νx∈A#. e | e\x
| µu∈τ . e | fn (c1 | . . . | cn)

Cases c ::= εα∈δ. c | νx∈A#. c | c\x | e 7→ f

Fig. 2. Syntactic Definitions of Delphin

in Section 2. We write A# to denote parameters of type A. Through this dis-
tinction we strengthen pattern matching as well as permit functions that range
over parameters. It is best to view A# as a subtype of A. We also distinguish
representation-level and computation-level variables by x and u, respectively.
Computational types are constructed from four type constructors: the unit type
constructor >, the function type constructor ∀, the product type constructor ∃,
and the newness type constructor ∇.

Computational types τ disallow computing anything of LF type A. This is
necessary as LF types may depend on objects of type A, and we chose to disallow
dependencies on computation-level expressions. This separation ensures that the
only objects of type A are LF terms M . Although computation cannot result in
an object of type A, it may result in an object of type ∃x∈A. >. We abbreviate
this type as 〈A〉 and summarize all abbreviations in Figure 3.

Since ∀ and ∃ range over δ, they each provide three respective function
and pairing constructs– over A, τ , and A#. For example, a function of type
∀x∈o. 〈nd x〉 computes natural deduction derivations for any formula. In con-
trast, a function of type ∀x∈o#. 〈nd x〉 only works on parameters.

As already stated, functions may range over any type δ. We write δ ⊃ τ for
∀α∈δ. τ when α does not occur in τ , which will always be the case when δ is
a τ . We define values of Delphin functions as a list of cases fn (c1 | . . . | cn),
which means that we do not introduce an explicit computation-level λ-term.
This technique allows us to avoid aliasing of bound variables, which significantly
simplifies the presentation of our calculus in the presence of dependent types.

We write a single case as e 7→ f where e is the pattern and f is the body.
Patterns may contain pattern variables, which are explicitly declared. We use ε
to declare pattern variables of any type representing objects or parameters. For
example, fn εu∈τ . u 7→ u encodes the identity function on type τ . Multiple cases
are captured via alternation, c1 | c2, and · stands for an empty list of cases. A
Delphin level λ-binder λα∈δ. e may thus be expressed as fn εα∈δ. α 7→ e.

Function application is call-by-value and is written as e f . During compu-
tation, e is expected to yield a set of cases c, of which one that matches the
argument is selected and executed. During the matching process, ε-bound pat-
tern variables are appropriately instantiated.

The Delphin type for dependent pairs is denoted by ∃α∈δ. τ , and its values
are pairs of the form (e, f), where both e and f are values. We write δ ? τ when

δ ⊃ τ = ∀α∈δ. τ

δ ? τ = ∃α∈δ. τ

〈A〉 = ∃x∈A. >
〈M〉 = (M, unit)

λα∈δ. e = fn εα∈δ. α 7→ e

case e of cs = (fn cs) e

let (α∈δ, u∈τ) = e in f
= case e of εα∈δ. εu∈τ . (α, u) 7→ f

let 〈x〉 = e in f
= case e of εx∈A. 〈x〉 7→ f

let α = e in f
= (λα∈δ. f) e

Fig. 3. Abbreviations

α does not occur in τ , which will always be the case when δ is a τ . Pairs are
eliminated via case analysis.

Delphin’s newness type constructor is written as ∇x∈A#. τ and the corre-
sponding values are νx∈A#. e, where e is a value. In Section 6 we will see that a
term νx∈A#. e will always evaluate to a term νx∈A#. e′. In other words, evalu-
ation in an extended signature results in values in the same extended signature.
Just as ν dynamically extends the signature, the ∇-type is eliminated via e\x,
which dynamically shrinks the signature to its form before x was introduced.

One may perform case analysis over a∇-type. This gives us a way to translate
between values of the ∇-type and LF’s Π-type. For example, we can utilize case
analysis to convert between the value 〈λx. M x〉 and νx. 〈M x〉. A Delphin func-
tion that would convert the former into the latter would have type 〈Πx : A. B〉 ⊃
∇x∈A#. 〈B〉 and be written as fn εy∈(Πx : A. B). 〈y〉 7→ νx∈A#. 〈y x〉.

Conversely, a function of type ∇x∈A#. 〈B〉 ⊃ 〈Πx : A. B〉 can be written
as fn εy∈(Πx : A. B). (νx∈A#. 〈y x〉) 7→ 〈y〉. Notice that the pattern is 〈y x〉,
illustrating an example of higher-order matching. Just as we introduced the ∇-
type to reason over higher-order encodings, we can employ higher-order matching
to get rid of it again.

We also remark that we have να. c and c\α over cases, which have a similar
meaning to their counterparts over expressions. By allowing these constructs to
range over cases, we add further flexibility in what we can express with pat-
tern (ε-bound) variables. For example, this is useful in implementing exchange
properties as well as the properties that will be proved in Lemma 1.

Finally, we turn to the usual recursion operator µu∈τ . e. Note that µ can
only recurse on Delphin computational types τ and not on LF types A.

4 Examples

We illustrate Delphin with a few examples building on the encodings of natural
numbers and expressions given in Section 2.

Example 4 (Addition). The function plus adds two natural numbers.

µplus∈〈nat〉 ⊃ 〈nat〉 ⊃ 〈nat〉.
fn 〈z〉 7→ fn εM∈nat.〈M〉 7→ 〈M〉
| εN∈nat.〈s N〉 7→ fn εM∈nat.〈M〉 7→ let 〈x〉 = (plus 〈N〉 〈M〉) in 〈s x〉

Example 5 (Interpreter).

µeval ∈〈exp〉 ⊃ 〈exp〉.
fn εE1∈exp. εE2∈exp. 〈app E1 E2〉

7→ case (eval 〈E1〉, eval 〈E2〉) of
εF∈exp → exp. εV ∈exp. (〈lam F 〉, 〈V 〉) 7→ eval 〈F V 〉

| εE∈exp → exp. 〈lam E〉 7→ 〈lam E〉

Example 6 (Beta Reduction). We can reduce redices under λ-binders.

µevalBeta ∈〈exp〉 ⊃ 〈exp〉.
fn εE1∈exp. εE2∈exp. 〈app E1 E2〉

7→ case (evalBeta 〈E1〉, evalBeta 〈E2〉) of
εF∈exp → exp. εV ∈exp. (〈lam F 〉, 〈V 〉) 7→ evalBeta 〈F V 〉

| εx∈exp#. εV ∈exp. (〈x〉, 〈V 〉) 7→ 〈app x V 〉
| εE∈exp → exp. 〈lam E〉

7→ case (νx∈exp#. evalBeta 〈E x〉) of
εE′∈exp → exp.(νx∈exp#. 〈E′ x〉) 7→ 〈lam E′〉

| εx∈exp#. 〈x〉 7→ 〈x〉

The 〈lam E〉 case illustrates how we handle higher-order terms. Since E is
of functional type, we create a parameter x to continue computation with (E x)
under ν. The term νx∈exp#. evalBeta 〈E x〉 has type∇x∈exp#. 〈exp〉. Although
the introduction of parameters is easy, eliminating them is more difficult. We do
this by case analysis, by first stipulating the existence of an E′ of functional
type and then match against 〈E′ x〉. This illustrates an example of higher-order
matching. The parameter x cannot escape its scope because E′ was declared
outside of the scope of x. This lack of dependency is reflected by the lexical
scoping in the Delphin code above: the pattern variable εE′ is declared to the
left of νx.

Finally, the base case is required for completeness. New parameters are in-
troduced in the lam case and we specify here that they reduce to themselves.

Example 7 (Variable Counting). For the final example in this section, we write
a function that counts the number of variable occurrences in untyped λ-terms.
For example, the number of variables in plam x. x@(lam y. x@y)q is p3q.

µcntvar∈〈exp〉 ⊃ 〈nat〉.
fn εE1∈exp.εE2∈exp.〈app E1 E2〉 7→ plus (cntvar 〈E1〉) (cntvar 〈E2〉)
| εE∈(exp → exp).〈lam E〉 7→ case (νx∈exp#. cntvar 〈E x〉) of

εN∈nat.(νx∈exp#. 〈N〉) 7→ 〈N〉
| εx∈exp#. 〈x〉 7→ 〈s z〉

We explain the 〈lam E〉 case. Since E is of functional type, we create a
parameter x:exp# and recurse on 〈E x〉. From the very definition of natural
numbers in Example 1, we deduce that it is impossible for the result to depend
on x and express this by matching against 〈N〉 instead of 〈N ′ x〉. Note that if it
was possible for x to occur in the result then this case would only match, during

runtime, in situations where the x did not occur free in the result. Therefore,
if the programmer leaves out essential cases then it is possible to get stuck,
corresponding to a match non-exhaustive error, just as in ML.

5 Static Semantics

Before presenting the typing rules, the role of context deserves special attention.

Contexts Ω ::= · | Ω,α∈δ | Ω, x
∇

∈A#

A Delphin context, Ω, serves two purposes. Besides assigning types to vari-
ables, it also distinguishes between variables intended for instantiation from
uninstantiable parameters. We write α∈δ to express variables α that will be
instantiated, such as pattern variables. Alternatively, we write x

∇

∈A# to store
information about uninstantiable parameters, introduced by ν. The distinction
between x∈A# and x

∇

∈A# is highlighted by comparing λx∈A#. e and νx∈A#. e.
The first binds a parameter that is intended for instantiation while the latter will
remain uninstantiated. We do not allow reorderings of Ω because of dependen-
cies. Additionally, we assume all declarations in Ω to be uniquely named, and
we achieve this goal by tacitly renaming variables. During the actual execution
of Delphin programs, Ω only contains declarations of the latter form, which one
may interpret as an extension to the signature. In comparison, computation in
ML always occurs with a fixed signature.

Definition 1 (Casting). In order to employ LF typing, we define ||Ω|| as cast-
ing of a context Ω, which throws out all declarations u∈τ and converts x∈A,
x∈A#, and x

∇

∈A# all into x:A, yielding an LF context Γ .

5.1 Type System

In the presence of dependencies, not all types are valid. We write Ω ` δ wff for
valid types and Ω ctx for valid contexts, but omit both judgments here due to
space considerations. We write Ω ` e ∈ δ for the central derivability judgment,
which we present in Figure 4. Note that the rules have implicit premises using
the validity judgments to ensure that the context and all types are well-formed.
We make these explicit in the corresponding Technical Report [6].

The variable rules τvar and var# allow one to use assumptions in the context
of types τ and A#, respectively. The only term of type A# is a variable x.

The rule isLF is the only rule for type A and stipulates that in order for an
expression M to be an LF term, we must be able to type it using the LF typing
judgment under ||Ω|| (Definition 1).

The rest of the rules deal with computational types τ . Function types are
introduced via cases c. The introduction rule impI expresses that all branches
must have the same type. Note that we allow for an empty list of cases which
may be used to write a function over an empty type. Functions are eliminated

(u∈τ) in Ω
τvar

Ω ` u ∈ τ

((x∈A#) or (x
∇

∈A#)) in Ω
var#

Ω ` x ∈ A#

||Ω|| `lf M : A
isLF

Ω ` M ∈ A

i ≥ 0, For all i, Ω ` ci ∈ τ
impI

Ω ` fn (c1 | . . . | cn) ∈ τ

Ω ` e ∈ ∀α∈δ. τ Ω ` f ∈ δ
impE

Ω ` e f ∈ τ [f/α]

Ω, x
∇

∈A# ` e ∈ τ
new

Ω ` νx∈A#. e ∈ ∇x∈A#. τ

Ω ` e ∈ ∇x′∈A#. τ
pop

Ω, x
∇

∈A#, Ω2 ` e\x ∈ τ [x/x′]

Ω ` e ∈ δ Ω ` f ∈ τ [e/α]
pairI

Ω ` (e, f) ∈ ∃α∈δ. τ

Ω, u∈τ ` e ∈ τ
fix

Ω ` µu∈τ . e ∈ τ
top

Ω ` unit ∈ >

. .

Ω, α∈δ ` c ∈ τ
cEps

Ω ` εα∈δ. c ∈ τ

Ω ` e ∈ δ Ω ` f ∈ τ [e/α]
cMatch

Ω ` e 7→ f ∈ ∀α∈δ. τ

Ω, x
∇

∈A# ` c ∈ τ
cNew

Ω ` νx∈A#. c ∈ ∇x∈A#. τ

Ω ` c ∈ ∇x′∈A#. τ
cPop

Ω, x
∇

∈A#, Ω2 ` c\x ∈ τ [x/x′]

Fig. 4. Delphin Typing Rules

through application with impE. The elimination refines τ under a substitution
[f/α] replacing all occurrences of α by f . Formally, we use simultaneous substi-
tutions but refer the interested reader to the corresponding technical report [6]
for details. If δ is a computational-type σ, then α cannot occur free in τ and this
substitution will be vacuous.

Cases contain explicit pattern variables, which are simply added to the con-
text in cEps. The actual function type is introduced in cMatch illustrating that
functions are defined via case analysis. In the branch e 7→ f , e is the pattern and
f is the body. The type of f is refined by its pattern via a substitution τ [e/α].
This expresses how different bodies may have different types, all depending on
their corresponding pattern. As we define functions by cases, we do not need
to refine the context Ω. Additionally, our distinction between computation-level
and representation-level types ensures that this substitution is always defined.
Finally, we also have a ν and c\x construct over cases, via cNew and cPop. These
have similar semantics to their counterparts on expressions, discussed next.

The introduction form of ∇ is called new. As discussed in Section 3, the type
∇x∈A#. τ declares x

∇

∈A# as a new parameter. The expression νx∈A#. e eval-
uates e where the parameter x can occur free. Previously, our examples have
shown how to utilize higher-order matching via case-analysis to eliminate these
types. However, the elimination rule pop eliminates a ∇-type via an application-
like construction, e\x, which shifts computation of e to occur without the unin-

stantiable parameter x. If Ω ` e ∈ ∇x′∈A#. τ , then x′ is a fresh uninstantiable
parameter with respect to the context Ω. Therefore, in an extended context
Ω, x

∇

∈A#, Ω2, we can substitute x for x′ and yield a term of type τ [x/x′]. The
following lemma illustrates examples where this is useful.

Lemma 1. The following types are inhabited.

1. ∇x∈A#. (τ ⊃ σ) ⊃ (∇x∈A#. τ ⊃ ∇x∈A#. σ)
2. (∇x∈A#. τ ⊃ ∇x∈A#. σ) ⊃ ∇x∈A#. (τ ⊃ σ)
3. ∇x∈A#. (τ ? σ) ⊃ (∇x∈A#. τ ?∇x∈A#. σ)
4. (∇x∈A#. τ ?∇x∈A#. σ) ⊃ ∇x∈A#. (τ ? σ)

Proof. We only show 1 and 2, the other 2 cases are straightforward.

1. λu1∈∇x∈A#. (τ ⊃ σ). λu2∈(∇x∈A#. τ). νx∈A#. (u1\x) (u2\x)
2. λu1∈(∇x∈A#. τ ⊃ ∇x∈A#. σ).

fn εE∈(∇x∈A#. τ). νx∈A#. ((E\x) 7→ (u1 E)\x)

Finally, pairs are introduced via pairI and eliminated using case analysis. The
typing rules for recursion (fix) and unit (top) are standard.

6 Operational Semantics

Definition 2 (Values). The set of values of are:

Values: v ::= unit | fn (c1 | . . . | cn) | νx∈A#. v | (v1, v2) | M

As usual for a call-by-value language, functions are considered values. A
newness term νx∈A#. v is a value only if its body is a value, which is achieved
via evaluation under the ν-construct. LF terms M are the only values (and
expressions) of type A, and pairs are considered values only if their components
are values. Therefore, 〈M〉 is the only value of type 〈A〉 (Figure 3).

We present the small-step operational semantics, Ω ` e → f , in Figure 5.
The first rule illustrates that the evaluation of νx∈A#. e simply evaluates e

under the context extended with x. The declaration is marked as x
∇

∈A# as this
represents an extension to the signature. Evaluation under ν drives our ability
to reason under LF λ-binders. Additionally, we evaluate e′\x by first evaluating
e′ down to νx′∈A#. e and then substitute x for x′. Therefore, we see that e′\x
behaves much like an application.

The small-step operational semantics for cases, Ω ` c → c′, is also shown in
Figure 5. The first rule non-deterministically instantiates the pattern variables.
In our implementation we delay this choice and instantiate them by unification
during pattern matching, which is discussed briefly in Section 9. The next three
rules allow us to work with ν over cases, which is the same for the ν over
expressions. We provide a rule to reduce the pattern of a case branch, which can
be any arbitrary expression. In Section 4 we discussed how a program could get

Ω, x
∇

∈A# ` e → f

Ω ` νx∈A#. e → νx∈A#. f

Ω ` e → e′

Ω ` (e, f) → (e′, f)

Ω ` f → f ′

Ω ` (e, f) → (e, f ′)

Ω ` e → e′

Ω ` e f → e′ f

Ω ` f → f ′

Ω ` e f → e f ′

Ω ` e → f

Ω, x
∇

∈A#, Ω2 ` e\x → f\x Ω, x
∇

∈A#, Ω2 ` (νx′∈A#. e)\x → e[x/x′]

Ω ` (fn (c1 | . . . | cn))\x → fn ((c1\x) | . . . | (cn\x))

Ω ` ci → c′
i

Ω ` (fn (. . . | ci | . . .)) v → (fn (. . . | c′
i | . . .)) v

*
Ω ` (fn (. . . | v 7→ e | . . .)) v → e Ω ` µu∈τ . e → e[µu∈τ . e/u]

. .

Ω ` v ∈ δ

Ω ` εα∈δ. c → c[v/α]

Ω, x
∇

∈A# ` c → c′

Ω ` νx∈A#. c → νx∈A#. c′

Ω ` c → c′

Ω, x
∇

∈A#, Ω2 ` c\x → c′\x

Ω, x
∇

∈A#, Ω2 ` (νx′∈A#. c)\x → c[x/x′]

Ω ` e → e′

Ω ` (e 7→ f) → (e′ 7→ f)

Fig. 5. Small-Step Operational Semantics

stuck, which corresponds to a match non-exhaustive error. However, we say that
a program “coverage checks” if the list of patterns is exhaustive.

Recall that all LF terms possess a unique canonical form. Given any Delphin
term, we implicitly reduce all LF terms to canonical form allowing us to express
matching via syntactic equality in the rule marked with *.

7 Meta-Theoretic Results

We show here that Delphin is type-safe when all cases are exhaustive.

Lemma 2 (Substitution).
If Ω ` e ∈ δ and Ω,α∈δ ` f ∈ τ , then Ω ` f [e/α] ∈ τ [e/α].

Proof. We actually prove this for a more general notion of simultaneous substi-
tutions. See Technical Report [6] for details.

Theorem 2 (Type Preservation).
If Ω ` e ∈ τ and Ω ` e → f then Ω ` f ∈ τ .

Proof. By induction on the structure of E :: Ω ` e → f and F :: Ω ` c → c′. See
Technical Report [6] for details.

Corollary 1 (Soundness). Parameters cannot escape their scope. If Ω ` e ∈ τ
and Ω ` e → e′ then all parameters in e and e′ are declared in Ω.

Theorem 3 (Progress).
Under the condition that all cases in e are exhaustive, if Ω ` e ∈ τ and Ω only
contains declarations of the form x

∇

∈A#, then Ω ` e → f or e is a value.

Proof. By induction over E :: Ω ` e ∈ τ . In matching (rule *) we assume that
cases are exhaustive and defer to an orthogonal “coverage check.” The Delphin
implementation contains a prototype coverage algorithm extending ideas from
[8], but a formal description is left for future work. Although the problem of
checking an arbitrary list of cases is undecidable, it is always possible to generate
an exhaustive list of cases for any type δ.

8 Combinator Example

Recall the definition of the natural deduction calculus from Example 3. We will
give an algorithmic procedure that converts natural deduction derivations into
the Hilbert calculus, i.e. simply typed λ-terms into combinators. We omit the
declaration of inferable pattern variables (as is also allowed in the implementa-
tion).

K
` A ⊃ B ⊃ A

` A ⊃ B ` A
MP

` B

S
` (A ⊃ B ⊃ C) ⊃ (A ⊃ B) ⊃ (A ⊃ C)

comb : o → type,

K : comb (A ⇒ B ⇒ A)
MP : comb(A ⇒ B) → comb A

→ comb B
S : comb ((A ⇒ B ⇒ C) ⇒

(A ⇒ B) ⇒ A ⇒ C)

Our translation follows a two-step algorithm. The first step is bracket abstrac-
tion, or ba, which internalizes abstraction. If M has type (comb A → comb B)
and N has type (comb A) then we can use ba to get a combinator, d, of type
(comb A ⇒ B). Subsequently, we can do (MP d N) to get a term that is equiv-
alent to (M N) in combinator logic. Formally, ba is written as.

µba ∈ ∀A∈o. ∀B∈o. 〈comb A → comb B〉 ⊃ 〈comb (A ⇒ B)〉.
fn A 7→

(fn A 7→ fn F 7→ 〈MP (MP S K) K〉
| B 7→ fn 〈λx. MP (D1 x) ((D2:comb A → comb C) x)〉

7→ let 〈D′
1〉 = (ba A (C ⇒ B) 〈D1〉) in

let 〈D′
2〉 = (ba A C 〈D2〉) in 〈MP (MP S D′

1) D′
2〉

| 〈λx. U〉 7→ 〈MP K U〉)

Next we write the function convert which traverses a natural deduction
derivation and uses ba to convert them into Hilbert style combinators. In this
function, we will need to introduce new parameters of (nd A) and (comb A)
together. In order to hold onto the relationship between these parameters, we
pass around a function of type ∀A∈o. ∀D∈(nd A)#. 〈comb A〉. We will employ
type aliasing and abbreviate this type as convParamFun.

µconvert ∈ convParamFun ⊃ ∀A∈o. ∀D∈〈nd A〉. 〈comb A〉.
λf∈ convParamFun.

fn (B ⇒ C) 7→ fn 〈impi D′〉 7→
(case (νd∈(nd B)#. νdu∈(comb B)#.

let f ′ = fn B 7→ fn d 7→ 〈du〉
| (εB′. εd′. νd. νdu. (B′ 7→ fn d′ 7→

(let R = f B′ d′ in νd. νdu. R)\d\du))\d\du

in convert f ′ C 〈D′ d〉)
of νd∈(nd B)#. νdu∈(comb B)#. 〈D′′ du〉 7→ ba B C 〈D′′〉)

| A 7→ fn 〈impe D1 (D2:nd B)〉 7→
let 〈U1〉 = (convert f (B ⇒ A) 〈D1〉) in
let 〈U2〉 = (convert f B 〈D2〉) in 〈MP U1 U2〉

| A 7→ fn εx∈(nd A)#. 〈x〉 7→ f A x

The first argument to convert is a computation-level function f of type
convParamFun that handles the parameters.

The first case, 〈impi D〉, requires recursion under a representation-level λ.
We create two new parameters (or equivalently extend the signature with) d
and du in order to continue our computation by recursing on 〈D′ d〉. As we are
in an extended signature, if f was a total function on input, it is no longer total.
We therefore extend the function f into f ′ mapping d to du before recursing. We
then use the same techniques from Examples 6 and 7 to abstract the result into
an LF function D′′ exploiting that d cannot occur free in the result. Finally, we
employ ba to yield our desired combinator.

The second case does not create any parameters and hence all recursive calls
are called with f . Finally, the last case handles the parameters by simply calling
the input function f which has been built up to handle all parameters.

The above definition of f ′ illustrates how one can build up parameter func-
tions. The second branch of f ′ utilizes e\x and c\x (Section 5.1) to ensure that
the input function f is not executed in scope of d and du. The Delphin implemen-
tation offers a shorthand to extend a function f by writing “f with d 7→ du”.

Example 8 (Sample Execution).

νA. convert (fn ·) (A ⇒ A) 〈impi λx. x〉
. . . → νA. case (νd. νdu. convert (fn A 7→ fn d 7→ 〈du〉 | . . .) A 〈d〉)

of νd. νdu. 〈D′′ du〉 7→ ba A A 〈D′′〉
. . . → νA. case (νd. νdu. (fn A 7→ fn d 7→ 〈du〉 | . . .) A d)

of νd. νdu. 〈D′′ du〉 7→ ba A A 〈D′′〉
. . . → νA. case (νd. νdu. 〈du〉) of νd. νdu. 〈D′′ du〉 7→ ba A A 〈D′′〉
. . . → νA. ba A A 〈λx. x〉
. . . → νA. 〈MP (MP S K) K〉

9 Implementation

An implementation is available at http://www.cs.yale.edu/∼delphin. Del-
phin is implemented in approximately 12K lines of code in SML/NJ offering a
powerful type reconstruction algorithm, typechecker, and evaluator.

The non-deterministic instantiation of pattern variables from Section 6 is
implemented by using logic variables to delay the choice until matching. Addi-
tionally, when writing a curried function with multiple arguments we look at all

the arguments together before committing to a branch. We implement this fea-
ture by partially evaluating functions. For example, convert (A ⇒ A) will result
in a function with three cases rather than committing to the first branch. This
is an enhancement to allow the programmer to write more concise code.

We employ a unification/matching algorithm based on the one designed by
Dowek et al. [1], but extended to handle parameters. Therefore, we only allow LF
patterns that fall into the decidable pattern fragment of higher-order unification.
Formally, this means that we only allow LF patterns of the form E x1 . . . xn

where xi is a fresh parameter (with respect to E) and all xi’s are distinct. It is
important to note that this restriction is only an implementation limitation as
it is also possible to use different unification algorithms.

The Delphin code for all examples in this paper and many more can be
found on our website. We have implemented a function translating HOL proofs
into Nuprl proofs (approximately 400 lines of code) and a Hindley-Milner style
type-inference algorithm for Mini-ML (approximately 300 lines of code).

10 Related Work

Twelf: LF is well suited for representation but does not directly afford the ability
to reason over representations. Twelf utilizes a logic programming methodology
to conduct such reasoning by providing meta-level constructs to interpret a type
family as a function. Delphin affords the user the ability to write the functions
themselves, and we envision this will replace the underlying meta-logic of Twelf.
Higher-order encodings: The predecessor of our work was on the ∇-calculus [9],
which provided a stack based system only supporting a simply-typed logical
framework. The ∇ also referred to something different than what it does here.

Our work is related to Miller and Tiu’s [4]. In their setting, they use ∇
as a logic quantifier designed to reason about scoped constants. However, their
reasoning occurs over formulas with an explicit local context. In our setting there
is only a global context, which renders it more useful for functional programming.

Pientka[5] also proposes a system for programming with HOAS, however
only for a simply-typed logical framework. Programming over HOAS resorts to
the explicit handling of substitutions and contexts. In contrast, we believe the
purpose of HOAS is to provide an implicit notion of substitution. Therefore, we
provide a computation-level in the same spirit, keeping these constructs hidden.
Dependent types: DML provides indexed datatypes whose domains were recently
generalized to LF objects to form the ATS/LF system. In contrast, the Cayenne
language supports full dependent types and even computation with types, ren-
dering it more expressive but at the expense of an undecidable type checker.
Agda and Epigram are two more languages inspired by dependent type theories.
All but the ATS/LF system lack support for higher-order encodings. Although
ATS/LF supports HOAS they resort to encoding the context explicitly, or as
they say representing terms as terms-in-contexts. By making this information
explicit they can reason about parameters in the context, but they must also
define substitutions. We suspect that they can also add a ∇-type similar to ours.

Freshness: Also related to our work are programming languages with freshness
[2], such as FreshML, which utilizes Fraenkel-Mostowski (FM) set theory to
provide a built-in α-equivalence relation for first-order encodings. This allows
for limited support of HOAS as substitution lemmas must still be explicit, albeit
easier to write. Lately, Pottier has developed a logic for reasoning about values
and the names they contain in FreshML [7]. As the creation of names is a global
effect in FreshML, his work is used to prove that names cannot escape their
scope, which is an inherent property of Delphin’s type system.

11 Conclusion

In this paper we have presented the underlying calculus and semantics of the
Delphin programming language. This is the only functional system tackling pro-
gramming over a logical framework with both higher-order encodings and de-
pendent types. The novelty of this work is in providing a way to reason under
LF λ-binders, such that the notions of context and substitutions remain implicit
in computations as well as representations.

Acknowledgments. We would like to thank Jeffrey Sarnat and Lucas Dixon for
many helpful discussions on this and many earlier designs of the system.

References

1. G. Dowek, T. Hardin, C. Kirchner, and F. Pfenning. Unification via explicit sub-
stitutions: The case of higher-order patterns. Rapport de Recherche 3591, INRIA,
Dec. 1998. Preliminary version appeared at JICSLP’96.

2. M. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable
binding. Formal Aspects Computing, 13(3-5):341–363, 2002.

3. R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal of
the Association for Computing Machinery, 40(1):143–184, Jan. 1993.

4. D. Miller and A. Tiu. A proof theory for generic judgments. ACM Trans. on
Computational Logic, 6(4):749–783, Oct. 2005.

5. B. Pientka. A type-theoretic foundation for programming with higher-order ab-
stract syntax and first-class substitutions. In Principles of Programming Languages,
POPL, 2008.

6. A. Poswolsky and C. Schürmann. Extended report on delphin: A functional pro-
gramming language with higher-order encodings and dependent types. Technical
Report YALEU/DCS/TR-1375, Yale University, 2007.

7. F. Pottier. Static name control for FreshML. In Twenty-Second Annual IEEE
Symposium on Logic In Computer Science (LICS’07), Wroclaw, Poland, July 2007.

8. C. Schürmann and F. Pfenning. A coverage checking algorithm for LF. In D. Basin
and B. Wolff, editors, Proccedings of Theorem Proving in Higher Order Logics
(TPHOLs’03), volume LNCS-2758, Rome, Italy, 2003. Springer Verlag.

9. C. Schürmann, A. Poswolsky, and J. Sarnat. The ∇-calculus. Functional program-
ming with higher-order encodings. In Typed Lambda Calculus and Applications,
TLCA, 2005.

