
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

System Description: Delphin – A Functional
Programming Language for Deductive

Systems

Adam Poswolsky1,2

Yale University
New Haven, CT, USA

Carsten Schürmann1,3

IT University of Copenhagen
Copenhagen, Denmark

Abstract

Delphin is a functional programming language [PS08] utilizing dependent higher-order datatypes. Delphin’s
two-level type-system cleanly separates data from computation, allowing for decidable type checking. The
data level is LF [HHP93], which allows for the specification of deductive systems following the judgments-
as-types methodology. The computation level facilitates the manipulation of such encodings by providing
facilities for pattern matching, recursion, and the dynamic creation of new parameters (which can be
thought of as scoped constants). Delphin’s documentation and examples are available online at http:
//delphin.logosphere.org.

Keywords: LF, dependent types, higher-order abstract syntax, HOAS, Twelf, Delphin

1 Introduction

Delphin is a functional programming language built to facilitate the encoding of,
manipulation of, and reasoning over dependent higher-order datatypes. Delphin
is a two level system that separates data-level functions from computation-level
functions. The data level is the logical framework LF [HHP93], which supports
dependent types and higher-order abstract syntax (HOAS). The computation level
provides mechanisms such as case analysis and recursion to allow for the manipu-
lation of data. Its most novel feature is in its support of the dynamic creation of
parameters (i.e. scoped constants).

1 This research has been funded by NSF grants CCR-0325808 and CCR-0133502.
2 Email: adam.poswolsky@yale.edu
3 Email: carsten@itu.dk

c©2008 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs
http://delphin.logosphere.org
http://delphin.logosphere.org
mailto:adam.poswolsky@yale.edu
mailto:carsten@itu.dk

Poswolsky and Schürmann

Delphin is first and foremost a general purpose programming language sup-
porting complex data structures. However, it also contains strong tools for meta-
reasoning allowing one to determine if functions are total and hence Delphin can
also be used to formalize proofs. Thus, it is well-suited to be used in the setting of
the Logosphere project [SPS], a digital library of formal proofs that brings together
different proof assistants and theorem provers with the goal to facilitate the ex-
change of mathematical knowledge by converting proofs from one logical formalism
into another. Delphin has been successfully used in expressing translations between
HOL, Nuprl, and various other logics.

As a running example, we will describe a translator from the natural deduction
calculus (implicational fragment) to the Hilbert calculus, or equivalently a translator
from the simply-typed λ-calculus into combinators.

2 Specification of Data

We refer to the language being encoded as the object language. We write p q for
the representation function mapping elements of the object language to their rep-
resentations in LF.

We adopt the same syntax for LF as in Twelf [PS98] where a λ-abstraction is
written as [x:A]e and application as juxtaposition. A function’s type is written as
{x:A}B, but we often write A -> B when x does not occur in B. LF is well-suited
to represent complex object languages because variable binders can be represented
using LF functions, eliminating the need to worry about the representation of vari-
ables, renamings, or substitutions.

We distinguish LF terms from computation-level expressions by enclosing the
former in <...>. For example, the expression e f refers to computation-level appli-
cation whereas the application in <M N> occurs at the LF level. Similarly, terms of
type <A1 -> A2> are <M> where M is an LF function.

Figure 1 illustrates how to define datatypes. The Delphin keyword sig con-
structs a new type given the name of the type and its constructors, analogous to the
datatype keyword in ML. We refer to the collection of datatypes as the signature.
Formulas A,B ::= A ⊃ B | b are represented as terms of type tp. We use ar as a
right-associative infix constructor and represent the base type using b. Terms of type
A in the simply-typed λ-calculus are represented as terms of type exp pAq. This il-
lustrates an example with both dependent types as well as HOAS. For example,
pλx:(b→ b). λy:b. x yq is lam [x : exp (b ar b)] lam [y : exp b] app x y.
Finally, we represent derivations in the Hilbert calculus, also known as typed com-
binators, as terms of type comb pAq.

3 Computation

Delphin’s most novel feature is the new construct, which is written as {<x>}e and
has type {<x>}T 4 . Evaluation of e occurs while the binding x remains uninstan-
tiated. Therefore, for the scope of e, the variable x can be thought of as a fresh

4 In the formal system [PS08], the term is νx. e and the type is ∇x. τ .

2

Poswolsky and Schürmann

(* Types *)
sig <tp : type>

<ar : tp -> tp -> tp> %infix right 10
<b : tp> ;

(* Simply-Typed λ-calculus *)
sig <exp : tp -> type>

<lam : (exp A -> exp B) -> exp (A ar B)>
<app : exp (A ar B) -> exp A -> exp B> ;

(* Combinators *)
sig <comb : tp -> type>

<k : comb (A ar B ar A)>
<s : comb ((A ar B ar C) ar (A ar B) ar A ar C) >
<mp : comb (A ar B) -> comb A -> comb B> ;

Fig. 1. Translator (Part 1/4): Datatype Declarations

params = <exp A>, <comb A>;

Fig. 2. Translator (Part 2/4): Params Declarations

constant, which we call a parameter. One may view this as providing a way to
dynamically extend the signature. Expressions {<x>}e evaluate to {<x>}v, where v
is a value [PS08].

Delphin pervasively distinguishes between LF types A, parameter types A#, and
computation-level types T. In the expression {<x>}e, the variable x has type A#.
Additionally, x also has type A, and as such A# can be seen as a subtype of A.

Since one may dynamically create arbitrary parameters, a Delphin function ex-
pects arguments that are constructed from constants in the signature as well as
dynamically introduced parameters. For example, given a function foo, the evalu-
ation of {<x : (exp A)#>}foo <x> would get stuck if foo did not provide a case
for parameters of type exp A. In Delphin, we use the params keyword to indicate
which parameters our functions are intended to handle. Note that a function may
call a function with a different params specification as long as the callee can handle
all the parameters of the caller. The ability to call functions that make sense with
respect to different parameters is known as world subsumption.

We proceed to motivate the Delphin programming language with our example
of writing a translator from simply typed λ-terms into combinators. The entire
construction is depicted in Figures 1, 2, 3, and 4.

Figure 2 declares that the functions that follow are intended to handle an arbi-
trary collection of dynamically created simply-typed λ-terms and combinators.

The first step in our translator is bracket abstraction, or ba, which internalizes
abstraction in the combinator calculus. If M has type comb A -> comb B, then we
can use ba to get a combinator M’ of type comb (A ar B). Subsequently, if we have
a C of type comb A, then the term mp M’ C is equivalent to M C in the combinator
calculus.

The code for ba is shown in Figure 3. Functions are defined by cases, and in this
example we are performing case analysis over LF functions. The first case handles
the creation of identity combinators, i.e. of type A ar A. The second case handles mp

3

Poswolsky and Schürmann

fun ba : <comb A -> comb B> -> <comb (A ar B)>
= fn <[x] x> => <mp (mp s k) (k : comb (A ar A ar A))>

| <[x] mp (C1 x) (C2 x)> => (case ((ba <C1>), (ba <C2>))
of (<C1’>, <C2’>) => <mp (mp s C1’) C2’>)

| <[x] C> => <mp k C> ;

Fig. 3. Translator (Part 3/4): Bracket Abstraction

by performing bracket abstraction on both parts and using the s combinator on the
results. Notice that we perform case analysis on the results of the recursive calls
since we need to extract the LF-level C1’ from the computation-level <C1’>. The
third case handles combinators C of type comb B that do not use the hypothetical
combinator x; in this situation, we use the k combinator. This function indeed
covers all cases.

We write T1 -> T2 for the type of non-dependent functions, and we
write <x : A> -> T when x can occur in T. Observe that the vari-
ables A and B occur free in the type of ba. The full type of ba
is <A : tp> -> <B : tp> -> <comb A -> comb B> -> <comb (A ar B)>. The
omission of the first two argument types tells the frontend to treat the first two
arguments implicitly. This greatly simplifies our code as it is redundant to explic-
itly supply an input argument which is indexed in another input argument. When
applying the function, the reconstruction engine will automatically fill in the im-
plicit arguments. This support is just a frontend convenience and does not affect
the underlying theory.

Next we write convert, which traverses simply-typed λ-terms and uses ba to
convert them into combinators. We will see that it is necessary to introduce new
parameters of exp A and comb A together. In order to maintain the relationship
between these parameters, we pass around a parameter function, i.e. a computa-
tional function whose domains ranges over parameters. In this example, we will
pass around a function W of type <(exp B)#> -> <comb B>. From a first-order per-
spective, W can be thought of as a substitution since it maps parameters to terms.

Figure 4 shows us the entire convert function. For readability we employ type
aliasing and abbreviate the type of the parameter function as paramFun. The first
argument is the parameter function W, and we will need to update this function when
we create new parameters. One may think of W as a continuation to be applied to
parameters. In the lam case, we recurse on E by first creating a parameter x to
which E can be applied. However, W is not defined with respect to the new x.
Therefore, before recursing, we create a fresh combinator u and extend W, via the
with keyword, to map x to u. The with construct is syntactic sugar used to extend
parameter functions; its desugared version is described in [PS08]. The expression
“{<x>}{<u>} convert (W with <x> => <u>) <E x>” contains a recursive call in
the presence of the new x and u. During the recursion, the x will be converted to
u by the last case of convert. Because the u may occur in the result, we utilize
higher-order matching by matching the result against “{<x>}{<u>}<C u>”. The
variable C is a LF function resulting from abstracting away all occurrences of u
in the result. The call to bracket abstraction ba internalizes this abstraction in
the combinator calculus. The app case recurses on both components and glues the

4

Poswolsky and Schürmann

type paramFun = <(exp B)#> -> <comb B>;
fun convert : paramFun -> <exp A> -> <comb A>
= fn W <lam [x] E x> =>

(case ({<x>}{<u>} convert (W with <x> => <u>) <E x>)
of ({<x>}{<u>} <C u>) => ba <C>)

| W <app E1 E2> => (case ((convert W <E1>), (convert W <E2>))
of (<C1>, <C2>) => <mp C1 C2>)

| W <x#> => W <x>;

Fig. 4. Translator (Part 4/4): Main Conversion

results together with mp. Finally, the last case handles parameters by applying the
parameter function W. Note that the pattern <x#> matches only parameters and the
pattern variable x has type (exp A)#.

4 Reasoning

Since computation occurs with respect to a dynamic collection of parameters, de-
termining if a list of cases is exhaustive is a non-trivial problem. If a list of cases is
incomplete, Delphin will return a Match Non-Exhaustive Warning providing a list
of cases which are missing. Additionally, if one tries to call a function which makes
sense with respect to an incompatible collection of parameters, Delphin will return
a World Subsumption Error. If no warning message is generated, then programs
are guaranteed not to get stuck (i.e. type safety holds).

The problem of determining if a list of cases is exhaustive is also referred to
as coverage checking. Earlier work [SP03] determines coverage of closed LF ob-
jects. This was extended for use in Twelf by supporting LF objects which are open
with respect to a collection of blocks [Sch00]. In Delphin, we support LF objects
that are open with respect to a collection of parameters, and handle coverage on
computation-level expressions in a similar way.

If a function passes the coverage checker and is terminating, then it is total
and may also be interpreted as a proof. The termination checker for Delphin is
currently only a prototype and supports lexicographic extensions of the subterm
ordering over the inputs. The default termination order is lexicographic on the first
input, followed by the second, and so on. However, we omit (1) implicit arguments
and (2) computation-level functions from the termination order. For example, the
termination checker for our convert function just checks that the second explicit
argument gets smaller.

Our converter (Figure 4) is proven total by Delphin, and hence we can view it
as a proof that every simply-typed λ-term can be converted into a combinator of
the appropriate type, or as an embedding of the natural deduction calculus into the
Hilbert calculus. The reverse direction can also be proven in Delphin by coding a
similar translation function.

5 Case Studies

Delphin has been used for numerous other examples. Here we just outline a few.

5

Poswolsky and Schürmann

Hindley-Milner Type Inference. We have an extensive case study of Mini-ML. We
have implemented the operational semantics, proved value soundness, and proved
type preservation. The most interesting feature is a Hindley-Milner style type-
inference algorithm. Parameters are used in place of references, where a new pa-
rameter can be thought of as a fresh memory location.

Logic. We have implemented and proved cut-elimination of the intuitionistic
sequent calculus. In the framework of expressing morphisms between logics, we
have expressed translations from HOL to Nuprl as well as translations between
sequent and natural deduction calculi.

Church-Rosser. We have proved the Church-Rosser theorem for the untyped
λ-calculus using the method of parallel reduction.

Isomorphism between HOAS and de Bruijn notation. A more advanced use of
parameter functions occurs when we convert terms of the untyped λ-calculus en-
coded in HOAS to an encoding utilizing de Bruijn indices. In this example we use
a parameter function to maintain a mapping of parameters to de Bruijn indices.
However, we do more than just simply extend this mapping. When handling the λ
case, we create a new parameter mapped to de Bruijn index 1 and update all other
mappings to be offset by 1. Furthermore, we show that the translation between
these two languages is an isomorphism. This example illustrates the expressivity
of parameter functions, as we can use it to express complex statements about the
underlying parameters (or context). For example, to prove the translation is an iso-
morphism, we used parameter functions to express the invariant that all parameters
are mapped to different de Bruijn indices.

6 Related Work

Unlike Delphin, Twelf [PS98] cannot support parameter functions as its meta-logic
is not higher-order (i.e. inputs and outputs cannot be meta-level functions). Instead,
Twelf uses blocks to specify that certain parameters are introduced together. One
can convert Twelf programs to Delphin, where blocks are replaced by parameter
functions, whose extensions can be naturally and succinctly expressed using the
with keyword.

Delphin’s type system guarantees that parameters cannot escape their scope.
This is in contrast to nominal systems [GP02], such as FreshML, where the creation
of parameters is a global effect and additional reasoning is necessary to ensure that
parameters do not escape their scope [Pot07]. Like our system, the Beluga [Pie08]
system supports HOAS and also guarantees that parameters do not escape their
scope; but rather than providing a means to extend the signature, they pass around
the entire context explicitly.

7 Environment

Delphin provides a top-level interactive loop where one may write, execute, and
experiment with programs. Error and warning messages are reported in the same
format as in SML of New Jersey, allowing one to use the SML Emacs mode to
jump to error locations easily. One may load LF Signatures (Twelf files) by typing

6

Poswolsky and Schürmann

Delphin, Release Version 1.5.0, April 20, 2008
D-- use "lfmtp08.d";
...
D-- val test1 = convert (fn .) <lam [u:exp b] lam [v:exp b] u> ;
val test1 : <comb (b ar b ar b)>

= <mp (mp s (mp k k)) (mp (mp s k) k)>
D-- val test2 = convert (fn .) <lam [x:exp b] x> ;
val test2 : <comb (b ar b)>

= <mp (mp s k) k>

Fig. 5. Delphin Sample Execution

sig use "filename" and may run Delphin files by typing use "filename". For
illustrative and debugging purposes, Delphin provides the ability to pretty-print
arbitrary Delphin expressions with options to make pattern variables and implicit
arguments explicit. Additionally, Delphin allows the disabling/enabling of the cov-
erage checker and the termination checker.

Figure 5 illustrates a use of the top-level in converting a couple of simply-typed
λ-terms into combinators. The file lfmtp08.d is the code from our four previous
figures. Recall that the first argument to convert is a parameter function. We
supply it with an empty function “fn .”, which is appropriate as no parameters
exist at the top-level.

Delphin and its related publications are all available for download on our website
– http://delphin.logosphere.org.

References

[GP02] Murdoch Gabbay and Andrew M. Pitts. A new approach to abstract syntax with variable binding.
Formal Aspects Computing, 13(3-5):341–363, 2002.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. Journal of
the Association for Computing Machinery, 40(1):143–184, January 1993.

[Pie08] Brigitte Pientka. A type-theoretic foundation for programming with higher-order abstract syntax
and first-class substitutions. In Principles of Programming Languages, POPL, 2008.

[Pot07] François Pottier. Static name control for FreshML. In Twenty-Second Annual IEEE Symposium
on Logic In Computer Science (LICS’07), Wroclaw, Poland, July 2007.

[PS98] Frank Pfenning and Carsten Schürmann. Twelf User’s Guide, 1.2 edition, September 1998.
Available as Technical Report CMU-CS-98-173, Carnegie Mellon University.

[PS08] Adam Poswolsky and Carsten Schürmann. Practical programming with higher-order encodings
and dependent types. In European Symposium on Programming (ESOP), 2008.

[Sch00] Carsten Schürmann. Automating the Meta-Theory of Deductive Systems. PhD thesis, Carnegie
Mellon University, 2000. CMU-CS-00-146.

[SP03] Carsten Schürmann and Frank Pfenning. A coverage checking algorithm for LF. In David
Basin and Burkhart Wolff, editors, Proccedings of Theorem Proving in Higher Order Logics
(TPHOLs’03), volume LNCS-2758, Rome, Italy, 2003. Springer Verlag.

[SPS] Carsten Schürmann, Frank Pfenning, and Natarajan Shankar. Logosphere. A Formal Digital
Library. Logosphere homepage: http://www.logosphere.org.

7

http://delphin.logosphere.org
http://www.logosphere.org

	Introduction
	Specification of Data
	Computation
	Reasoning
	Case Studies
	Related Work
	Environment
	References

